
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Karlqvist, Susanna; Burdun, Iuliia; Salko, Sini Selina; Juola, Jussi; Rautiainen, Miina
Retrieval of moisture content of common Sphagnum peat moss species from hyperspectral
and multispectral data

Published in:
Remote Sensing of Environment

DOI:
10.1016/j.rse.2024.114415

Published: 15/12/2024

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Karlqvist, S., Burdun, I., Salko, S. S., Juola, J., & Rautiainen, M. (2024). Retrieval of moisture content of
common Sphagnum peat moss species from hyperspectral and multispectral data. Remote Sensing of
Environment, 315, Article 114415. https://doi.org/10.1016/j.rse.2024.114415

https://doi.org/10.1016/j.rse.2024.114415
https://doi.org/10.1016/j.rse.2024.114415


Retrieval of moisture content of common Sphagnum peat moss species from
hyperspectral and multispectral data

Susanna Karlqvist *, Iuliia Burdun , Sini-Selina Salko , Jussi Juola , Miina Rautiainen
School of Engineering, Aalto University, P.O. Box 14100, FI-00076 AALTO, Finland

A R T I C L E I N F O

Edited by Marie Weiss

Keywords:
Peatland
Hyperspectral
Multispectral
Spectral index
Optical trapezoid model (OPTRAM)
Continuous wavelet transform (CWT)

A B S T R A C T

Peatlands store enormous amounts of carbon in a peat layer, the formation and preservation of which can only
occur under waterlogged conditions. Monitoring peatland moisture conditions is critically important because a
decrease in moisture leads to peat oxidation and the release of accumulated carbon back into the atmosphere as a
greenhouse gas. Optical remote sensing enables the indirect monitoring of peatland moisture conditions by
identifying moisture-driven changes in vegetation spectral signatures. The vegetation of northern peatlands is
dominated by Sphagnum mosses, whose spectral signatures are known to be highly sensitive to changes in
moisture content. In this study, we tested methods to estimate Sphagnum moisture content from spectral data
using seven spectral moisture indices, the OPtical TRApezoid Model (OPTRAM) and the Continuous Wavelet
Transform (CWT). This study was based on data representing nine Sphagnum species sampled from two habitats
in southern boreal peatlands in Finland. Our results showed that both multi- and hyperspectral data can be used
to estimate the moisture content of Sphagnum mosses. Nevertheless, the optimal retrieval method depended on
habitat characteristics. Using hyperspectral data, we found that: (i) the CWT exhibited superior performance for
all studied moss species (R2Marg= 0.72, ICC = 0.40), (ii) the exponential OPTRAM performed best for the
mesotrophic species (R2Marg= 0.70, ICC = 0.08), and (iii) the Modified Moisture Stress Index (MMSI) yielded the
best results (R2Marg= 0.68, ICC = 0.55) for the ombrotrophic species. Furthermore, we demonstrated that using
multispectral data instead of hyperspectral data provides comparable results in moisture estimation when used as
input with OPTRAM or Moisture Stress Index (MSI). This approach could lead to new insights into the moisture
dynamics in Sphagnum-dominated peatlands over the span of the multispectral satellite era.

1. Introduction

Peatlands, covering 3.8 % of the Earth’s landmass (UNEP, 2022), are
terrestrial wetland ecosystems that function as crucial carbon sinks
(Limpens et al., 2008). Predominantly located in northern latitudes
(Harenda et al., 2018), these unique ecosystems support rich biodiver-
sity and play a pivotal role in the global carbon cycle (Rydin and Jeglum,
2006). The carbon stock accumulated in northern peatlands alone,
ranging from 474 to 621 gigatons (Gt) of carbon (Yu et al., 2010), sur-
passes that of the global live forest biomass (Pan et al., 2011) and con-
stitutes nearly one-third of the world’s entire soil carbon stock (Harenda
et al., 2018). This substantial carbon stock is stored within a layer of
partly decomposed plant remnants known as the peat layer. In northern
peatlands, the peat layer is mainly formed by Sphagnum peat mosses
(Rydin and Jeglum, 2006).

Sphagnum peat mosses, key contributors to peatland biomass and
carbon sequestration (Verhoeven and Liefveld, 1997), are highly
dependent on water availability (Rydin and Jeglum, 2006). The optimal
moisture content in Sphagnum species has been recorded to increase the
CO2 assimilation rate (Robroek et al., 2009) and mitigate the CH4
emissions into the atmosphere (Larmola et al., 2010), resulting in a long-
term climate cooling effect. However, climate warming in northern
latitudes leads to shifts in northern peatland behavior due to changes in
temperature and precipitation trends (Zhang et al., 2022). These trends
may negatively impact the functioning of Sphagnum mosses and trans-
form peatlands from carbon sinks to sources. Consequently, monitoring
the moisture content of Sphagnum mosses can provide invaluable in-
sights into peatland conditions and their carbon sink functions.

Conventional field methods for measuring Sphagnum and peatland
moisture, such as manual sampling and ground-based sensors, are labor-
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intensive and time-consuming. Moreover, these measurements are often
confined to small spatial scales, posing challenges in extrapolating
findings to broader regions and potentially leading to unrealistic esti-
mates of peatland hydrology (Harris and Bryant, 2009). In contrast,
satellite remote sensing allows coverage of vast and remote areas, nearly
regular resampling intervals, and cost-effective use of openly accessible
data (Lees et al., 2018). Particularly, optical remote sensing enables
indirect monitoring of peatland moisture conditions by identifying
moisture-driven changes in vegetation spectral signatures over extensive
areas (Nelson et al., 2022; Burdun et al., 2023; Olthof and Fraser, 2024).

