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A B S T R A C T

Increasing transparency about the performance of different projects is crucial to reducing the heterogeneity
in the energy efficiency services market, thereby upscaling investments. In this context, machine learning
algorithms could assist in identifying and analyzing energy efficiency project archetypes, although this field
has so far been explored with a limited view in the literature. This paper aims to address this gap by
identifying energy efficiency investment families and the determinant factors of the classification scheme, using
machine learning. In this effort, it hinges on a wide range of indicators from implemented projects around
Europe and the USA, including investment profitability, initial investment, risk of failure, intervention type,
life measure, region of implementation and building type. The analysis employs two clustering approaches,
namely Partitioning Around Medoids (PAM) and K-means, determining the number of clusters based on the
Silhouette index and total within–cluster sum of squares. The results indicate that energy efficiency investments
can be classified into three categories: (i) ‘‘junk investments’’, characterized by low–profitability (IRR∼10%),
moderate risk, and extended horizons; (ii) ‘‘safe profitability’’, distinguished by high profitability (IRR∼30%)
and minimal risk; and (iii) ‘‘high stakes’’, described by exceptionally high profitability (IRR∼40%), coupled
with a substantial risk. Next to profitability and risk of failure, also energy efficiency intervention and building
type (sector) emerge among the most influential factors in the classification scheme. Feature importance shows
a significant sensitivity to the chosen classification model.

1. Introduction

Boosting energy efficiency is widely recognized as crucial for achiev-
ing the established energy and climate targets (Rubino, 2017). How-
ever, apart from the behavioral factors (e.g., rebound effect) that
hinder progress in this area (Sorrell et al., 2020), the current pace
of mobilizing public and private capital for energy efficiency falls
significantly short of what is needed to keep these targets within
reach (Deloitte, 2016; IEA, 2021). This shortfall can be primarily
ascribed to the heterogeneity of the energy efficiency services market.
This variety arises from the interplay of energy efficiency projects
with a multitude of technical aspects (e.g., quality of technology,
experience of involved workers) and economic factors (e.g., energy
prices, economic environment). Addressing this complexity necessitates
resource-intensive, bottom-up approaches for effective treatment and
evaluation (Hill, 2019; Stevens et al., 2019). Furthermore, the lack of
available data on successful projects exacerbates the challenge (Bremer
et al., 2024), complicating the benchmarking of investments.
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Consequently, investors face a transparency gap when estimating
the returns and associated risks of an energy efficiency project (Kout-
sandreas et al., 2022; Mexis et al., 2021). These risks reflect the
potential for payment default, where capital providers may not recover
their funds (Rezessy and Bertoldi, 2010). Due to the challenges in
identifying and accurately assessing the risks of energy efficiency in-
vestments, financing decisions are often solely based on the borrower’s
creditworthiness. This approach can lead investors and financial institu-
tions to overlook many projects with significant potential (Wang et al.,
2017), which may not be recognized as such without thorough analy-
sis. Additionally, investors typically seek a deep understanding of the
sectors where they invest, thereby avoiding these types of investments
due to perceived uncertainties and complexities. Notably, the risk of
future losses often weighs more heavily on investors’ decisions than the
potential for gains (Wang et al., 2017).

Addressing the above-mentioned challenges in energy efficiency
financing requires standardized decision support methods and mod-
els (Kleanthis et al., 2022), which have been the focus of several studies
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over the last years. Indicatively, Doukas et al. (2021) employed a
combination of traditional and machine learning classification tech-
niques to predict the performance of energy efficiency investments.
Similarly, Sarmas et al. (2022) applied machine learning classification
methods, in conjunction with a meta-learning model, to determine the
optimal allocation of energy efficiency investment portfolios, according
to renovation costs and energy savings. Additionally, Kleanthis et al.
(2022) introduced an assessment framework for energy efficiency in-
vestment profitability across various investor profiles. Relatedly, Mexis
et al. (2021) developed a methodology based on the multicriteria
method ELECTRE Tri to classify energy efficiency investments into
predetermined classes, each defined by specific limits to each indicator
(e.g., profitability).

The existing body of literature has predominantly focused on pre-
dicting and classifying the performance of energy efficiency invest-
ments using historical data from successfully implemented projects,
utilizing a type of supervised learning or predefined classification rules.
Supervised learning involves the division of available data into in-
put and output: training models to accurately project output data
(e.g., profitability) when fed with the input data. Such type of algo-
rithms has been also extensively utilized for various applications in the
broader energy sector (e.g., Chen et al. (2023), Li et al. (2024), Lahmiri
(2024) and Al Kez et al. (2024)). However, there remains a gap in
the literature regarding the examination of the relationships between
diverse energy efficiency projects with a view to understanding the
coexistence of certain project characteristics (e.g., country of imple-
mentation, associated interventions, or technical characteristics) and
how these interact with project profitability and risk. Analyzing these
aspects based on which projects resemble or differ can help reduce
the heterogeneity in the energy efficiency services market, thereby
identifying project ensembles that might not have been considered a
priori. This can in turn support investors in making informed decisions.
Addressing this requires the application of an unsupervised machine-
learning approach to a multidimensional dataset of completed projects.
Unlike supervised learning, where models are informed about the target
variable to be predicted, unsupervised learning models seek relevance
and affinity across different unspecified elements based on various
features. From this type of models, clustering is of particular interest,
as it can systematically categorize elements to maximize intra-group
similarities and minimize inter-group similarities (Ahmad and Khan,
2019), thereby efficiently formulating ensembles. Additionally, it facil-
itates the study of group characteristics, thereby providing insights into
the influential factors for categorization. Therefore, clustering holds
significant potential to address the identified literature gap.

Clustering techniques have been applied within a limited scope in
the context of energy efficiency, primarily focusing on specific sectors
(e.g., buildings or industry) and countries, or/and a narrow set of
factors (e.g., building energy intensity). For instance, Liao and He
(2018) employed a clustering approach to classify 37 industrial sub-
sectors in China into energy efficiency levels, seeking for the influential
factors of their energy performance. Similarly, Papadopoulos et al.
(2018) categorized commercial and housing buildings in New York
City based on energy intensity, exploring the influential factors of their
temporal energy demand. In another study, Geyer et al. (2017) grouped
buildings according to the cost savings resulting from various retrofit
measures.

However, clustering techniques have been extensively applied
within the broader energy sector. Indicatively, they have been em-
ployed to investigate representative groups within highly heteroge-
neous datasets, such as decarbonization pathways for the UK (Li et al.,
2020; Pye et al., 2019), land types (Shivakumar et al., 2021), and
potential sites for ocean renewable energy (Uti et al., 2023). These tech-
niques have also been instrumental in identifying the key determinant
factors for a member’s inclusion in a specific group, as seen in studies
on transformation strategy ensembles in the power sector (Moksnes
et al., 2019). Notably, these studies have focused on attributes that can

predict successful projects (e.g., profitability), overlooking indicators
of potentially unsuccessful projects like the level of risk. However,
the latter aspects can be crucial for involved actors in the energy
efficiency services market (Doukas, 2018), whose returns are linked
to the project’s successful implementation. Therefore, a comprehensive
evaluation of these projects should include such indicators as well.

The paper contributes to the literature by examining how various
project characteristics coexist in energy efficiency investments and the
implications of these factors for project success or failure. Its primary
innovation lies in the consideration of a multitude of attributes of
such projects across several regions, while also addressing overlooked
factors associated with project failure (e.g., risk). Based on these fac-
tors, the paper explores the classification of these investments into
key ensembles, based on combinations of these attributes. Specifically,
the classification hinges on a wide range of indicators from completed
projects in Europe and the USA, including investment profitability,
initial investment, annual savings, risk of failure, intervention type,
life measure, region of implementation, sector, and building type.
The initial dataset is sourced from the De–risking Energy Efficiency
Platform (DEEP) (EEFIG, 2017), whereas further modifications and
enhancements are implemented to facilitate an efficient clustering.
These mainly include projects’ regional classification, risk assessment,
outliers’ identification, and analysis of feature correlations.

