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ABSTRACT

Active acoustics (AA) refers to an electroacoustic system that ac-
tively modifies the acoustics of a room. For common use cases, the
number of transducers—loudspeakers and microphones—involved
in the system is large, resulting in a large number of system pa-
rameters. To optimally blend the response of the system into the
natural acoustics of the room, the parameters require careful tun-
ing, which is a time-consuming process performed by an expert.
In this paper, we present a differentiable AA framework, which al-
lows multi-objective optimization without impairing architecture
flexibility. The system is implemented in PyTorch to be easily
translated into a machine-learning pipeline, thus automating the
tuning process. The objective of the pipeline is to optimize the
digital signal processor (DSP) component to evenly distribute the
energy in the feedback loop across frequencies. We investigate the
effectiveness of DSPs composed of finite impulse response filters,
which are unconstrained during the optimization. We study the ef-
fect of multiple filter orders, number of transducers, and loss func-
tions on the performance. Different loss functions behave similarly
for systems with few transducers and low-order filters. Increasing
the number of transducers and the order of the filters improves re-
sults and accentuates the difference in the performance of the loss
functions.

1. INTRODUCTION

Active acoustics (AA) systems include sound reinforcement and
reverberation enhancement systems [1]. Usually, they comprise
several microphones and loudspeakers distributed in a closed space
and a digital signal processor (DSP). Feedback is an AA system’s
inherent component: the signal produced by a sound source is
picked up by the microphones, processed in the DSP, played back
in the room by the loudspeakers, and picked up again by the mi-
crophones.

We can divide AA systems into two categories [1, 2, 3]: in-
line systems that suppress the feedback with the use of directional
microphones placed close to the sound source and non-inline, or
regenerative, systems, that use feedback as their working princi-
ple. Inline systems work far from the stability limit, and hence
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they use long impulse responses (IRs) to produce artificial rever-
beration. Regenerative systems, on the other hand, do not suppress
feedback and can generate long reverberation by working close to
the stability limit allowing the feedback to generate many repeti-
tions of the input signal. Thus, they can also employ filters with
short IRs. Usually, commercial systems use a hybrid approach
comprising both an inline and a regenerative component [2, 4, 5].

Due to the feedback nature of AA systems, stability is one of
the crucial considerations in system design and use [1, 2, 6, 7]. An
unstable feedback loop results in the signal amplitude increasing
at each loop iteration, up to the point of transducer saturation [1].
To avoid such a state, the gain that can be safely applied to the
system is constrained by the gain before instability (GBI) [1, 3].
Approaching the GBI, however, may still result in audible arti-
facts in the enhanced sound, such as strong coloration in the form
of long-ringing tones and modulation [1, 8]. The ringing tones
theoretically coincide with the frequencies at which the feedback
loop’s signal amplification is stronger [6, 7]. Therefore, the design
and implementation of AA systems benefit from having the energy
of the feedback loop evenly distributed across frequencies [8, 9].
An AA system with an identical stability threshold for all frequen-
cies can work closer to the GBI without coloration affecting the
feedback loop. Upon reaching the GBI, such a system would be-
come unstable at all frequencies at once.

In the literature, numerous techniques aim to maximize the
AA systems’ performance in terms of control over reverberation
time (RT) and/or gain, simultaneously maintaining their stabil-
ity and minimizing artifacts. The state of the art includes trans-
ducer positioning and directivity investigation [10, 11], equaliza-
tion of transducer gains [12, 13, 14], adaptive feedback cancel-
lation [15, 16, 17], spectrum decorrelation techniques [8, 18, 19,
20], and time-varying reverberators [3, 21, 22]. The success in
providing high GBI and good-quality sound is strongly method-
dependent [23]. In recent years, research explored geometric and
perceptually-motivated approaches [5, 24, 25] to assess the quality
of AA systems. However, they all share a major drawback: they
require fine-tuning [3, 14], which is time-inefficient and demands
expert knowledge, especially in systems with a high number of
channels and complex DSPs.