Various methods exist to estimate moisture content of Sphagnum
mosses from optical remote sensing data. Spectral moisture indices,
utilizing shortwave infrared (SWIR) and near-infrared (NIR) bands, such
as those employed by Harris et al. (2005), Letendre et al. (2008),
Meingast et al. (2014) and Lees et al. (2020), have demonstrated broad
and effective applicability both in laboratory settings and within
Sphagnum-dominated peatlands. While these studies have established a
robust relationship between spectral moisture indices and Sphagnum
moisture content, their scope has often been limited, typically ranging
from only two to four species. Furthermore, many of these studies have
underscored the species-specific nature of the relationship between
spectral indices and Sphagnum moisture. This specificity can complicate
moisture estimation across heterogeneous peatland areas where
numerous Sphagnum species coexist.

Sphagnum species found in the same peatland habitats often exhibit
similar physiological behavior (Larmola et al., 2010), which suggests
that incorporating the habitat type into the moisture estimation could
potentially yield less species-dependent results (Harris et al., 2005). This
hypothesis is further supported by Salko et al. (2023a), who studied nine
distinct Sphagnum species and observed that the species from a partic-
ular habitat exhibit similar changes in the NIR and SWIR regions during
desiccation. Incorporating Sphagnum habitat type into the moisture
estimation holds promise. Although current satellite remote sensing data
may not be tailored to distinguish individual species, they can still
facilitate the identification of peatland habitats to a certain extent
(Bourgeau-Chavez et al., 2017).

As an alternative to spectral indices, the OPtical TRApezoid Model
(OPTRAM) has been utilized to address the problem of species-specific
relationships with moisture in peatlands, some of which had Sphagnum
cover (Burdun et al., 2020a, 2020b; Räsänen et al., 2022; Burdun et al.,
2023). Nevertheless, Burdun et al. (2023) found that the relationship
between moisture and OPTRAM may be unstable over time and change
under dry conditions in Sphagnum-dominated peatlands. Another alter-
native moisture estimation method is the Continuous Wavelet Trans-
form (CWT) (Banskota et al., 2017), which outperformed two NIR-based
moisture indices in a mixed-species composition experiment. However,
this study only tested CWT with oligo- and ombrotrophic peatland
species, including just four Sphagnum species.

Overall, these studies highlight the need to identify the most robust
method formonitoringmoisture content in variousSphagnummosseswith
optical remote sensing. So far, only a few studies have compared classical
SWIR- and NIR-basedmoisture indices with themore advanced OPTRAM
(Räsänen et al., 2022) and CWT (Banskota et al., 2017) approaches.
Moreover, most studies estimating moisture content in Sphagnummosses
have been carried out using only hyperspectral data (Harris et al., 2005;
Van Gaalen et al., 2007; Letendre et al., 2008). Therefore, there is limited
knowledge of whether multispectral data can provide equally strong re-
sults relative to hyperspectral data (Meingast et al., 2014; Lees et al.,
2020). Additionally, much uncertainty remains about the relationship
between moisture content and moisture indices, OPTRAM, and CWT for
different Sphagnum species and their habitat groups.

In this paper, we present a comparison of methods for estimating
boreal Sphagnum moss moisture content from hyperspectral and multi-
spectral data with, to our knowledge, the largest open spectral library of
Sphagnum species measured to date. We compared seven SWIR- and NIR-
based moisture indices with more advanced methods, OPTRAM and

CWT, for monitoring moisture content in nine Sphagnum moss species
using hyperspectral data. To assess the potential of multispectral satel-
lite sensors for monitoring peatland moisture, we also evaluated the
performance of the Moisture Stress Index (MSI) and the OPTRAM using
multispectral data. Specifically, we investigated: (i) which method is the
most accurate for estimating Sphagnum moisture content from hyper-
spectral data? and (ii) how do the results obtained from hyperspectral
data analysis compare to those derived from multispectral data?

2. Material and methods

Our research methodology, illustrated in Fig. 1, encompasses several
key steps to estimate Sphagnum moisture from optical data. Initially, we
employed hyperspectral data (section 2.1) to calculate seven moisture
indices (section 2.2), along with linear and exponential OPTRAMs
(section 2.3), and CWT (section 2.4). Furthermore, we transformed the
narrowband hyperspectral data into broadband data (section 2.5),
enabling the calculation of multispectral estimation methods. Ulti-
mately, we assessed the relationships between these methods and the
laboratory-measured moisture content (section 2.6).

2.1. Data

We employed a publicly available spectral library of Sphagnum
mosses assembled by Salko et al. (2023b). This dataset encompasses
samples from nine Sphagnum species collected from four undrained and
protected peatland sites in Southern Finland: Luutasuo (60.680◦N,
24.321◦E), Matkunsuo (60.531◦N, 24.710◦E), Ritasaarensuo (60.640◦N,
24.962◦E) and Slättmossen (60.131◦N, 24.365◦E). The elevations of
these sites ranged from 40 to 140 m above sea level. Three species in the
dataset were collected from treed fen and spruce mire habitats
(S. centrale (C.E.O Jensen), S. girgensohnii (Russow), and S. riparium
(Ångstr.)), three from intermediate fen habitats (S. angustifolium ((C.E.O.
Jensen ex Russow) C.E.O. Jensen), S. capillifolium ((Ehrh.) Hedw.), and
S. fallax ((H. Klinggr.) H. Klinggr)), and three from open bog habitats
(S. cuspidatum (Ehrh. ex Hoffm.), S. fuscum ((Schimp.) H. Klinggr.), and
S. rubellum (Wilson)). Sampling was conducted immediately after the
snowmelt in May 2022, ensuring that all samples were collected from
waterlogged conditions.