From a methodological point of view, this study contributes to the
existing literature legacy by comparing two clustering approaches to
uncover hidden patterns within the analyzed data. The first, Parti-
tioning Around Medoids (PAM) (Botyarov and Miller, 2022), treats
the dataset as mixed and is applied upon a custom distance matrix.
The other, K-means (Uti et al., 2023), handles the dataset as purely
numeric, converting all categorical variables via one-hot encoding (see
below). The optimal number of clusters is determined by the Silhouette
index (Asri et al., 2019) and the total within-cluster sum of squares
(WCSS) (Brusco and Steinley, 2007). The study tries to identify the key
determinant factors within this classification system to understand the
critical aspects than may move one project from one class to another.
In this regard, a Random Forest model (Metzig et al., 2020) is trained
to predict the cluster to which energy efficiency projects belong, in turn
calculating the average decrease in the Gini index (Bouke et al., 2023)
across model’s decision trees. Moreover, the study explores the sensitiv-
ity of results to the chosen classification model by applying additional
key classification models, including Gradient Boosting, Support Vector
Machines, and Logistic Regression.

The analysis outcomes can fundamentally assist in reducing het-
erogeneity in the energy efficiency services market, thereby enhancing
the understanding of involved actors for such investments. The value
of this research is underscored by the existing transparency gap in
these investments (Loureiro et al., 2020). Investors typically seek to
diversify their portfolios across various projects in several regions
and sectors, considering aspects like risk and profitability. Identify-
ing archetypes of energy efficiency investments beyond single-factor
classification schemes (e.g., profitability-based) can assist investors in
building well-diversified portfolios across multiple sectors and regions,
while also increasing invested capital. This approach enables investors
to better understand how the risk and profitability of their portfolios
are formulated when adding projects from different countries, sectors,
and interventions, thereby making them feel more secure in leveraging
further capital in this investment type.

Additionally, the analysis outcomes equip stakeholders with insights
into the interplay of project characteristics, which can in turn facilitate
the prediction of unknown project attributes and the assessment of
their impact. Furthermore, this information can assist policymakers
in formulating more efficient and coherent energy efficiency policies.
Indicatively, they can articulate support mechanisms not just at an
intervention level, but also for sets of interventions that share similar
characteristics. Similarly, from a European perspective, policymakers
can develop stimulus packages tailored to groups of similar countries.
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This can, in turn, reduce the heterogeneity of energy efficiency poli-
cies, thereby making the relevant policy framework more efficient and
coherent.

The remainder of the paper is organized as follows. Section 2
outlines the experimental design the study adopts to address the posed
research questions, including the description of the dataset utilized and
the preprocessing tasks applied to it. Following, Section 3 presents the
key results arising from the implementation of the adopted framework
to the provided data, while Section 4 concludes the paper and suggests
potential avenues for future research.

2. Experimental design

2.1. Input data and preprocessing tasks

The analysis commences by utilizing the DEEP database as the
primary data source. A set of modifications and additions are then
implemented to it to facilitate an effective clustering. The analysis first
seeks to eliminate the significant outliers in the IRR of projects, as this
is one of the fundamental practices of efficient clustering. While these
outliers may be due to poor data collection, they empirically confirm
the heterogeneity that exists in the energy efficiency services market
(see Introduction for more details). Due to the non-normal distribution
of these IRR values across projects, the analysis avoids an approach
designed for normal distribution, such as the Z-score treatment of
outliers. Instead, it employs interquartile ranges to identify and remove
outliers (Yaro et al., 2023). Specifically, a project is considered an
outlier if its IRR exceeds or falls below 1.5 times the interquartile range,
defined as the difference between the third quartile (Q3) and the first
quartile (Q1). This widely accepted threshold of 1.5 is chosen because
it effectively eliminates extreme values while retaining an important
part of the initial dataset, thereby ensuring the representativeness of
the remaining data to the original dataset. Consequently, the remaining
project values fall within the bounds set by Eq. (1). This method elim-
inates projects that significantly diverge from the rest of the dataset,
thereby enhancing the consistency and robustness of the input data.

𝑄1 − 1.5 × (𝑄3 −𝑄1) ≤ (eligible IRR values) ≤ 𝑄3 + 1.5 × (𝑄3 −𝑄1) (1)

The application of this criterion leads to the identification and sub-
sequent removal of 756 project outliers, resulting in a refined dataset
of 5456 successfully implemented projects. Fig. 1 displays boxplots
representing the IRR distribution for the remaining projects following
the exclusion of outliers, including the minimum, first quartile, median,
third quartile, and maximum IRR values within the dataset. IRR distri-
butions are categorized according to the energy efficiency measures and
sectors.

One of the fundamental prerequisites for efficient clustering analysis
is ensuring that each nominal attribute has neither too few nor too
many levels, and that there is a sufficient sample size for each category
without significant asymmetries (Ghattas et al., 2017). In light of these,
the analysis undertakes a set of preprocessing tasks on the dataset’s
nominal variables. First, regarding regional classification of available
projects in the original dataset, there are huge disparities among Euro-
pean countries, with some having only a few projects. Consequently,
clustering this dataset with the original regional classification could
compromise the efficiency of the process. Nonetheless, incorporating
regional information in the clustering procedure can provide valuable
insights for the analysis.

To address the asymmetry of available data across countries, the
study reclassifies them into regional coalitions based on the United
Nations Geoscheme (Shvili, 2021), whereas the USA remains a distinct
regional coalition. The United Nations Geoscheme classifies European
countries into ‘‘Eastern Europe’’, ‘‘Western Europe’’, ‘‘Northern Eu-
rope’’, and ‘‘Southern Europe’’. This scheme is chosen as it provides
a robust, widely-accepted regional classification framework primarily

based on geographical proximity, while also factoring in cultural, eco-
nomic, and historical factors. Consequently, it ensures homogeneity
within each region, such as common weather conditions that can sig-
nificantly affect the performance and risk of energy efficiency projects.
The resulting distribution of energy efficiency projects across these
regions is as follows: (i) Western Europe: 3975; (ii) Southern Europe:
46; (iii) Eastern Europe: 940; (iv) Northern Europe: 687; (v) USA: 558.

The next step in the prepossessing tasks involves the recategoriza-
tion of building types included in the original dataset. This is done
to reduce project heterogeneity by grouping similar building types
together, thereby reducing the excessive number of levels in this at-
tribute. Specifically, first, all types of ‘‘family buildings’’ (e.g., single-
or multi-family buildings) are grouped under the ‘‘Households’’ cate-
gory. Similarly, the various types of public buildings (e.g., education
buildings) are classified as ‘‘Public’’ buildings. For the several building
types pertaining to the service sector, the analysis groups them into the
‘‘Trade and Services’’ category, while also merging the ‘‘Street lighting’’
energy efficiency measure into the ‘‘Lighting’’ category.

Furthermore, the analysis assesses the risk of failure for energy effi-
ciency projects in the dataset. Apart from the factors indicating project
success, what is equally important from an investor’s perspective is the
likelihood that a project will not perform as expected. In this context,
‘‘risk of failure’’ refers to the probability that a project will not meet
its predicted performance due to internal factors (e.g., unsuitability of
involved workers) or external factors (e.g., energy prices), multiplied by
the ratio to which the actual performance may differ from the projected
performance.