A way to avoid the laborious manual tuning of AA system
parameters is through automation. In this paper, we propose a
PyTorch formulation of AA that allows for automatic differen-
tiation of the DSP. The differentiable DSP (DDSP) can be opti-
mized towards a target in the same fashion as a machine learning
pipeline [26, 27]. We restrict the optimization design to regenera-
tive AA systems with short DSP finite impulse response (FIR) fil-
ters, and we test the framework using several setups with different
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Figure 1: Block diagram representing an AA system in a real-
world scenario. The signal routing is depicted by solid arrows with
annotations of the involved IRs.

filter orders, loss functions, and transducer configurations. In the
end, we test the application of this approach to an inline system.

The paper is organized as follows: Section 2 offers background
information on the stability of AA systems; Section 3 describes
the proposed framework and the optimization algorithm; Section
4 shows the results of comparing system stability between non-
optimized and optimized DSP; and Section 5 concludes the article.

2. PROBLEM DEFINITION

Figure 1 shows the signal flow in an AA system’s feedback loop.
The sound field is generated in the physical room, where the trans-
ducers, i.e., nM microphones and nL loudspeakers, are positioned.
The virtual room is the DSP, which digitally enhances the room
acoustics. At time sample n, any sound xrns produced in the
physical room is picked up by the microphones, while the signal
yrns received at any position in the audience is the superimpo-
sition of the contributions from the physical room and the AA
system. In the physical room, HSArns P R, HSMrns P RnM ,
and HLArns P RnL are the room IRs (RIRs) between the sound
source and audience position, the sound source and the system’s
microphones, the systems’ loudspeakers and audience position,
respectively. The RIRs HLMrns P RnMˆnL from the loudspeak-
ers to the microphones are the system’s feedback paths. In AA
systems, any linear and time-invariant DSP results in a matrix of
IRs, VMLrns P RnLˆnM , from every microphone to every loud-
speaker, and an amplification gain G. In this work, VMLrns does
not contain any internal feedback path, and therefore it is essen-
tially a matrix of FIR filters.

The DSP transfer functions (TFs) from microphones to loud-
speakers are VMLpzq “ ZtVMLrnsu and the physical room trans-
fer functions (RTFs) are HLMpzq “ ZtHLMrnsu. Z denotes the
z-transform and z “ σeȷω is a complex number where e is Euler’s
number, ȷ is the imaginary unit, and σ and ω are the radius and
the phase, respectively, of z on the complex plane. An AA sys-
tem’s stability is analyzed along the unit circle, and hence, from
now on, we consider σ “ 1, and we discuss stability with re-
spect to the discrete normalized angular frequency ωk P r0, πs for

k “ 0, . . . ,K ´ 1.
An AA system’s feedback loop iteration is determined by the

product of the feedforward TFs and the feedback RTFs:

FMMpeȷωk q “ G HLMpeȷωk qVMLpeȷωk q, (1)

where FMMpeȷωk q contains the TFs from any microphone to any
microphone. The amplification gain G is a real scalar multiplier,
and thus, for this work, we conveniently choose G “ 1.

Typically, all elements of FMMpeȷωk q are non-zero, meaning
that all the channels in the system are coupled. An equivalent
system with decoupled channels—i.e. eigenchannels—can be ob-
tained by applying Eigen-decomposition to FMMpeȷωk q [28]:

FMMpeȷωk q “ Qpeȷωk qΛpeȷωk qQ´1
peȷωk q, (2)

where Qpeȷωk q is the matrix of the system’s eigenvectors, and
Λpeȷωk q is a diagonal matrix containing the system’s eigenvalues
tλipe

ȷωk qu, for i “ 1, 2, . . . , nM. By applying Eq. (2) to each
frequency ωk we obtain the evolution of the eigenvalues over fre-
quency. We refer to the complete collection of all system’s eigen-
values, across both frequency and eigenchannels, with the term
eigenvalue set and to the collection of the magnitude values of the
eigenvalue set with the term eigenvalue magnitude distribution.