For each species, ten samples measuring 21.5 × 21.7cm were
collected within either one day (S. angustifolium, S. capillifolium,
S. centrale, S. fallax, S. girgensohnii, and S. riparium) or two consecutive
days (S. cuspidatum, S. fuscum, S. rubellum). Each species was sampled
from one peatland site, ensuring that the growing conditions were
consistent. However, to prevent sampling from the same community, all
samples were collected a minimum of 10 m apart. Each sample was
extracted carefully using scissors, retaining only living plant material.
The collected samples were placed in black containers, which were
lidded during transportation but opened at the start of the spectral
measurements and kept unlidded for the rest of the study. Additionally,
the samples remained stored in the same containers to preserve their
structural integrity during and between the spectral measurements.
When not under measurement, the samples were left to dry in a semi-
dark room, devoid of direct sunlight.

Reflectance measurements were conducted in a dark laboratory
designed for spectral analysis, where the walls, doors, and ceiling were
coated in black paint, and the measurement table was draped in black
fabric. Each sample underwent four spectral measurements: immedi-
ately at 0 h, and after 24 h, 48 h, and 168 h (i.e., one week). These
reflectance measurements were conducted with a FieldSpec-4 spec-
trometer (serial number: 18641) manufactured by Analytical Spectral
Devices Inc. (ASD). The FieldSpec-4 covers the spectral range from 350
to 2500 nm. The measurements were acquired in nadir-view (0◦), with a
measurement height of 30 cm and a 25◦ field of view, which covers an
area with a 6.7 cm radius. The samples were illuminated by a 12 V 50 W
Quartz Tungsten Halogen lamp emitting a 36◦ beam. To minimize stray
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Fig. 1. Illustration of the research steps applied in the study. Dark blue indicates measured data while light blue indicates data processing or analyses. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Species-specific mean reflectance (conical-conical reflectance factor, CCRF) spectra of all Sphagnum samples at (a) 0 h, (b) 24 h, (c) 48 h, and (d) 168 h.
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light, the lamp was contained within a custom-made black aluminum
shade. The illumination zenith angle was set at 40◦. The sample con-
tainers were positioned consistently beneath the optical fiber for each
measurement, ensuring that the same area was measured each time. The
measured reflectance factor was the conical-conical reflectance factor
(CCRF) (Schaepman-Strub et al., 2006). The white reference measure-
ments used a factory-calibrated 25 × 25 cm Spectralon® panel with 99
% nominal reflectance. For a more comprehensive description of the
Sphagnum samples and their reflectance measurements, refer to Salko
et al. (2023a). The mean reflectance spectra of all samples of separate
Sphagnum species at different measurement times are shown in Fig. 2.

Moisture estimation methods are often found to be species-specific
when applied to assess Sphagnum moisture (Harris et al., 2005, 2006;
Letendre et al., 2008; Lees et al., 2020). Therefore, to investigate
whether tailoring these methods to specific habitats could enhance their
performance, we categorized the Sphagnum species into two habitat
groups based on their nutrient status. This division follows the one made
by Salko et al. (2023a). The first group, termed the mesotrophic habitat
group, included three species collected from nutrient-rich mesotrophic
habitats: S. centrale, S. girgensohnii, and S. riparium, and the intermediate
oligo-mesotrophic species S. fallax. The second group, labeled as the
ombrotrophic group, comprised exclusively of the ombrotrophic species:
S. cuspidatum, S. fuscum, and S. rubellum, alongside the intermediate
ombro-minerotrophic species S. angustifolium. The third intermediate
species, S. capillifolium, was excluded from the habitat division because
the samples were collected from peatland ecotones.

2.2. Spectral moisture indices

We applied seven moisture indices previously used in peatland
studies to estimate the Sphagnummoisture content (Table 1). Among the
indices, two were based on the MSI originally presented by Vogelmann
and Rock (1986). First, we calculated the MSI similarly to previous
Sphagnum studies (Harris et al., 2005, 2006; Harris and Bryant, 2009;
Meingast et al., 2014), which involved determining a mean reflectance
value of wavelengths within specific regions for both the SWIR
(1550–1750 nm) and the NIR (760–800 nm) components (Table 1).
Building upon the original MSI, we introduced a modified version,
termed the Modified Moisture Stress Index (MMSI) (Table 1). MMSI was
inspired by the work of Arkimaa et al. (2009), who opted to utilize a
maximum reflectance value for the SWIR component instead of the
mean. In addition to this change, we also set the NIR component of the
MMSI to its reflectance maximum.

2.3. OPTical TRApezoid model

OPTRAM, presented by Sadeghi et al. (2017), is a surface soil
moisture estimation method derived exclusively from optical data,
making it suitable for applications involving optical satellite sensors
such as Sentinel-2. OPTRAM is based on the premise that the distribu-
tion of observations within the STR–NDVI space correlates with the
moisture content. Here, STR is the SWIR Transformed Reflectance, and
NDVI is the Normalized Difference Vegetation Index. Observations with
the highest STR values along the NDVI gradient are identified as the ‘wet
edge’, signifying the wettest conditions, while observations with the
lowest STR values along the NDVI gradient represent the ‘dry edge’,
indicating the lowest moisture availability. OPTRAM can then be
calculated by assuming a linear relationship between soil moisture and
STR, and a linear relationship between soil moisture and vegetation
moisture (Sadeghi et al., 2017) as:

OPTRAM =
id + sd × NDVI − STRi

id − iw + (sd − sw) × NDVI
, (1)

where id and iw denote the intercepts of the dry and wet edges, respec-
tively, while sd represents the slope of the dry edge, and sw is the slope of

the wet edge. STRi represents the STR value at wavelength i and is
calculated as:

STR =
(1 − RSWIR)

2

2 × RSWIR
, (2)

where RSWIR represents the reflectance factor at wavelength i. OPTRAM
values range from 0 (dry observations situated at the dry edge) to 1 (wet
observations situated at the wet edge).