The quantification of the risk of the projects included in the dataset
is performed based on the method proposed by Kleanthis et al. (2022).
This method evaluates the technical attributes of the associated en-
ergy efficiency measures, specifically focusing on the rebound effect
and technical complexity. For each project, based on the involved
intervention, the analysis assigns two risk values: one for the rebound
effect and another for technical complexity, in turn averaging them
to calculate the project’s total risk. These risk values are selected
over the following scales: ‘‘Insignificant’’-0, ‘‘Low’’-0.25, ‘‘Medium’’-0.5,
‘‘High’’-1 for rebound effect; and ‘‘Low’’-0, ‘‘Medium’’-0.5, ‘‘High’’-1
for technical complexity. Consequently, total project risk lies in the
[0,1] range, where 0 indicates an almost risk-free investment and 1
denotes highly risky ones. The risk values considered for the examined
interventions regarding rebound effect and technical complexity are
visualized in Fig. 2. These risks are then incorporated into the dataset as
an additional feature. However, the analysis does not consider the risk
pertaining to the country of implementation (e.g., economic environ-
ment or energy price volatility), as it regards wider regional coalitions
instead of individual countries. Similarly, the analysis does not factor
in the risk stemming from the bottom-up characteristics of the projects
(e.g., the experience of technical workers) due to the unavailability of
this information.

Table 1 provides an overview of the dataset’s features resulting
from the aforementioned modifications and additions, summarizing
also the values for each variable. Each feature encapsulates a particular
aspect of successfully implemented energy efficiency projects, be it
profitability, risk of failure, or a particular technical attribute. In cases
where specific feature data is unavailable, the analysis assigns the
descriptor ‘‘unknown’’. This approach allows for retaining features with
missing data, which can inform the clustering process — dropping
these features would significantly reduce the available dataset. The
sectors of the analyzed projects include buildings and industry. The
buildings sector includes energy efficiency interventions designed to
reduce energy consumption in buildings, influenced by the needs and
actions of the occupants, such as heating and cooling. On the other
hand, the industry sector comprises interventions aimed at improving
the energy efficiency of industrial processes.
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Fig. 1. Boxplots illustrating the range (i.e., minimum and maximum) and quartile values of the project Internal Rate of Return (IRR) for the analyzed energy efficiency investments
across sectors and measures.

Fig. 2. Assigned risk values for rebound effect and technical complexity across analyzed energy efficiency interventions (Kleanthis et al., 2022).

2.2. Clustering approach

2.2.1. Overview
There are two general approaches for clustering datasets with mixed

data types. One approach involves converting all data to numeric
form before applying clustering algorithms; the other clusters the data
as is, using metrics that can handle both numeric and categorical
variables (Ienco et al., 2012). Given the lack of consensus in the
literature on which approach is preferable, the analysis employs both
methods to cluster the analyzed energy efficiency projects. Following,
the study assesses the sensitivity of the results to the chosen clustering
approach by comparing the variability between the outcomes of these
two methods.

At the first, the dataset is treated as mixed without any conversion of
its categorical variables. In this case, the Partitioning Around Medoids
(PAM) method (Botyarov and Miller, 2022) is utilized since it allows for
handling a custom dissimilarity matrix, as the one arising from using
the Gower Dissimilarity (GD) metric (Belenguer et al., 2023) in the ex-
amined dataset. In the second approach, the categorical variables of the
dataset are converted into numerical ones via one-hot encoding (Hastie
et al., 2009), in turn applying the K-Means method (Liu et al., 2023).

In both cases, the first step is to calculate and visualize the correla-
tions between the dataset’s features to detect and exclude highly corre-
lated features. Pearson’s correlation coefficients (Jebli et al., 2021) are
calculated for the numerical variables, while Cramer’s V values (Babu
and Gajanan, 2022), derived from chi-square tests, are computed for
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Table 1
Overview of dataset features utilized to uncover families of energy efficiency investments. In case of data unavailability for certain features, the descriptor ‘‘unknown’’ is
assigned.
Variable Unit Description Summary

Project IRR % Project IRR considering 100% equity
funds with no debt

Numeric value: Min. = −35%, 1st Qu. = 9%, Median = 24%, Mean = 38%, 3rd Qu.
= 53%, Max. = 186%

Sector – Sector to which each project belongs Linguistic values: ‘‘Building’’ ‘‘Industry’’

Initial investment Thousand e Initial investment for energy
efficiency purposes

Numeric value: Min. = 0.1, 1st Qu. = 500, Median = 2351, Mean = 13743, 3rd Qu.
= 8110, Max. = 1840000

Annual monetary saving Thousand e Annual savings resulting from energy
efficiency measures

Numeric value: Min. = 0.01, 1st Qu. = 1.71, Median = 5.38, Mean = 31.94, 3rd Qu.
= 14.39, Max. = 4740.74

Life measure Years Life of the implemented energy
efficiency measures

Numeric value: Min. = 4, 1st Qu. = 12, Median = 12, Mean = 16, 3rd Qu. = 15,
Max. = 30

Measure – Interventions implemented in each
project

Linguistic values: ‘‘Energy Management & ICT’’, ‘‘Waste heat (without power
generation)’’, ‘‘Cooling’’, ‘‘Pumps’’, ‘‘Power systems & Motors’’, ‘‘Compressed Air’’,
‘‘HVAC Plant’’, ‘‘Heating’’, ‘‘Building Fabric Measures’’, ‘‘Other’’, ‘‘Lighting’’

Region – Region of project implementation Linguistic values: ‘‘Eastern Europe’’, ‘‘Northern Europe’’, ‘‘Western Europe’’,
‘‘Southern Europe’’, ‘‘USA’’

Sub-sector – Sub-sector to which each project
belongs

Linguistic values: ‘‘Administrative and support services’’, ‘‘Electricity, gas, steam and
air conditioning supply’’, ‘‘Water/waste management’’, ‘‘Professional, scientific and
technical’’, ‘‘Public administration and defence’’, ‘‘Arts, entertainment and
recreation’’, ‘‘Mining/quarrying’’, ‘‘Construction’’, ‘‘Education’’, ‘‘Transportation and
storage’’, ‘‘Agriculture/forestry/fishing’’, ‘‘Wholesale and retail trade/motor vehicles’’,
‘‘Human health and social work’’, ‘‘Accommodation and food service’’, ‘‘Information
and communication’’, ‘‘Other’’, ‘‘Manufacturing’’, ‘‘Finance/insurance’’, ‘‘Real estate’’,
‘‘Unknown’’

Organization size – Size of the organization where
retrofits are applied

Linguistic values: ‘‘Unknown’’, ‘‘SMALL’’, ‘‘LARGE’’, ‘‘MEDIUM’’, ‘‘MICRO’’

Buildingtype – Type of building where retrofits are
applied

Linguistic values: ‘‘Public’’, ‘‘Households’’, ‘‘Industry’’, ‘‘Trade and Services’’,
‘‘Unknown’’

Riskvalue – Risk of failure value for each project Numeric value: Min. = 0, 1st Qu. = 0.125, Median = 0.25, Mean = 0.26, 3rd Qu. =
0.5, Max. = 0.5 (a risk value of 0 corresponds to risk-free investments; a risk value
of 1 denotes highly risky investments)

the categorical features. All visualizations are performed with the
‘‘ggplot2’’ package in R (Wickham, 2016).