According to Nyquist’s stability criterion [6, 7], the system is
stable if all of the eigenvalues in the eigenvalue set have a real part
lower than 0 dB or a non-zero imaginary part. A more stringent
but safer and simpler approach is to consider a system stable if
and only if the whole eigenvalue magnitude distribution is below
0 dB [20, 28]. Thus, we can determine the AA system stability
by analyzing only the eigenvalue magnitude distribution. How-
ever, we know that for each frequency ωk, the eigenvalue with the
largest magnitude is the most likely to invalidate the stability con-
dition. Therefore we can simplify the stability analysis by consid-
ering, for each frequency ωk, only the eigenvalue with the largest
magnitude across channels:

λmaxpeȷωk q “ max
i

t|λipe
ȷωk q|u. (3)

Fulfilling the stability condition alone, however, does not war-
rant a colorless feedback loop. By applying Eq. (3) for each fre-
quency ωk we obtain the maximum eigenvalue curve. Strong ir-
regularities in such a curve lead to perceivable ringing tones well
below the stability limit due to some frequencies being more am-
plified than others by the feedback loop. A flat λmaxpeȷωk q curve
grants homogeneous decay for all frequencies looping in the sys-
tem. In the case of a flat λmaxpeȷωk q curve, a target RT-frequency
profile can be then achieved by introducing an equalizer, but this
goes beyond the scope of this work.

The maximum eigenvalue curve, though, is not representative
of the whole system’s eigenvalue set. A flat maximum eigenvalue
curve implies that at least for one eigenchannel all frequencies con-
tribute to the enhanced sound field. If, however, the eigenvalue
magnitude distribution is broad, then most of the feedback loop
energy is concentrated in one or few eigenchannels. On the other
hand, magnitudes of the system’s eigenvalues close to each other at
a frequency ωk provide a good distribution of the energy between
the eigenchannels at that frequency. But, if this last condition is
not preserved across frequencies, then not all of the spectrum con-
tributes to the enhanced sound field. For this reason, the optimiza-
tion should target an eigenvalue magnitude distribution that is nar-
row across both eigenchannels and frequencies.
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Figure 2: DDSP training pipeline to optimize the virtual room
V‹

ML. The parameters of the DSP of the differentiable AA sys-
tem are updated through backpropagation of the gradient of the
loss function.

Flattening the feedback loop magnitude responses may im-
prove the eigenvalue magnitude distribution. An optimization al-
gorithm requires less computational complexity if it targets flat
FMMpeȷωk q magnitude curves instead of a narrow eigenvalue mag-
nitude distribution since eigendecomposition is not required. How-
ever, due to the way the elements of FMMpeȷωk q are combined in
Eq. (2), such an algorithm would not account for how the phase re-
sponses in FMMpeȷωk q affect the eigenvalue set. The result of the
optimization would be a less optimal eigenvalue magnitude distri-
bution. To our knowledge, there is no previous study that considers
the difference between optimizing the magnitude responses of the
feedback loop matrix or the eigenvalues concerning the generated
enhanced reverberation in the physical room. For this reason, all
three levels of analysis—FMMpeȷωk q magnitude responses, max-
imum eigenvalue curve, and eigenvalue magnitude distribution—
are considered in this work.

3. PROPOSED METHOD

This section introduces an optimization-based approach to improve
the feedback loop’s energy distribution across frequencies. To
achieve this goal, we defined the system’s DSP as a set of train-
able FIR filters, following a DDSP framework wherein sparse fre-
quency sampling is employed [29]. In this framework, filter co-
efficients are optimized to minimize a loss function via stochastic
gradient descent. This approach differs from conventional black-
box machine learning techniques since the trainable parameters
possess physical interpretations. Specifically, the DSP filters are
responsible for the artificial sound enhancement injected in the
physical room and directly affect the stability of the system.

3.1. Differentiable active acoustics

The diagram of the training pipeline for the proposed architecture
is presented in Fig. 2. VMLpeȷωk q is a matrix of nLˆnM learnable
FIR filters. For a given HLMpeȷωk q, the optimization framework
estimates the coefficients of the optimized DSP V‹

ML FIR filters.
The loss L of the feedback loop matrix FMMpeȷωk q with respect
to a target Tpeȷωk q is minimized using stochastic gradient descent,
denoted with the gradient operator.