It is important to note that while OPTRAM assumes a linear rela-
tionship between soil moisture and STR, it represents merely one iter-
ation of a broader soil moisture retrieval model outlined in Sadeghi et al.
(2015), where the parameter sigma is set to one. Fixing the parameter to
one simplifies soil moisture retrieval by assuming negligible scattering
in saturated soils compared to dry ones. We chose to adhere to OPTRAM
version of the soil moisture retrieval model due to its proven efficacy in
prior peatland studies (Burdun et al., 2020a, 2020b; Räsänen et al.,
2022; Burdun et al., 2023).

An alternative approach to address non-linearity in OPTRAM is with
exponential OPTRAM. Introduced by Ambrosone et al. (2020) and used
by Räsänen et al. (2022) in their examination of peatland moisture,
exponential OPTRAM extends the linear model by incorporating expo-
nential functions to characterize the wet and dry edges. Exponential
OPTRAM is calculated as:

Table 1
Spectral moisture indices used in this study. The MSI equation’s “meanR” cor-
responds to a mean reflectance value within the specified wavelength range. In
the MMSI, “maxR” represents the wavelength within the given spectral range
that has the highest reflectance value. Similarly, in the case of the fWBIs and the
RDI, “minR” corresponds to the wavelength with the lowest reflectance value in
the provided spectral range.

Index Equation Reference Previously used in
peatland studies by

Moisture Stress
Index (MSI)

meanR1550−1750

meanR760−800

Vogelmann
and Rock
(1986)

Harris et al. (2005,
2006); Harris and
Bryant (2009);
Meingast et al.
(2014)

Modified
Moisture
Stress Index
(MMSI)

maxR1550−1750

maxR760−800

Vogelmann
and Rock
(1986)

Relative Depth
Index (RDI)

R1116 − minR1120−1250

R1116
Rollin and
Milton (1998)

Bryant and Baird
(2003); Letendre
et al. (2008)

Normalized
Multiband
Drought
Index
(NMDI)

R860 − (R1640 − R2130)

R860 + (R1640 − R2130)

Wang and Qu
(2007)

Räsänen et al. (2022)

Water Index
(WI)

R900
R970

Peñuelas et al.
(1997)

Van Gaalen et al.
(2007); Letendre
et al. (2008);
Meingast et al.
(2014); Banskota
et al. (2017); Salko
et al. (2023a)

Floating Water
Band Index
(fWBI980)

R920
minR960−1000

Harris et al.
(2005)

Harris et al. (2005,
2006); Harris and
Bryant (2009);
Meingast et al.
(2014); Banskota
et al. (2017); Lees
et al. (2020)

Floating Water
Band Index
(fWBI1200)

R920
minR1150−1220

Harris et al.
(2005)

Harris et al. (2005);
Harris and Bryant
(2009); Meingast
et al. (2014)

S. Karlqvist et al. Remote Sensing of Environment 315 (2024) 114415 

4 



OPTRAMExp =
id × exp(sd × NDVI) − STRi

id × exp(sd × NDVI) − iw × exp(sw × NDVI)
(3)

Ambrosone et al. (2020) found that exponential OPTRAM out-
performed linear OPTRAM when used to study the moisture content of
agricultural fields. They also observed that the exponential model was
able to reduce some of the water content under and overestimation is-
sues of the linear model. Similarly, Räsänen et al. (2022) found that
exponential OPTRAM outperformed the linear model when applied
separately for each peatland site.

In this study, we employed both linear and exponential OPTRAM.
Furthermore, we calculated OPTRAM separately for (i) all species in the
dataset, (ii) the mesotrophic species, and (iii) the ombrotrophic species.

NDVI for all OPTRAMs was calculated as:

NDVI =
RNIR − RRed

RNIR + RRed
, (4)

where R is the reflectance value at the chosen wavelengths in the NIR
and the red regions. Although Burdun et al. (2023) discovered that the
choice of vegetation index does not significantly affect OPTRAM’s per-
formance in estimating water table depth in peatlands, we assessed
several wavelength pairs to calculate hyperspectral NDVI. The chosen
NDVI had the strongest correlation with the moisture content and was
found using the NIR wavelength 814 nm and the red wavelength 672
nm. Other tested NDVI calculations were performed using wavelengths
850 nm and 680 nm, as well as wavelengths 800 nm and 680 nm.

For calculating STR, we applied different SWIR wavelengths to the
separate habitat groups (i-iii) due to their distinct relationships with the
moisture content. Employing distinct values for the STR parameters
enabled us to identify the optimal wavelength for computing OPTRAM
within each habitat. We selected the wavelengths for the STR calcula-
tions based on the high coefficient of determination (R2) and the low
Root Mean Square Error (RMSE) values derived by fitting the STR results
of different SWIR wavelengths with the laboratory-measured moisture
content. Additionally, we visually evaluated the linearity and scattering
between the STR and the moisture content through scatterplots (Ap-
pendix A, Fig. A1). For all species (group i), the STR was calculated from
wavelength 1505 nm, the mesotrophic species (group ii) used wave-
length 1375 nm, and the ombrotrophic species (group iii) wavelength
1510 nm.