2.2.2. Mixed data clustering
This stage commences by quantifying the dissimilarities among

dataset’s energy efficiency projects. This is performed using the GD
metric (Gower, 1971), which can handle both categorical and nu-
merical variables. The legitimate values of this metric range from 0
to 1, where 0 signifies perfect similarity and 1 denotes maximum
dissimilarity. Initially, the partial similarity (𝑝𝑠) at each dimension 𝑓 in
the dataset is computed, for each pair of energy efficiency projects. For
categorical dimensions, a 𝑝𝑠 value of 1 is assigned to identical values
and 0 to disparate ones. In numerical dimensions, the partial similarity
for each dimension 𝑓 is calculated using a Manhattan distance-based
approach, normalized by the range of values recorded in that dimen-
sion. Subsequently, the partial similarities across all dimensions are
aggregated to calculate the overall similarity between projects. Finally,
this cumulative similarity is subtracted from 1 to estimate the total
dissimilarity (GD; Eq. (2)).

𝐺𝐷 = 1 − 1
𝑚

𝑚
∑

𝑓=1

(

1 −
|𝑥𝑖𝑓 − 𝑥𝑗𝑓 |

𝑅𝑓

)(𝑓 )

(2)

where 𝑥𝑖𝑓 and 𝑥𝑗𝑓 represent the values of energy efficiency projects i
and j, respectively, at the numeric dimension 𝑓 , 𝑚 denotes the number
of dimensions in the dataset, and 𝑅𝑓 represents the numeric range in
dimension 𝑓 .

Upon quantifying the dissimilarities between the energy efficiency
projects in the dataset, the analysis proceeds to their clustering. For
this purpose, the analysis employs the Partitioning Around Medoid
(PAM) method (Botyarov and Miller, 2022). This choice is driven by
the versatility of this method in handling a custom dissimilarity matrix
of dimensions p x p, such as the one generated in the previous method-
ological step. The underlying rationale of this method hinges on the
aspects of medoids, which are actual data points in the dataset, unlike

centroids derived from data aggregation. This attribute makes PAM’s
results more robust to outliers. However, this method comes with
certain limitations, which are mainly related to the requirement for
predefining the number of medoids and its inherent high computational
load. The latter stems from the fact that the method explores all pos-
sible combinations across data points for a given number of medoids,
assigning each to the closest medoid. Subsequently, the method opts for
the combination of data points that minimizes the total distance-based
cost (Eq. (3)), optimizing over all potential medoids 𝑀 .

𝑓 (𝑀) = −
𝐾
∑

𝑗
𝑑1(𝑥𝑗 ,𝑀) (3)

where 𝑑 represents the distance of the data point 𝑥𝑗 from the medoid
𝑀 of cluster 𝑗, and 𝐾 denotes the total number of clusters.

To determine the optimal number of clusters for the PAM method,
the analysis harnesses the Silhouette index. This index is selected for
its effectiveness in fitting clusters with observations (Asri et al., 2019).
Specifically, it measures how well an element fits in a cluster, by
calculating the average dissimilarity 𝑎𝑗 of element 𝑗 to other elements
of the same cluster (Eq. (4)). Moreover, it examines what would happen
if the element were reallocated to another cluster. This is done by
calculating the average dissimilarity 𝑏𝑗𝑘 of element 𝑗 to elements 𝐼 in
each different cluster 𝑘, except the one to which the element currently
belongs (Eq. (5)).

The silhouette index uses the minimum from all the 𝑏𝑗𝑘 values, along
with the calculated 𝑎𝑗 value (Eq. (6)). The legitimate values of this
index range from −1 to 1, with higher values signifying a more efficient
clustering. This index is sequentially calculated for each 𝐾 value in the
[2,10] range. Subsequently, the analysis opts for the number of clusters
that yields the highest Silhouette index, and thereby a more efficient
clustering. The PAM method is implemented with the ‘‘cluster’’ package
in R (Maechler et al., 2021).

𝑎𝑗 = avg 𝑑(𝑥𝑗 , 𝑥𝑗′ ), 𝑗′ ∈ {𝑖 ∶ 𝑙1(𝑥𝑖,𝑀) = 𝑙1(𝑥𝑗 ,𝑀)} (4)
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𝑏𝑗𝑘 = avg 𝑑(𝑥𝑗 , 𝑥𝑗′ ), 𝑗′ ∈ {𝑖 ∶ 𝑙1(𝑥𝑖,𝑀) = 𝑘} (5)

𝑆𝑗 (𝑀) =
𝑏𝑗 − 𝑎𝑗

max(𝑎𝑗 , 𝑏𝑗 )
(6)

where 𝑏𝑗 = min𝑘 𝑏𝑗𝑘, and max(𝑎𝑗 , 𝑏𝑗 ) is the maximum value between 𝑎𝑗
and 𝑏𝑗 .

2.2.3. Numerical data clustering
In a second stage, the clustering problem is treated with an alterna-

tive approach. Specifically, the categorical variables of the dataset are
transformed into numerical. This setting in turns allows for applying
the K-Means method, which is one of the most efficient in clustering
purely numerical datasets (Ping et al., 2024). This transformation is
achieved via one-hot encoding approach (Hastie et al., 2009), where
each categorical feature is represented by dummy binary variables. In
this procedure, each categorical feature’s distinct value is mapped with
a separate dummy binary variable: 1 is assigned to projects that exhibit
this particular value at the examined feature and 0 is allocated to the
rest of projects. These dummy variables are then incorporated into the
dataset.

The K-means method begins by normalizing all originally numeric
variables in the dataset to mitigate the impact of varying scales. K-
means requires a predefined number of clusters (𝐾) to classify data.
Initially, it selects randomly 𝑘 objects from the dataset to serve as the
preliminary centroids of the clusters. Subsequently, each data point is
assigned to its closest cluster to minimize the Sum of Squared Error
(SSE). The error for each point is defined as its distance to the nearest
cluster center (Eq. (7)) (Hartigan and Wong, 1979).

𝑆𝑆𝐸 =
𝐾
∑

𝑘=1

∑

𝑥𝑖∈𝐶𝑘

(𝑥𝑖 − 𝜇𝑘)2 (7)

where 𝑥𝑖 denotes a specific data point in cluster 𝐶𝑘 and 𝜇𝑘 represents
the centroid of the cluster.

In turn, the cluster centroids are recomputed by designating the
mean value of the points constituting each cluster as the new centroid.
This iterative process continues until the centroids stabilize (i.e., show-
ing no further convergence), or the predefined maximum number of
iterations is reached. To determine the optimal number of clusters,
the analysis utilizes in this case the Elbow method (Mehedi Hassan
et al., 2022). In the context of this method, the K-means technique is
iteratively applied for varying number of clusters, calculating the total
WCSS at each iteration (refer to see Eq. (7)). In the resultant curve,
which maps the total WCSS values against their corresponding cluster
counts, the optimal cluster count is observed at the ‘‘elbow’’ point.
This point signifies the cluster count beyond which further increasing
the number of clusters does not result in a substantial decrease in
the WCSS value, despite the added complexity associated with the
increasing cluster count. The K-means method is implemented using
the ‘‘stats’’ package in R (R Core Team, 2013), setting 10 distinct initial
configurations and a cap of 10 iterations.

2.2.4. Evaluation of clustering efficiency
Upon clustering the analyzed energy efficiency projects using the

two above-described methods, the study proceeds to assess the robust-
ness of each method’s clustering results. In this effort, each method’s
results are visualized in three dimensions (3D) by applying the t-
distributed stochastic neighborhood embedding (t-SNE) dimension re-
duction technique (Khan et al., 2023). This technique enables the
mapping of a high–dimensional space to a low–dimensional one with-
out losing critical information about the connectedness between the
elements of different clusters, as well as within the same cluster. It
is more adept at preserving local relationships within complex data
during dimension reduction compared to linear reduction techniques.
Consequently, it allows for visualizing multi-feature clusters in sig-
nificantly smaller dimensions. In these visualizations, the focus is on

examining the compactness of the identified clusters and the extent of
inter-cluster overlaps. Effective clustering visualized through t-SNE will
comprise tightly grouped clusters, with points within a cluster being as
close as possible to each other and as distant as possible from points in
other clusters. The t-SNE method is applied using the ‘‘Rtsne’’ package
in R (van der Maaten and Hinton, 2008; van der Maaten, 2014).