Before the training, we store the RIRs HLMrns, initialize the
coefficients of VMLrns by drawing from the random uniform dis-
tribution Up´1, 1q, and define the dataset as K discrete frequency

points sampled uniformly in the interval r0, π ´ π
K

s,

ΩK “

"

π
0

K
, . . . , π

K ´ 1

K

*

(4)

The dataset size K is chosen to ensure oversampling. In this study,
we used K “ 480 000 with a sampling rate of fs “ 48 kHz. At
each training step, a random subset of µ frequency points is ex-
tracted from Ωk to form a batch. Consequently, for each batch Ωµ,
VMLpeȷΩµq and HLMpeȷΩµq are computed using a non-uniform
discrete Fourier transform and combined, according to Eq. (1), to
obtain FMMpeȷΩµq. 90% of the dataset was used for the training,
and the remaining 10% was used for the validation.

We observed empirically that losses converged after 10 epochs
with a batch size of µ “ 2400. We employed an Adam optimizer
[30] with learning rate η “ 10´3. The learnable FIRs were un-
constrained, and thus each FIR was independent and each sample
in each FIR was free to vary within the real numbers set.

3.2. Loss functions

The model was trained on six different configurations employing
the mean squared error (MSE) loss. The loss minimization was
computed from the magnitude of either FMMpeȷΩµq or the sys-
tem’s eigenvalues in correspondence with the batch’s frequency
points.

The peaks in the magnitude of FMMpeȷωk q and in the eigen-
value magnitude distribution are the most dangerous for the sys-
tem’s stability and coloration. With this motivation, in this work,
we consider an MSE variant, where the loss exponent depends on
the sign of the magnitude difference between the target and either
FMMpeȷΩµq, λmaxpeȷΩµq, or tλipe

ȷΩµqu. This variant, which
we will refer to as Mean Asymmetric Error (MAsE), was intro-
duced in [26] to attenuate masker tones in an artificial reverberator.
Specifically, considering two generic tensors A and B—both with
dimensions d1, d2, and d3—the loss functions are:

L
´

A,B
¯

“
1

d1 d2 d3

d1
ÿ

i“1

d2
ÿ

j“1

d3
ÿ

k“1

pAijk ´ Bijkq
p. (5)

For MSE, the exponent is p “ 2. For MAsE, it is adjusted as
follows:

p “

#

2 for
`

Aijk ´ Bijk

˘

ď 0 ,

4 for
`

Aijk ´ Bijk

˘

ą 0 .
(6)

The six considered configurations were:

• MSE for the magnitude of FMMpeȷΩµq:

MSE-Magn “ MSE
´∣∣FMMpeȷΩµq

∣∣,TpeȷΩµqq

¯

• MAsE for the magnitude of FMMpeȷΩµq:

MAsE-Magn “ MAsE
´∣∣FMMpeȷΩµqq

∣∣,TpeȷΩµqq

¯

• MSE for the magnitude of the maximum eigenvalue curve:

MSE-EVmax “ MSE
´∣∣λmaxpeȷΩµq

∣∣,TpeȷΩµq

¯

• MAsE for the magnitude of the maximum eigenvalue curve:

MAsE-EVmax “ MAsE
´∣∣λmaxpeȷΩµq

∣∣,TpeȷΩµq

¯
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• MSE for the eigenvalue magnitude distribution:

MSE-allEVs “ MSE
´∣∣tλjpeȷΩµqu

∣∣,TpeȷΩµq

¯

• MAsE for the eigenvalue magnitude distribution:

MAsE-allEVs “ MAsE
´∣∣tλjpeȷΩµqu

∣∣,TpeȷΩµq

¯

,

where the absolute value symbol |¨| represents the matrix elemen-
twise absolute value. Depending on the specific loss, the dimen-
sions d1, d2, and d3 in (5) were pµ, nM, nMq for MSE-Magn and
MAsE-Magn, pµ, 1, 1q for MSE-EVmax and MAsE-EVmax, and
pµ, nM, 1q for MSE-allEVs and MAsE-allEVs.

The presented pipeline does not apply particular constraints on
the choice of the DSP and the target, which can be defined based on
different strategies and loss functions. The framework can be ap-
plied to both regenerative and inline systems. In this work, we first
consider regenerative AA systems. Regenerative systems usually
employ filters with short IRs, which can be obtained with low-
order FIR filters. This leads to a simple implementation with a
small number of learnable parameters and a fast training process.
In the end, we optimize the low-order FIR filters in an inline AA
system comprising a fixed artificial reverberator. Furthermore, we
aim to improve stability, and we do not consider perceptual met-
rics. Thus, as a target, we use a frequency-independent matrix of
ones, i.e., TpeȷΩµq “ 1 @ Ωµ. This typically leads to a loop TF
that is too bright, since natural RIRs tend to have lowpass char-
acteristics. Such a sound design aspect can be easily amended by
post-filtering with an equalizer with a smooth frequency response.