Different methods exist for determining the wet and dry edge pa-
rameters. In most studies, these edges have been defined through visual
inspection of NDVI–STR scatterplots (Sadeghi et al., 2017; Ambrosone
et al., 2020; Burdun et al., 2020b). However, in this study, we deter-
mined the wet and dry edge parameters by optimizing the slope and
intercept values of the edges to maximize the R2 between OPTRAM and
the moisture content. The parameter optimization was performed with
the sequential least squares programming (SLSQP) method using the
SciPy package version 1.10.1 (Virtanen et al., 2020). The initial edge
parameters were set randomly, and the optimization was repeated if the
final OPTRAM values fell outside the 0 to 1 range. Optimization was
performed separately for all species and the two habitat groups, given
their distinct STR parameters. Both linear and exponential OPTRAM
underwent a similar optimization process, except that for exponential
OPTRAM the initial values of both dry edge parameters were set to
0 rather than being random.

2.4. Continuous wavelet transform

CWT is an implementation of wavelet analysis that breaks down the
original signal into various scales (Mallat, 1989). It was applied to
analyze the moisture content of peatland plots by Banskota et al. (2017),
who found that moisture content estimations were significantly
improved using CWT analysis instead of spectral moisture indices.
Notably, CWT also performed well with increased measurement depth.

CWT examines continuous signals across various scales through a

linear transformation of the spectrum, resulting in a series of coefficients
generated using a mother wavelet function (Bruce et al., 2001). These
coefficients are calculated by scaling and shifting the mother wavelet
(ψ(λ)) as:

ψa,b(λ) =
1̅

̅̅
a

√ ψ
(

λ − b
a

)

, (5)

where components a and b represent positive real numbers, signifying
the scaling and the shifting factors, respectively. We applied the second
derivative of the Gaussian (DoG) function, also known as the Mexican
hat, as the mother wavelet because the absorption features of vegetation
spectra exhibit a Gaussian or quasi-Gaussian shape. The second DoG
wavelet function is calculated as:

ψ(λ) =
2

̅̅̅
3

√ ̅̅̅
π4

√ × exp
(

−
λ2

2

)

×
(
1 − λ2

)
(6)

Instead of using wavelet decomposition across a continuum of
possible scales, we reduced the computational load by using discrete
dyadic scales (21, 22, 23…). We applied scales up to 210 as 211 was no
longer informative. For ease of representation, the scales were labeled as
1, 2, 3, …, 10.

The CWT calculation was performed using the PyWavelets package,
version 1.4.1 (Lee et al., 2019). The average CWT scalogram showed the
magnitude of the correlation between a portion of the reflectance
spectrum and the scaled and shifted mother wavelet. This scalogramwas
then correlated with the laboratory-measured moisture content to assess
the moisture detection performance. A correlation scalogram was
calculated to display the R2 of a simple linear regression between the
moisture content and the average CWT scalogram. The CWT and the
correlation scalogram calculations were performed separately for (i) all
species in the dataset, (ii) the mesotrophic species, and (iii) the
ombrotrophic species. The parameters, wavelength, and scale used to
calculate the CWT moisture estimation indices for each of these groups
were selected based on their individual correlation scalogram results.

2.5. Narrowband to broadband conversion

Following the computation of the hyperspectral moisture estimation
methods, we utilized R programming language and the hsdar package
(Lehnert et al., 2019) to perform a narrowband to broadband conver-
sion. The hsdar package facilitated the transformation of the hyper-
spectral measurements into multispectral ones by providing spectral
response functions that simulate measurements obtained from a satellite
sensor, in this case, specifically the thirteen spectral bands of Sentinel-2
A. Once this data transformation was completed, we proceeded to
compute results for multispectral MSI and OPTRAM.

To calculate the MSI, we used Band 11 (1539–1682 nm) and Band 8
(760–907 nm). For the NDVI component of OPTRAM, we utilized Band 8
and Band 4 (646–684 nm). However, similar to the hyperspectral
OPTRAM, we employed distinct bands for calculating the STR compo-
nent for the separate habitat groups. For all species (group i) and the
ombrotrophic species (group iii), we utilized Band 12 (2078–2320 nm),
while for the mesotrophic species (group ii) we employed Band 10
(1337–1412 nm). For the OPTRAM edge parameters, we applied the
same edges as with hyperspectral data (Table 3).

2.6. Statistical analyses

To assess the performance of the different estimation methods, we
conducted an analysis using Linear Mixed Models (LMM). LMMs are
capable of addressing correlations and dependencies within the data
that arise from inherent similarities among different species. Therefore,
LMMs allowed us to evaluate both the relationship between the esti-
mation method and the moisture content, as well as the variance
attributed to the species. We used R programming, with the lme4
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package version 1.1_21 (Bates et al., 2015) and the performance package
version 1.5.3 (Lüdecke et al., 2021) to execute and analyze the LMM
results. The form of the LMM was: lmer(EstimationMethod ~ Moisture
content + (1 | Species)). Residual plots and Q-Q plots were used to verify
model assumptions. The performance of the LMM was evaluated with
the conditional R2, the marginal R2 (R2Marg), the intraclass correlation
coefficient (ICC), and the RMSE.