2.3. Assessment of feature importance in the classification model

2.3.1. Methodology
After clustering the energy efficiency projects using the above-

described methods, the analysis seeks to identify the key factors that
determine a project’s classification into a specific cluster. Subsequently,
the study aims to discern the factors associated with the successful
implementation of energy efficiency projects. For this purpose, the
analysis employs the Random Forest method for classification (Metzig
et al., 2020), which has been proven to be among the most accurate
methods for classification tasks (Jiang et al., 2023).

Random Forest fits the scopes of the analysis since, as an ensemble
method, it derives its outcomes by aggregating the results of mul-
tiple decision trees, thereby minimizing the risk of overfitting (see
Appendix A for the mathematical formulas). This is achieved through
bagging, a process involving the random selection of subsets of the
dataset (both rows and columns) with replacement. Replacement means
that any given data point can feature in several subsets. A decision
tree (Koutsandreas, 2023) is then constructed for each subset, and the
final predictions hinge on the majority voting across these decision
trees. Fundamentally, Random Forest is more robust to outliers com-
pared to other ensemble model alternatives (e.g., Gradient Boosting)
as it constructs decision trees in parallel rather than sequentially. This
approach eliminates dependencies between decision trees, making it
more robust to outliers. This feature is particularly important in this
analysis as it deals with a heterogeneous dataset with multiple features
and large discrepancies between projects (see Fig. 1). Additionally, Ran-
dom Forest can handle non-linear relationships between independent
and dependent variables more effectively compared to linear-based
classification models (e.g., logistic regression). It should be noted that
the extent of the utilized dataset would not suffice for training neural
networks, thereby compromising their efficiency.

Furthermore, Random Forest facilitates the evaluation of feature im-
portance, which is the main rationale behind conducting this method-
ological stage. This makes it preferable compared to other classification
model alternatives that lack methods for direct feature importance
evaluation (e.g., Support Vector Machines). Particularly, feature im-
portance is evaluated by calculating the average decrease in the Gini
Impurity index across the constructed decision trees for each feature.
This index measures the impurity of a decision tree node when using a
particular feature to split it. Therefore, the extent to which a feature
reduces impurity across decision trees indicates its influence on the
classification model.

A Random Forest model is trained to accurately project an energy
efficiency project’s cluster based on its characteristics. The mapping
of projects to clusters is derived from the results of the previous
stage of the analysis, based on the results of the PAM and K-means
methods. Following the model’s training, the relative importance of
the dataset’s features is calculated to evaluate their significance in the
classification model. This methodological stage is implemented using
the ‘‘randomForest’’ package in R (Liaw and Wiener, 2002).

2.3.2. Sensitivity analysis of results across classification models
As mentioned above, the features of the Random Forest model make

it suitable for the scopes of this analysis, particularly for discerning
the influential factors of the classification scheme. The factors behind
the suitability of this model compared to its main alternatives, can be
summarized to the following points (see above for details): (i) Random
Forest can handle outliers better than Gradient Boosting; (ii) Random
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Fig. 3. Visual representation of correlations between the dataset’s features. Panel A illustrates the correlations between the dataset’s numerical features in terms of Pearson’s
coefficients. Panel B visualizes the correlations between the dataset’s categorical variables in terms of Cramer’s V values. The strength of correlations is indicated by circle color
and size above the main diagonal and numbers below it.

Forest is more suited to deal with non-linear data compared to Logistic
Regression; Random Forest includes a direct feature importance evalua-
tion method, unlike Support Vector Machines; Random Forest is apt for
smaller datasets, whereas neural networks necessitate substantial data
volumes for effective training.

To verify the principal superiority of Random Forest over other
classification models, under the conditions of this study, the analysis
performs a sensitivity analysis of results to the chosen classification
model. This analysis considers the most commonly used classification
models, including Logistic Regression, Support Vector Machines, and
Gradient Boosting Machine, alongside Random Forest. The detailed
mathematical formulas for these models are presented in Appendix A to
avoid distracting the main focus of the paper and due to space limita-
tions. Subsequently, the analysis computes the rank errors in feature
importance each classification model produces from the perspective
of the other models, as defined in Eq. (8). In this process, the errors
produced by each classification model for each feature across the other
models are summed, as well as the errors each model produces across
all features. By doing so, the analysis aims to identify the ‘‘least wrong’’
classification model from the perspective of the competing models.
( 𝑘
∑

𝑐=1

𝑛
∑

𝑗=1

|

|

|

𝑥𝑚 − 𝑐𝑗
|

|

|

)

s

(8)

where S includes the classification models the analysis applies (S =
{RF, LR, SVM,GBM}), k denotes the features of the dataset (see Table 1
for details), and n accounts for the set of examined classification models
excluding the model m for which the errors are being calculated each
time (𝑛 = {𝑆} ⧵ {𝑚}).

3. Results analysis

3.1. Pre-clustering results

This section presents the results of the analysis performed to lay
the groundwork for an efficient clustering. This includes assessing
feature correlations and cluster efficiency across various cluster counts.
Feature correlations analysis is performed to identify features that
may be excluded from the cluster analysis in light of eliminating data
distortions and biases. Fig. 3 illustrates the correlations between the
numerical features of the dataset in terms of Pearson’s correlation
coefficients (Panel A) and the categorical features of the dataset in
terms of Cramer’s V values (Panel B). The strength of correlations is
indicated by the circle size and color above the main diagonal and
numbers below it.

Regarding the numerical variables of the dataset, as shown, ‘‘Annual
Savings’’ variable is strongly correlated with the one denoting ‘‘Initial
Investment’’. Therefore, the ‘‘Annual Savings’’ variable is opted for
exclusion from the dataset between the two before proceeding with
the clustering of the data. This decision is driven by the fact that the
‘‘Initial Investment’’ variable contains important information about the
scale of the project, not directly captured by another variable of the
dataset (unlike IRR for savings, for example).

Regarding categorical features, there is a strong correlation between
the variable describing each project’s sector and the variables describ-
ing the type of intervention and associated building type; while the
correlation between the latter two variables is rather moderate. Hence,
the ‘‘project sector’’ variable is excluded before proceeding with data
clustering. It is important to note that the project sector is also captured
by the ‘‘Building type’’ variable. For this reason, ‘‘Building type’’ is
renamed as ‘‘Sector–Building type’’.

Going forward, Fig. 4 illustrates the results about the Silhouette
index and WCSS values, obtained from clustering the analyzed energy
efficiency projects using the PAM and K-means methods, respectively,
across various cluster counts. This analysis helps determine the optimal
number of clusters per each method utilized. Particularly, Panel A
displays the silhouette index values obtained from the application of
the PAM method within the range of two to ten clusters. It should
be noted that higher silhouette index values indicate a more efficient
clustering. Conversely, Panel B presents the WCSS values obtained by
clustering the analyzed energy efficiency projects with the K-means
method, incrementally considering a number of clusters from one to
ten.

As shown, the highest Silhouette index values for the PAM method
arise when the number of clusters is at the two extremes of the exam-
ined range, namely two or ten (Panel A; Fig. 4). On the other hand, the
‘elbow’ point in the WCSS graph for the K-means method is observed
around three clusters (Panel B; Fig. 4). Applying the K-means method
for more than three clusters would not result in a significant decline in
the within-cluster variance, despite the additional complexity from the
increased number of clusters. To maintain a consistency between the
two methods and perform a more nuanced clustering, both the PAM
and K-means methods are applied for three clusters. This decision is
further supported by the fact that the decrease in the Silhouette index
when considering three, instead of two, clusters is relatively minor. This
approach allows for a direct comparison of the results obtained from
both methods.
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Fig. 4. Evaluation of the clustering efficiency across various cluster counts. Panel A displays the Silhouette index values derived from clustering the analyzed energy efficiency
projects with the Partitioning Around Medoids (PAM) method in the range of two to ten clusters. Panel B illustrates the total within-cluster sum of squares (WCSS) values obtained
by clustering the analyzed energy efficiency projects with the K-means method in the range of one to ten clusters.