4. RESULTS

In this section, we evaluate the stability improvement provided
by the presented framework. We assess the performance of the
optimization algorithm in terms of the flatness of the feedback
loop magnitude responses and the system’s eigenvalues distribu-
tion. Since the magnitude responses of FMMpeȷωk q and the eigen-
value magnitude distribution are correlated, we compare the results
on both metrics for all the loss functions listed in Sec. 3.2.

4.1. Analysis setup

For the simulations, we used RIRs measured in a room equipped
with a multi-input multi-output channel system comprising four
microphones and 13 loudspeakers. The room fulfills the
ITU-R BR.1116 standard requirements with a volume of 103 m3

and RT of 0.3 s over a wide frequency range (100–8000 Hz). Four
Behringer ECM8000 microphones are fixed on the ceiling. There
are nine Genelec 8260A and four Genelec 8340A loudspeakers in
a 9.0.4 setup.

During the measurements, we used a 2-s-long exponential sine
sweep, that was played once for each loudspeaker and recorded
simultaneously by all microphones. The procedure was repeated
for each loudspeaker, obtaining a set of 52 recordings, which were
then convolved with the inverse sweep to obtain the IRs [31].

To test the dependence of the algorithm on transducer number,
we considered two transducer setups in the proposed framework
analysis. The first setup comprised only two microphones and two
loudspeakers, and this setup is referred to as small system in the
remainder of this paper. The second setup, dubbed full system,
included all system transducers.
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Figure 3: Comparison of the FMMpeȷωk q magnitude responses for
the small system with DSP of order 100 between the non-trained
DSP (black) and the DSP trained using MSE-Magn loss function
(orange).

To test the algorithm’s performance in relation to the length
of the DSP’s IRs, we considered FIR filters of orders 100 and
1000. The order of the filters remains consistent across all the
DSP matrix elements. We compare non-trained and trained FIR
filters, where the initial (non-trained) FIR coefficients are random-
ized non-integer values between -1 and 1. We always normalized
the DSP IR matrix before and after training:

`

VMLrns
˘

normalized
“

VMLrns

∥VML∥F
, (7)

where ∥VML∥F “
ř

i,j

ř

k V
2
MLi,j

rks is the Frobenius norm of
VMLrns. The normalization employed in Eq. (7) makes the com-
parison fair since both the initialized and the optimized DSPs do
not affect the average energy of the signal along the feedforward
path of the feedback loop. Thus, the matrix FMM has the same
energy in both the initialized and the optimized case, and we can
easily compare the difference in their respective GBI values.

4.2. Feedback loop flatness

To assess the algorithm’s ability to flatten the feedback loop TFs,
we compared the magnitude responses of the FMMpeȷωk q ele-
ments before and after the training. FMMpeȷωk q was computed
in the frequency domain as in Eq. (1), where HLMpeȷωk q and
VMLpeȷωk q were obtained with a DFT of 48k frequency points in
the range r0, πs rad. For better visualization, the curves in Figs. 3
and 4 were smoothed through an average pooling with a kernel
size of 256 samples.

Figure 3 shows the comparison between a DSP of non-trained,
randomized FIR filters (in black) and a trained DSP (in orange)
for the small system setup. Subplot titles indicate which TFs are
illustrated in the respective panes. The training was conducted
using MSE-Magn to maximize the curve flattening. The trained
DSP produces much flatter magnitude responses than the non-
trained DSP. Additionally, the optimized magnitude responses dis-
play similar values across all loop paths, meaning that the energy
is uniformly distributed among the elements of FMMpeȷωk q.