Upon the initial examination of scatterplots comparing the moisture
estimation methods to the moisture content, all methods, except for the
CWT, displayed non-linearity and a breaking point in the data (Appen-
dix A, Fig. A2). Beyond this breaking point, the measurements formed a
flatline, indicating that the method could no longer accurately capture
moisture information. Since all points beyond the breaking point cor-
responded to samples measured at 168 h, we restricted the LMM analysis
to more linear measurements obtained within 0 to 48 h after the sample
collection (Salko et al., 2023b).

3. Results and discussion

3.1. Spectral moisture indices

The performance of the seven spectral indices varied depending on
the analyzed habitat group (Table 2). Overall, the best-performing
spectral index was the MMSI, as it exhibited the strongest relationship
with the moisture content for all species (R2Marg= 0.73) and the ombro-
trophic species (R2Marg= 0.68), with lower species dependency compared
to the other spectral indices. For the mesotrophic species, the MMSI’s
relationship (R2Marg= 0.59) was slightly outperformed by the RDI
(R2Marg= 0.63). Letendre et al. (2008) also found that the RDI performed
better for mesotrophic species compared to ombrotrophic ones. How-
ever, all spectral indices did exhibit species dependency, which has also
been noted previously by Harris et al. (2005), Letendre et al. (2008), and
Lees et al. (2020). Surprisingly, habitat division did not alleviate this
dependency issue. The continuous dependency on species suggests that
while species within similar habitats might share comparable physio-
logical behavior, spectral indices might not accurately estimate moisture
content of Sphagnum mosses without detailed species information.

Our results differed from those of Harris et al. (2005) and Meingast
et al. (2014), where MSI was outperformed by other indices, most
dominantly by fWBI980. The difference in results might be attributed to
the wider selection of Sphagnum species included in our study. Specif-
ically, the inclusion of S. cuspidatum could be a key factor driving these
differences, as it was not considered in previous studies and exhibits a
more distinct reflectance spectrum than other Sphagnum species (Fig. 2).
Nevertheless, species that were included in both Meingast et al. (2014)
and our study (S. fuscum, S. angustifolium and S. rubellum) did exhibit a
more linear relationship with the fWBI980 than the MSI (Fig. 3). Pre-
vious studies have also noted a highly linear relationship between
Sphagnum moisture content and the indices fWBI1200 and WI (Harris
et al., 2005; Van Gaalen et al., 2007). Despite our study demonstrating
that the MMSI outperformed other tested moisture indices, additional
studies will be needed to develop a full picture of moisture indices’
performance in the field with mixed peatland species (Lees et al., 2020).

When the MSI was tested with multispectral data as input, it showed
an increased relationship with the moisture for all species (R2Marg= 0.75),
the mesotrophic species (R2Marg= 0.61), and the ombrotrophic species
(R2Marg= 0.71), with decreased species dependency. The reduction in
species dependency was especially notable with the ombrotrophic spe-
cies, where the ICC value dropped from 0.55 to 0.39 with multispectral
input data. This outcome was consistent with the results reported by
Meingast et al. (2014) and Lees et al. (2020), who found that multi-
spectral indices can give equally strong results relative to hyperspectral
ones.

3.2. OPtical TRApezoid model

The performance of the linear and exponential OPTRAM, with the
optimized edges (Table 3), yielded nearly identical results when all
species were considered. The R2Marg values reflecting the relationships
between both OPTRAMs and moisture content were 0.67 with hyper-
spectral data (Table 2). Additionally, both models exhibited high species
dependency, with ICC value of 0.60 for the linear and 0.59 for the
exponential model. For the mesotrophic and the ombrotrophic species,
the linear OPTRAM exhibited R2Marg values of 0.62 and 0.55, respec-
tively, while the corresponding ICC values were 0.52 and 0.53. These
results suggest that categorizing species into habitat groups does not
enhance the performance of the linear OPTRAM. In contrast, applying
the exponential model to habitat groups resulted in great improvements
for the mesotrophic species, with an R2Marg value of 0.70 and a signifi-
cantly lower ICC value of 0.08, indicating minimal species dependency.
This outcome is similar to the results of Räsänen et al. (2022), who re-
ported improved performance of the exponential model over the linear

Table 2
Results of the LMM analysis between the moisture content and the moisture
estimation methods for hyperspectral and multispectral input data for (i) all
species of the dataset, (ii) the mesotrophic species, and (iii) the ombrotrophic
species.

All species

Hyperspectral input data Conditional R2 Marginal R2 ICC RMSE

MSI 0.91 0.71 0.70 0.03
MMSI 0.91 0.73 0.67 0.03
RDI 0.94 0.57 0.86 0.02
NMDI 0.92 0.57 0.80 0.02
WI 0.96 0.04 0.96 0.07
fWBI980 0.96 0.05 0.96 0.06
fWBI1200 0.96 0.05 0.96 0.17
Linear OPTRAM 0.87 0.67 0.60 0.09
Exponential OPTRAM 0.87 0.67 0.59 0.09
CWT 0.83 0.72 0.40 0.01
Multispectral input data
MSI 0.91 0.75 0.65 0.03
Linear OPTRAM 0.87 0.66 0.63 0.10
Exponential OPTRAM 0.87 0.66 0.62 0.10

Mesotrophic species
Hyperspectral input data
MSI 0.89 0.59 0.73 0.03
MMSI 0.90 0.59 0.74 0.03
RDI 0.89 0.63 0.71 0.02
NMDI 0.88 0.50 0.76 0.02
WI 0.88 0.50 0.76 0.03
fWBI980 0.88 0.53 0.74 0.02
fWBI1200 0.88 0.50 0.76 0.08
Linear OPTRAM 0.82 0.62 0.52 0.08
Exponential OPTRAM 0.73 0.70 0.08 0.08
CWT 0.45 0.29 0.23 0.01