3.2. Clustering results

This section presents the main results obtained by implementing the
two adopted clustering approaches with three clusters, following the
exclusion of correlated features from the dataset. The clustering results
for each method are visualized in three dimensions in Fig. 5, with Panel
A representing the PAM method and Panel B accounting for the K-
means method. These visualizations, created using the t-SNE dimension
reduction technique, serve as indicators of clustering efficacy. Typical
characteristics of an effective clustering include the proximity between
points belonging to the same cluster and the absence of intra-cluster
overlaps.

Although hinging on a substantial dimension reduction, the visu-
alizations in Fig. 5 reveal that the K-means method achieves more
compact clustering with fewer intra-cluster overlaps than the PAM
approach. This outcome is influenced by the fact that the PAM method
was applied for a near-optimal number of clusters, as determined by
the Silhouette index, to maintain consistency between the two em-
ployed methods. It is important to note that each clustering approach
fundamentally reflects a different methodological way of normalizing
nominal data. Therefore, they do not have a particular meaning regard-
ing the characteristics of energy efficiency investments and how these
are treated. In the subsequent figures, a more nuanced evaluation of
the differences between these two approaches is provided.

Delving further into the results, Fig. 6 provides an indication of the
characteristics of the energy efficiency investments that form the clus-
ters. In particular, it illustrates the median values within each cluster
for the risk of failure (Panel A), project IRR (Panel B), initial investment
(Panel C), and life measure (Panel D), for both the PAM (solid lines) and
K-means (dotted lines) methods. In the same context, Fig. 7 displays the
distributions at each cluster across the assumed regions (Panel A) and
energy efficiency measures included in the dataset (Panel B), for both
the PAM and K-means methods.

Fig. 6 reveals minimal differences between the results of the two
employed clustering methods, whereas, in some features, such as risk,

their results become nearly identical. As for differences between clus-
ters in each method, they are mainly observed in risk and IRR, while in
the remaining features, there are differences only between Cluster 1 and
the other clusters, with Clusters 2 and 3 displaying similar attributes.
Digging deeper, Cluster 1 investments are characterized by a rather
moderate risk coupled with low profitability. Interestingly though,
these investments require the highest initial investment and present
the longest payback period among the clusters. The latter characteristic
implies a delayed return on investment, making these investments
less lucrative. Putting things into perspective, the attributes of Cluster
1 investments are mainly driven by their focus on ‘‘Building Fabric
Measures’’, which display lengthy lifetimes and low profitability. Ad-
ditionally, the prevalence of this investment type in Eastern European
countries, whose economies lag behind those of the other examined
regions, may also contribute to these attributes.

On the other hand, Cluster 2 investments exhibit a quite signif-
icant profitability along with minimal risk. These are smaller-scale
investments in terms of initial capital and have a considerably shorter
payback period than Cluster 1. Concerning the intervention and re-
gional distribution of this investment class, it is mainly made of ‘‘HVAC
Plant’’ and ‘‘Lighting’’ energy efficiency measures, which are mainly
found in Western European countries, with a minor presence in North-
ern Europe. As for Cluster 3 investments, they display the highest
profitability but also bear the greatest risk among the examined clus-
ters. These investments are chiefly executed in Western Europe and, to
a lesser extent, in the USA. They also require a rather similar initial
investment to Cluster 2 investments, which is substantially lower than
that of Cluster 1. A distinct feature of Cluster 3 is its diverse mix
of energy efficiency measures, which include, inter alia, ‘‘Heating’’,
‘‘Cooling’’, ‘‘Power systems & Motors’’, ‘‘Compressed Air’’, and ‘‘Waste
Heat’’.

It is noteworthy that investments in Cluster 2, and particularly in
Cluster 3, primarily belong to the Industry sector, whereas Cluster 1
investments are predominantly related to the Building sector, especially
household buildings. This distinction can be seen in panel B of Fig. 8,
which illustrates the distribution of projects across building types for
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Fig. 5. Three-dimensional visualization of performed clustering of analyzed projects
using the t-distributed stochastic neighborhood embedding (t-SNE) dimension reduction
technique, for both the PAM (Panel A) and K-means (Panel B) methods. Points
belonging to the same cluster are marked with identical colors.

each cluster, in both the PAM and K-means clustering cases. This
trend explains much about the profitability of investments in Clusters
2 and 3. This is because industry-focused interventions yield higher
returns for investors, notably due to the more advanced involved
technologies (Kleanthis et al., 2022).

Notably, two of the three identified clusters (Clusters 1 and 2)
predominantly consist of certain types of interventions that define
their characteristics. These projects exhibit distinct connections with
other features, such as risk or building type, which ultimately play a
crucial role in a project’s categorization. For instance, such features
significantly impact whether projects involving building fabric mea-
sures are classified as no-viable investments in Cluster 1 or as viable
investments in Cluster 2. Therefore, the types of interventions comprise
the first and foremost classification mechanism between clusters. Fol-
lowing this, the interplay of these energy efficiency measures with other
project attributes like region, building type, etc., affects the total risk
and profitability of the investments and ultimately their final cluster
classification.

On the other hand, panel A of Fig. 8 illustrates the cluster member-
ship of investments, expressed as the percentage of projects belonging
to each cluster relative to the total number of projects. This visual-
ization fortifies the observation that the PAM and K-means clustering
results are largely similar. A minor difference is that the PAM method
classifies more investments into the lower-risk, higher-profitability

Cluster 2: these additional investments, identified as the most profitable
in Clusters 1 and 3 as per the K-means method, are assigned to Cluster
2 by the PAM method. This reassignment results in slightly higher prof-
itability for PAM’s Cluster 2 and, correspondingly, lower profitability
for PAM’s Clusters 1 and 3, compared to the K-means method. However,
the central risk values remain almost similar between the two clustering
methods (Fig. 6).

Therefore, the analysis suggests that energy efficiency investments
can be, by and large, classified into three categories. Among these, two
can be considered go-investments by energy efficiency services market
stakeholders. Investors should choose between these two categories
according to their preferences, such as risk tolerance, profitability
goals, and available investment capital. For instance, more conservative
investors might prefer Cluster 2 investments due to their high prof-
itability and low risk, henceforth referred to as ‘‘safe profitability’’.
On the other hand, more risk-taking investors may opt for Cluster 3
investments, in light of increasing their portfolio profits at the expense
of undertaking a higher risk. These investments are labeled as ‘‘high
stakes’’. It is noteworthy that real-world investors usually diversify
their portfolios with a mix of investment categories, striking a balance
between risk and profitability according to their preferences. Finally,
Cluster 1 investments, characterized by low returns over a long horizon
in tandem with a notable risk of failure, might be considered no-go
investments: putting money on these investments entails opportunity
costs, as the same capital could be directed to other more profitable
investments with similar or lower risk levels. The analysis colloquially
terms these investments as ‘‘junk’’.