Figure 4 compares the magnitude responses for the p1, 1q ele-
ment of FMMpeȷωk q (cf. top-left pane of Fig. 3) after training the
DSP with all proposed losses. The results are presented for both
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(a) Optimization obtained using MSE-Magn (orange) and MAsE-
Magn (blue) loss functions. The reference (black) is obtained with
the non-trained DSP.
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(b) Optimization obtained using MSE-maxEV (orange) and MAsE-
maxEV (blue) loss functions.
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(c) Optimization obtained using MSE-allEVs (orange) and MAsE-
allEVs (blue) loss functions.

Figure 4: Comparison of the magnitude response of element (1,1)
of FMMpeȷωk q after optimization. In each pane, the top row shows
results for the small system, the bottom row for the full system, the
left column for FIRs of order 100, and the right column for FIRs
of order 1000.

the small system and the full system and FIRs of orders 100 and
1000. All magnitude responses in Fig. 4a are relatively flat and
exhibit uniform energy distribution across the analyzed frequen-

Table 1: Mean and standard deviation values in dB of the magni-
tude response of element (1,1) of FMMpeȷωk q of the small system.
The best values in each column are marked in bold font.

Condition
Small system

order 100 order 1000

Mean Std. dev. Mean Std. dev.

Initialization -26.63 7.076 -26.74 7.369
MSE-Magn -26.49 4.687 -27.16 2.762
MAsE-Magn -26.30 4.920 -26.85 2.786
MSE-EVmax -27.88 5.651 -29.26 5.532
MAsE-EVmax -27.53 5.547 -29.37 5.432
MSE-allEVs -27.59 5.437 -29.72 5.333
MAsE-allEVs -27.41 5.445 -29.53 5.275

Table 2: Mean and standard deviation values in dB of the magni-
tude response of element (1,1) of FMMpeȷωk q of the full system.
The best values are marked in bold font.

Condition
Full system

order 100 order 1000

Mean Std. dev. Mean Std. dev.

Initialization -28.24 6.776 -28.38 6.792
MSE-Magn -28.81 3.147 -29.70 0.558
MAsE-Magn -28.47 3.214 -29.52 0.778
MSE-EVmax -33.01 5.818 -33.56 5.995
MAsE-EVmax -33.34 5.865 -33.28 6.037
MSE-allEVs -31.72 5.618 -34.15 5.471
MAsE-allEVs -31.58 5.539 -31.35 5.411

cies. The optimization algorithm performance increases with the
growing filter order and number of transducers, but the results are
similar regardless of the loss used during training.

Figures 4b and 4c show the evaluation of the remaining losses:
MSE-EVmax, MAsE-EVmax, MSE-allEVs, and MAsE-allEVs.
The resulting magnitude curves are not as flat as those obtained
with MSE-Magn and MAsE-Magn. In general, neither the filter
order nor the number of transducers seem to affect the results sig-
nificantly. For the full system in Fig. 4b, the frequencies above
15 kHz have a visibly lower magnitude than the rest. Such be-
haviour does not appear, however, in Fig. 4c.

In Figs. 4b and 4c the optimization results are similar regard-
less of the loss function used during training. However, for full
system with the 1000-order FIR in the bottom-right pane of Fig. 4c
the average magnitude obtained with MAsE-allEVs is almost 3 dB
higher than the respective value for MSE-allEVs. The same be-
havior was discovered for all 16 elements of FMMpeȷωk q. The
explanation for such a result is discussed in Sec. 4.3.

The statistics on magnitude flatness are gathered in Tables 1
and 2 for the small system and full system, respectively. The stan-
dard deviations further confirm that the optimization successfully
flattens the magnitude responses of the system. The MSE-Magn
loss performs best in this task, especially for the FIR order 1000.
The system optimized on eigenvalue-based losses generally dis-
plays higher standard deviations than when magnitude-based losses
are used. This is, however, expected in a magnitude-oriented task.
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Figure 5: Eigenvalue magnitude distribution for small system con-
figuration.

The mean values of the magnitude in Tables 1 and 2 are lower
when the loss is computed from the system eigenvalues, with
EVmax-based losses being the most beneficial for the low FIR or-
der and MSE-allEVs for the high FIR order. This may allow more
amplification of the reverberation produced with the AA system
before reaching coloration or instability.