Multispectral input data
MSI 0.89 0.61 0.72 0.03
Linear OPTRAM 0.81 0.63 0.49 0.08
Exponential OPTRAM 0.71 0.69 0.06 0.08

Ombrotrophic species
Hyperspectral input data
MSI 0.85 0.67 0.55 0.03
MMSI 0.86 0.68 0.55 0.03
RDI 0.94 0.34 0.91 0.02
NMDI 0.93 0.45 0.87 0.02
WI 0.96 0.03 0.99 0.10
fWBI980 0.96 0.03 0.96 0.08
fWBI1200 0.96 0.03 0.96 0.24
Linear OPTRAM 0.78 0.55 0.53 0.10
Exponential OPTRAM 0.79 0.55 0.53 0.09
CWT 0.83 0.39 0.72 0.02

Multispectral input data
MSI 0.83 0.71 0.39 0.03
Linear OPTRAM 0.78 0.51 0.56 0.12
Exponential OPTRAM 0.78 0.50 0.57 0.12
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model when applied separately to each peatland habitat. For the
ombrotrophic species, the exponential OPTRAM performed similarly to
the linear model, producing nearly identical results (Table 2).

The analysis of multispectral data revealed findings consistent with
those from the hyperspectral data. For all species, both models exhibited
R2Marg value of 0.66, with ICC values of 0.63 and 0.62 for the linear and
exponential models, respectively. This outcome was also true for the
mesotrophic and ombrotrophic habitat groups (Table 2), suggesting that
hyperspectral data may not be a prerequisite for effective peatland
moisture estimation using OPTRAM models.

Our R2Marg value for the ombrotrophic Sphagnum species was notably
lower than the R2 reported by Burdun et al. (2023), who found a strong
relationship (R2 = 0.8–0.9) between OPTRAM derived from Sentinel-2
data and the water table depth in Sphagnum-dominated ombrotrophic
peatlands. We expected similar or even stronger relationships between
OPTRAM and the moisture content since moisture indices and even CWT
are known to better reflect moisture content than water table depth in
Sphagnum mosses (Harris et al., 2006; Meingast et al., 2014; Banskota
et al., 2017). This discrepancy might be explained by limitations of the
dataset since it did not contain observations for the period between 48
and 168 h or beyond. Within the timescale of the experiment, the

Fig. 3. The LMM regression separated by species and a simple linear regression of 0–48 h samples between the moisture content and the (a)MSI, (b)MMSI, (c) RDI,
(d) NMDI, (e) WI, (f) fWBI980, (g) fWBI1200, (h) OPTRAM (i) Exponential OPTRAM, and (j) CWT.

Table 3
Optimized OPTRAM edge parameters for the linear and exponential models.

Intercept of
dry edge

Slope of
dry edge

Intercept of
wet edge

Slope of
wet edge

Linear OPTRAM: All
species

0.73 −0.99 2.97 55.51

Exponential OPTRAM:
All species 0.00 0.60 19.66 1.11

Linear OPTRAM:
Mesotrophic species 0.26 −0.25 0.00 8.20

Exponential OPTRAM:
Mesotrophic species

0.00 2.98 0.54 3.03

Linear OPTRAM:
Ombrotrophic
species

0.62 0.13 26.37 25.60

Exponential OPTRAM:
Ombrotrophic
species

0.32 0.53 26.14 0.73
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ombrotrophic species underwent desiccation to amuch lesser extent than
the mesotrophic species, likely due to their habitat-specific traits influ-
encing water storage and loss. For example, Sphagnum species with large
hyaline cells have been shown to resist desiccation and maintain higher
plantwater content (Rice et al., 2008).Additionally, thedisparities canbe
attributed to thedifference in spatial and temporal scales.While our study
utilized small-scale laboratory data focusing on the surface moisture
dynamics within a controlled environment, satellite-based studies cap-
ture large-scale data and estimate water table levels that reflect broader
environmental dynamics over extended periods (Tian et al., 2020).
Consequently, these differences may account for the more pronounced
correlation with water-table levels identified in satellite-based studies
compared to our observations of surface peat moisture.

Another important finding was that we observed a breaking point in
the relationships between both OPTRAMs and the moisture content after
one week of desiccation (Appendix A, Fig. A2). Similar breaking points
were also observed with the spectral moisture indices, prompting the
LMManalysis to exclude the168hmeasurements. Similarly, Burdunet al.
(2023) reported breakingpoints betweenOPTRAMandwater table depth
in peatlands. These observations collectively suggest a limited moisture
range for OPTRAM applicability. Therefore, future studies should exer-
cise caution when utilizing OPTRAM under extremely dry conditions in
peatlands. This limitation could potentially be addressed by adjusting the
sigma parameter of OPTRAM to capture non-linear data patterns more
effectively. Notably, Norouzi et al. (2022) demonstrated the effectiveness
of different sigma values in moisture estimation across various soil types
exhibiting non-linear trends. While this approach has not been specif-
ically explored in the context of peatlands, it holds potential for achieving
more accurate moisture estimations. However, introducing a new
parameterwould increase computational complexity, potentiallymaking
the model less desirable for remote sensing applications.