Concerning regional classification, it is noteworthy that Western
European projects dominate the dataset (see Subsection 2.1), something
that in turn influences clusters’ regional distribution (Fig. 7) and char-
acteristics. Specifically, Clusters 2 and 3, mainly composed of projects
implemented in Western Europe and the USA—regions offering more
favorable economic conditions—exhibit the highest profitability. The
extent to which this trend is influenced also by other features of the
projects at hand (e.g., intervention measures) will be elucidated by
the results of the Random Forest model. It should be noted that var-
ious factors inherent to regional conditions can significantly affect the
profitability of energy efficiency projects implemented within the same
territory (Gillingham and Palmer, 2014; Koutsandreas et al., 2022).
First, energy prices, dictated by regional markets, are a fundamental
factor for such projects as they directly influence returns, along with
estimated energy savings. In advanced economies, energy prices may be
higher due to increased demand from more energy-intensive lifestyles,
or additional costs such as environmental levies. Furthermore, these
economies often offer specific incentives for such projects, like tax
rebates, which can reduce the initial investment cost. Additionally, the
higher availability of skilled professionals and access to more advanced
technology can lead to increased energy savings and subsequently
higher returns.

Regarding this model, Fig. 9 illustrates the average decrease in the
Gini index across the decision trees of the trained Random Forest model
for each feature used for splitting. This index denotes the impurity
in the decision tree when a particular feature is used for splitting.
Therefore, a higher decrease in the Gini index is associated with a
greater influence of the feature in question on the classification model.
Results are visualized for both clustering cases (i.e., PAM- and K-means-
based), including the average values between these two methods. The
length of the lines in Fig. 9 reflects the sensitivity of the results to the
clustering approach of choice.

As demonstrated, both clustering methods concur on the least in-
fluential factors in the classification model. However, there are some
discrepancies regarding the most influential features and those with
intermediate influence, depending on the chosen clustering approach,
which may affect the relative ranking of features. Nevertheless, the
general picture of the key factors influencing the classification scheme
remains consistent across both clustering approaches. Specifically, the
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Fig. 6. Median values of clustered energy efficiency projects in terms of risk of failure (Panel A), project IRR (Panel B), initial investment (Panel C), and life measure (Panel D)
across the PAM (solid lines) and K-means (dotted lines) methods.

analysis reveals that the risk of failure, energy efficiency intervention,
and project sector are the most impactful factors in the trained Random
Forest-based model, although their influence varies with the selected
clustering method. In this context, while the PAM–derived results iden-
tify the project sector as more influential factor than energy efficiency
intervention, the K-means-derived ones indicate the contrary.

Regarding features associated with project profitability, such as
initial investment and IRR, they generally rank lower in terms of
influence, with a high level of agreement between the two employed
clustering methods. An exception is the project life measure, which
has a rather moderate impact that significantly depends on the chosen
clustering method. A similar pattern is observed for the project region
of implementation, with it being more influential when clustering is
performed with the PAM—versus the K-means—method. Furthermore,
the organization size and project subsector do not emerge as highly
influential factors in the classification scheme.

However, it should be noted that features not critical for classi-
fication, such as region of implementation, can still overwhelmingly
affect the characteristics of the classes. This is evident in Cluster 1,
where most projects are located in Eastern Europe, especially under
the K-means case. This suggests that a cluster can primarily reflect one
specific measure with distinct links to other characteristics (e.g., region,
risk). Consequently, the features that most effectively describe these
connections arise as the most influential in the classification model.
It should be noted that the examined indicators bias the strongest
connections identified. For instance, the prevalence of economic factors
in the dataset results in their strong role in the formulated classification
schemes.

To sum up, the analysis indicates that, when examining energy
efficiency projects, capital providers and research community should
consider not only traditional profitability indicators but also those re-
flecting projects’ risk of failure and technical characteristics (e.g., build-
ing type). That said, while traditional indicators, such as IRR and region
of implementation, effectively categorize different investments, factors
like risk of failure can be crucial in determining viable investments,
especially for those lying on the verge of being viable according to
profitability indicators.

3.3. On the effect of classification model’s selection on feature importance

This subsection presents the key results about the sensitivity of
feature importance to the selected classification model. Specifically,
Fig. 10 illustrates the divergence in feature importance ranks across
different classification models. Each model’s ranks are highlighted with
a different marker.

As shown, the results feature a high sensitivity to the chosen clas-
sification model. This is not something unexpected given the different
underlying rationales of these models (see the discussion above). How-
ever, the various classification models agree on the most and least influ-
ential features for classification, especially when classification models
are trained with the K-means clustering results. The only exception is
Logistic Regression model, whose results significantly diverge from the
others — this verifies the principal inability of this model to effectively
deal with non-linear data patterns. Random Forest results are very
close to those of Gradient Boosting — something expected, as the
models have similar underlying rationales, differing primarily in how
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Fig. 7. Distribution of clustered energy efficiency projects across regions (Panel A) and intervention measures (Panel B), for both the PAM and K-means methods.

Fig. 8. Characteristics and structure of energy efficiency investment clusters. Panel A illustrates the investment cluster membership as a percentage of projects in each cluster
relative to the total number of projects, for both the PAM (solid line) and K-means (dotted line) methods. Panel B represents the distribution of clustered energy efficiency projects
across building types, for both the PAM and K-means methods. The ‘‘Unknown–Building’’ value denotes projects belonging to the Building sector but with an unspecified associated
building type.
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Fig. 9. Visual illustration of the average decrease in the Gini index in the decision trees of the trained Random Forest model across the features used for splitting, for both the
PAM- and K-means-derived results including their average values. A larger decrease signifies a stronger influence of the features on the classification model.

Fig. 10. Variability of feature importance ranks across different classification models, including Random Forest (RF), Logistic Regression (LR), Gradient Boosting Machine (GBM),
and Support Vector Machine (SVM). Each method’s results are marked with a different symbol.
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Fig. 11. Errors in the form of absolute differences between the ranks produced by each classification model and the ranks produced by the other classification models (Eq. (8)).

decision trees are constructed, namely in parallel for Random Forest or
sequentially for Gradient Boosting.

As mentioned above, Random Forest is, in principle, the most
suitable model for evaluating feature importance in this study. This is
further supported by the results presented in Fig. 11, which illustrates
the rank errors each classification model produces from the perspec-
tive of the other classification models. As this figure reveals, Random
Forest produces ranks that are, on average, the ‘‘least wrong’’ from the
perspective of other models — this is the case for all individual factors
with K-Means and for all but two with PAM. This outcome underscores
the robustness and reliability of the results obtained using this model.
Additionally, the results emphasize the influence of risk of failure in
the classification scheme, as it is consistently recognized as the most
influential factor across models with varying rationales.

Appendix B provides additional results from the sensitivity analysis
concerning classification models. Specifically, Fig. B.1 presents the nor-
malized feature importance across the different classification models.
The normalized performance is calculated by scaling the importance
value that each model assigns to a given feature by the sum of the
values this model generates across all features — so that the sum of
normalized performance values across features for each model equals
1. These results further highlight the high sensitivity of feature im-
portance to the chosen model, which becomes more pronounced when
focusing on the normalized importance of features across each method,
rather than solely on the ranks produced by them. This is related to

the different rationales and scales of the results generated by different
methods.

4. Conclusions

Bridging the transparency gap in energy efficiency investments is
crucial to enhancing their attractiveness, thereby increasing project
implementation. This paper aims to bridge this gap by identifying
families of energy efficiency investments and the determinant factors of
cluster membership, using machine learning algorithms. The analysis
harnesses a broad spectrum of indicators about successfully imple-
mented projects in Europe and the USA, while utilizing two clustering
approaches, namely PAM and K-means, for three clusters. The influence
of features in the classification scheme is assessed using a Random
Forest model, in turn calculating the average decrease in the Gini index
across features.