4.3. System eigenvalues

In this section, we assess the ability of the optimization algorithm
to narrow the eigenvalue magnitude distribution. The magnitude
computations were conducted as described in Sec. 4.2. The eigen-
values of FMMpeȷωk q for each frequency bin were then obtained
through Eq. (2).

The results are presented in Figs. 5 and 6. The convention
used for the boxplots represents the median with the central mark,
while the whiskers correspond to the minimum between the ex-
treme value and 1.5 times the interquartile range. In both figures,
the maximum eigenvalue for each condition is shown and repre-
sented as a colored dot.

Figure 5 shows the small system’s eigenvalue magnitude distri-
bution obtained with the DSP of orders 100 (left) and 1000 (right).
The comparison is between the non-trained DSP (in blue) and the
DSP trained with all the loss functions described in Sec. 3.2: MSE-
Magn and MAsE-Magn (in orange), MSE-EVmax and MAsE-
EVmax (in green), MSE-allEVs and MAsE-allEVs (in purple).

MSE-Magn and MAsE-Magn lowered the magnitude of the
eigenvalue set but changed the shape of the eigenvalue magnitude
distribution only marginally: the maximum—neglecting outliers—
and the median are both closer to the third quartile, but the rest of
the distribution remains unchanged. Increasing the FIRs order did
not provide any substantial difference for the eigenvalues above
the median, but broadened the distribution of the eigenvalues be-
low the median. MSE-EVmax and MAsE-EVmax provided simi-
lar results to MSE-Magn and MAsE-Magn. In the case of low FIR
order the obtained eigenvalues magnitude distribution is slightly
narrower, whereas in the case of high FIR order the only visible
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Figure 6: Eigenvalue magnitude distribution for the full system.

difference is that the median is closer to the third quartile. MSE-
allEVs and MAsE-allEVs narrowed the eigenvalue magnitude dis-
tribution considerably. For FIRs of order 100, the difference be-
tween the losses targeting the maximum eigenvalue curve and the
losses targeting the whole eigenvalue set is subtle. MSE-allEVs
and MAsE-allEVs provide a slightly better distribution than MSE-
EVmax and MAsE-EVmax For FIRs of order 1000, the effect of
narrowing the distribution is much more prominent when all the
system’s eigenvalues are considered. In this case, MSE-allEVs
provided the best eigenvalues distribution.

Figure 6 shows the eigenvalue distribution comparison for the
case of the full system configuration. In contrast to the small sys-
tem, MSE-Magn and MAsE-Magn produced a visibly narrower
eigenvalue magnitude distribution with respect to the non-trained
DSP, especially in the case of the low FIR order. For MSE-Magn
and MAsE-Magn, increasing the order of the FIRs broadened the
distribution but lowered the magnitude values. MSE-Magn and
MAsE-Magn also provided narrower eigenvalue magnitude distri-
butions than MSE-EVmax and MAsE-EVmax. This is especially
true for FIR of order 1000.

Figure 6 shows considerable differences between MSE-EVmax,
MAsE-EVmax, MSE-allEVs, and MAsE-allEVs. With FIRs of or-
der 100, MSE-EVmax and MAsE-EVmax decreased the eigenval-
ues’ magnitude values, but the distribution was slightly wider than
when MSE-Magn and MAsE-Magn were used. The distributions
of MSE-allEVs and MAsE-allEVs are, instead, much narrower for
short FIRs. With FIRs of order 1000, MSE-EVmax and MAsE-
EVmax broadened the eigenvalue magnitude distribution with re-
spect to initialization, with the only good outcome being that the
eigenvalue set has lower magnitude values and the upper whisker
is closer to the upper quartile. In the case of MSE-allEVs and
MAsE-allEVs, the distributions converged to a very narrow mag-
nitude interval, and these are the only two cases in which a loss
function provided an outlier that does not coincide with the up-
per whisker limit. Again, MSE-allEVs produced the best results.
The right pane of Fig. 6 shows that almost all of the eigenvalue
magnitude distribution obtained via the MSE-allEVs loss is lower
in magnitude than the distribution obtained via the MAsE-allEVs
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loss. This explains the difference in the average magnitude shown
in the bottom-right pane of Fig. 4c.

Figures 5 and 6 show that all loss functions have reduced the
eigenvalues’ magnitudes with respect to the non-trained DSP cases.
This reflects the flattening of the magnitude responses of
FMMpeȷωk q described in Sec. 4.2, and the corresponding better
distribution of the feedback loop’s energy across frequencies. This
is positive because—assuming that the stability condition is met,
and recalling that all the DSPs were normalized—the gain in the
processing path is further away from the GBI for the trained DSP
than the non-trained DSP. Thus, the trained system can introduce
more energy into the room than the non-trained one before gener-
ating sound coloration or reaching the instability limit. The lowest
and the highest top outlier magnitude decrements obtained were
7.75 dB for the small system and the FIR of order 100 with MSE-
Magn loss and 22.0 dB for the full system and the FIR of order
1000 with the MSE-allEVs loss, respectively.

4.4. Inline system

In this section, we consider the optimization of short FIR filters
inside the DSP of an inline system. The DSP also includes a fixed
artificial reverberator designed to be exponentially decaying white
Gaussian noise with a RT of 1 second. The role of the artificial
reverberator is to lengthen the sound energy decay, whereas the
role of the FIR filters is to improve system stability. The stability
analysis and the PyTorch pipeline remain unaltered, although the
definition of the DSP changes:

VMLpeȷωk q “ RLLpeȷωk qUMLpeȷωk q, (8)

where UMLpeȷωk q is the matrix of the FIR filters and RLLpeȷωk q

is the fixed diagonal matrix of artificial reverberators. The or-
der of the learnable FIR filters is 100 and the DSP is optimized
through the MSE-allEVs loss function. We simulated the full sce-
nario depicted in Fig. 1. To obtain the RIRs HSArns, HSMrns, and
HLArns we included an additional microphone—Behringer type
ECM8000—, to simulate a listening position in the audience, and
one of the systems’ loudspeakers served as the sound source.

Figure 7 shows the spectrogram of the signal yrns at the audi-
ence microphone when the source speaker is fed with an impulse
at time sample n “ 0 for different system conditions. Fig. 7a is
the signal received when the AA system is turned off, thus cor-
responding to HSArns, showing the acoustical properties of the
physical room. The RT is 0.3 seconds, cf. Sec. 4.1. In Fig. 7b,
the top pane is the response obtained when the AA system with
a non-trained DSP is turned on and the gain G set just above the
GBI. Instability below 500 Hz and a strong ringing tone at 12 kHz
are visible. The center pane is the response obtained by keeping
G fixed but employing the trained DSP. The optimization success-
fully removed instability and the long-ringing tone and distributed
the energy more evenly across the entire frequency range, reducing
coloration. The bottom pane is the response when the AA system
with the trained DSP is turned on with the gain G incremented by
+6 dB. The system is still stable, showing no discrepancy between
the decay times at different frequencies. Audio examples and con-
figuration details are available online 1.

1http://research.spa.aalto.fi/publications/
papers/dafx24-diff-aa/
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(b) Non-trained DSP (top), trained DSP (center) and trained DSP with an
increased gain value (bottom).

Figure 7: Spectrograms of the signal yrns registered at the audi-
ence position for multiple AA system configurations.

5. CONCLUSIONS

The presented work introduced the use of a DDSP framework in
the AA context. The proposed optimization retains the AA sys-
tem’s flexibility and allows for automatic tuning of its parameters
to obtain a flat magnitude response of the feedback loop and a nar-
row eigenvalue magnitude distribution. Specifically, the method
focuses on adjusting the coefficients of the FIR filters in the DSP
matrix.

We evaluated the proposed framework using multiple trans-
ducer setups, filter orders, and loss functions. Results show that
increasing the filter order and the number of transducers improves
the optimization performance. In our experiments, we obtained
flat magnitude responses from the feedback loop TFs with a stan-
dard deviation ă 1 dB. In this task, using a mean squared error
between the feedback loop magnitude and a target performed the
best of all the analyzed loss functions.

In terms of the system’s eigenvalues, we also obtained narrow
distributions with a standard deviation ă 0.5 dB, neglecting out-
liers. This time, minimizing the mean squared error of all of the
eigenvalues proved to be the best loss function.

This work demonstrated the effectiveness of DDSP in the AA
scenario, providing a starting point for future improvements.
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