The comparison of results from the two employed clustering ap-
proaches reveals only minor differences, highlighting the robustness
of the analysis. This applies especially to the characteristics of the
clusters and, less so, to the influential factors of the classification
scheme, of which relative ranking can be overturned according to
the chosen clustering approach. Analysis results suggest that energy
efficiency investments can be largely classified into three key classes.
The first, colloquially termed ‘‘junk’’, involves low profitability projects
(IRR∼10%) with moderate risk, high initial investments, and extended
horizons. The second category, labeled as ‘‘safe profitability’’, is mainly
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composed of high–profitability investments (IRR∼30%) coupled with
minimal risk, and short horizons. The final category, entitled as‘‘high
stakes’’, involves very high-profitability investments (IRR∼40%) along
with short horizons, though accompanied by a considerable risk.

The latter two investment categories can be seen as viable options
by profit-focused investors, who should choose between the two based
on their preferences, such as their attitude against risk, preferred
investment horizon, and available investment capital. In the proposed
classification scheme, the primary influential factors include the risk of
failure, energy efficiency intervention, and building type (which also
indicates the investment sector), followed by life measure and region of
implementation. While purely profitability-related indicators, such as
IRR and initial investment, emerge as insignificant in the classification
scheme, they still have a considerable impact on the characteristics
of the classes. The sensitivity analysis revealed high discrepancies
across different classification models and supported the robustness of
Random Forest in assessing feature importance. The analysis suggests
that capital providers should shift their focus from solely evaluating
such investments from a profitability perspective to also considering
the associated uncertainties and inherent technical aspects, such as
the involved building type. This is crucial as these often-neglected
characteristics can be the deciding factors in a project’s viability, espe-
cially for those with poor or moderate profitability. Furthermore, the
analysis outcomes indicate that policymakers should formulate support
mechanisms and policy packages for similar groups of energy efficiency
investments rather than at the intervention and regional levels. This ap-
proach can help reduce the heterogeneity of energy efficiency policies,
thereby stimulating the upscaling of such investments. Moreover, this
framework can target the investments that most need support, either
because they present high risk, exhibit low profitability, or require high
initial investment.

This analysis comes with certain caveats. First, the characteristics
of clusters are determined by the specific dimensions used to examine
energy efficiency projects. For example, the prevalence of economic
indicators in the dataset makes them inherently significant for project
classification. Therefore, potential ways forward for the analysis could
involve investigating additional features associated with the implemen-
tation of energy efficiency projects. Additionally, a finer risk evaluation
of energy efficiency projects, such as by incorporating granular infor-
mation about projects (e.g., experience of involved employees), could
lead to a more nuanced clustering. This approach could also be en-
hanced by incorporating more advanced scientific methods, such as
probabilistic risk analysis or scenario analysis.

Furthermore, employing additional classification models could help
inspect the sensitivity of the results to the classification model of
choice. Finally, both clustering approaches are fed with the optimal
number of clusters. Although systematic approaches are used to de-
termine this number, their results are sensitive to the initial parame-
ter settings. Additionally, the same cluster count was considered for
both methods to maintain consistency and results comparability, al-
though they yielded a slightly different optimal cluster count. Future re-
search should explore results sensitivity when using different, possibly
near-optimal cluster numbers.
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Appendix A. Mathematical formulas for classification models

Random Forest (RF)
A Random Forest model is trained to predict an energy efficiency

project’s cluster based on its characteristics. It derives its outcomes by
aggregating the results of multiple decision trees based on the majority
vote (Eq. (A.1)).

𝑦̂ = mode
(

{𝑦(1)𝑖 , 𝑦(2)𝑖 ,… , 𝑦(𝐵)𝑖 }
)

(A.1)

where 𝑦(𝑏)𝑖 is the prediction of the 𝑏th tree for the 𝑖th sample.
Random Forest assesses feature importance by averaging the reduc-

tions in Gini impurity for classification that a feature produces across
all trees when it is used for splitting (Eq. (A.2)).

Importance(𝑋𝑚) =
1
𝐵

𝐵
∑

𝑏=1
𝛥Impurity(𝑋𝑚, 𝑇𝑏) (A.2)

where 𝛥Impurity(𝑋𝑚, 𝑇𝑏) indicates the impurity decrease by feature 𝑋𝑚
in tree 𝑇𝑏.

The Random Forest model is implemented using the randomFor-
est package in R. Once the model is trained, feature importance is
extracted using the importance function from the randomForest
package.

Logistic Regression (LR)
Logistic Regression is applied to binary classification problems,

estimating the probability that an energy efficiency project 𝐱 belongs to
a specified class as the sigmoid function of a linear combination of the
input features (Eq. (A.3)). This method is applied separately for each
of the three classes.

𝑝(𝑦 = 1|𝐱) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥1+⋯+𝛽𝑛𝑥𝑛)

(A.3)

where 𝛽0, 𝛽1,… , 𝛽𝑛 denote the parameters of the model, and 𝐱 =
(𝑥1,… , 𝑥𝑛) account for the input features.

The method is implemented in R using the multinom function of
the nnet package. To evaluate feature importance in the classification
scheme, the coefficients for each class relative to a baseline class are
calculated. These coefficients indicate the change in the log-odds of be-
ing in a specific class versus the baseline class for a one-unit change in
the predictor. Since there are three classes, two sets of coefficients are
computed, which are then averaged. Additionally, for the categorical
variables, coefficient are calculated at a value’s level, which are again
averaged at the category’s level to identify the most influential factors
in predicting the cluster.

Support Vector Machine (SVM)
Support Vector Machine is trained on the identified classification

scheme of energy efficiency projects. Support Vector Machine funda-
mentally search for the hyperplane that best divides a dataset into two
classes.

The decision function for the optimal hyperplane using the kernel
function is presented in Eq. (A.4).

𝑓 (𝐱) = sgn(
𝑚
∑

𝑖=1
𝑦𝑖𝛼𝑖𝐾(𝐱𝑖, 𝐱) + 𝑏) (A.4)

where 𝑦𝑖 ∈ {−1, 1} are the class labels, 𝛼𝑖 are the Lagrange multipliers
for the support vectors 𝐱𝑖, 𝐾(𝐱𝑖, 𝐱) is the kernel function, and 𝑏 is the
bias.

This method is implemented in R using the e1071 and caret
packages, with the Support Vector Machine model trained using the
svm function and tuned via the train function for optimized hy-
perparameters. To evaluate feature importance, a permutation-based
approach is used. This approach measures the increase in the prediction
error of the model after permuting each feature, providing insight
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Fig. B.1. Normalized feature importance across the classification models used in the analysis. Different classification models are highlighted with different markers.

into which features most significantly impact model accuracy. Feature
permutation involves randomly shuffling the values of a feature across
all the observations in the dataset.

Gradient Boosting Machine (GBM)
A Gradient Boosting Machine model is trained to predict the cluster

an energy efficiency project belongs to according to its attributes. The
model is updated when a new learner is added, as per Eq. (A.5).

𝐹𝑡+1(𝐱) = 𝐹𝑡(𝐱) + 𝜈 ⋅ ℎ𝑡(𝐱) (A.5)

where 𝐹𝑡(𝐱) is the ensemble model at iteration 𝑡, ℎ𝑡(𝐱) is the weak
learner fitted on the negative gradient of the loss function at iteration
𝑡, and 𝜈 is the learning rate, which scales the contribution of each weak
learner.

The Gradient Boosting Machine model is implemented using the
gbm and caret packages in R, where the model is trained and tuned
through the train function with various parameters specified in a
tuning grid to optimize performance.

Once the model is trained, feature importance is extracted using the
varImp function from the caret package. This function computes the
importance of each feature in the model as the sum of the improve-
ments in accuracy brought by a feature across all trees in the model
where it appears.

Appendix B. Normalized feature importance across classification
models

See Fig. B.1.
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