3.3. Continuous wavelet transform

We selected the parameters for the CWT moisture estimation indices
for each habitat group based on their individual correlation scalogram
results (Fig. 4). The highest R2 value for all species (R2 = 0.81) occurred
at a wavelength of 1852 nm with a scale of 7. The mesotrophic species
exhibited the highest R2 (R2 = 0.80) at 1138 nm with a scale of 6, while
the ombrotrophic species showed the highest R2 (R2 = 0.86) at 894 nm
with a scale of 5. Consequently, we chose these parameters for calcu-
lating the CWT moisture estimation indices in the LMM analyses.

The CWT coefficients obtained in this study for the ombrotrophic
species exhibited similaritieswith coefficients obtainedbyBanskota et al.
(2017) for their oligotrophic peatland sites. In both studies, the peak R2

values were observed for wavelengths in the NIR region, indicating the
utility ofNIRwavelengths for ombro- andoligotrophic peatland sites. The
NIR wavelengths have also been found to have the best relationship with
moisture content and peatland vegetation in studies by Harris et al.
(2005), Letendre et al. (2008), andMeingast et al. (2014). While no prior
study had applied CWT tomesotrophic peatland sites, our results suggest
that the NIR wavelengths also show a higher correlation with Sphagnum
moisture than the SWIR wavelengths. However, for all species, the SWIR
wavelengths exhibited a higher correlation with the moisture compared
to the NIRwavelengths. Across all analyses, the highest correlationswere
observed at middle-frequency scales.

The results of the LMM analysis indicated that when all species were
considered, the CWT had the highest R2Marg value (= 0.72) among hyper-
spectral methods and the lowest species dependency of all the methods
(ICC = 0.40). For the mesotrophic species, the CWT exhibited even lower
species dependency (ICC = 0.23) but was less effective in estimating the
moisture content (R2Marg= 0.29). For the ombrotrophic species, the CWT
also struggled to accurately estimate moisture content (R2Marg= 0.39)
while simultaneously having high species dependency (ICC = 0.72).

Although the CWT performed well, when all the species were
considered, Banskota et al. (2017) found it to outperform spectral
moisture indices more significantly. Similar findings of CWT’s superi-
ority have also been reported in studies detecting the moisture content
of vascular plants’ leaves (Cheng et al., 2011; Li et al., 2016) and tree
canopies (Cheng et al., 2014). This disparity in results and the decline of
the CWT’s performance with the habitat groups may be attributed to the
choice of selected CWT coefficients: wavelength and scale. The co-
efficients were derived from the correlation scalograms generated for
samples including all measurement times, while the subsequent LMM
analysis focused exclusively on fresher (0 h–48 h) samples. This finding
suggests that CWT results may vary based on the meanmoisture levels of
the studied samples. However, in addition to the peak coefficients, the
CWT demonstrated high correlation results across multiple other
wavelengths and scales, indicating potential performance enhancement
through the exploration of more optimal coefficients or combination of
coefficients. Future research should explore more comprehensive coef-
ficient optimization, to enhance the robustness and reliability of CWT
for remote sensing applications in Sphagnum-dominated peatlands.

Fig. 4. The correlation scalograms for (a) all species, (b) the mesotrophic species, and (c) the ombrotrophic species, where the colour presents the R2 between
moisture content and transformed wavelet at different wavelengths and scales. The correlation scalograms were performed for the data with all observations (0
h–168 h).
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3.4. Evaluation of methods from the perspective of remote sensing

All methods evaluated in this study provided varying degrees of
accuracy in estimating Sphagnum moisture (Table 2). The spectral
moisture indices, while computationally less demanding than CWT and
OPTRAM, exhibited consistently high ICC values, indicating strong
clustering and species variance. This result underscored the species-
specific nature of spectral moisture indices, emphasizing the necessity
of species knowledge for accurate moisture estimations, even with
habitat divisions. In contrast, the CWT exhibited lower ICC values for the
all-species group, while the exponential OPTRAM appeared uniform
over the mesotrophic species.

The top-performing moisture estimation methods derived from
hyperspectral data were the CWT, the OPTRAM, and the MMSI/MSI.
When all species were considered, the MMSI exhibited the strongest
relationshipwith themoisture content (R2Marg= 0.73), closely followed by
the CWT (R2Marg= 0.72). Notably, from the perspective of practical remote
sensing, the CWT also displayed significantly lower species dependency
compared to the other methods, indicating a more accurate moisture
estimation across different species. Additionally, the CWT had the
smallest RMSE, indicating a narrow error margin. Furthermore, the CWT
was the sole method to provide information from the drier Sphagnum
samples, lacking a noticeable breaking point in the data (Appendix A,
Fig. A2). This characteristic renders CWTparticularly valuable for studies
focusing on dry peatlands at a fine scale, such as wildfire prevention
(Nelson et al., 2022), or peatland drought recovery (Lees et al., 2021).
Therefore, we conclude that the CWT appeared as the most effective
method across all species when hyperspectral data were available.

For both hyperspectral and multispectral data, the exponential
OPTRAM excelled for the mesotrophic Sphagnum species, surpassing the
other techniques by establishing a strong relationship with the moisture
content and exhibiting a remarkably low species dependency that
rendered the species factor negligible. In contrast, the MSI outperformed
the exponential OPTRAM for the ombrotrophic species, exhibiting a
significantly stronger relationship with the moisture content. Interest-
ingly, the multispectral MSI outperformed its hyperspectral counterpart
by displaying reduced species dependency and a stronger relationship
with the moisture content.

In the experiment, the mesotrophic species demonstrated a more
immediate and more intense response to desiccation (Salko et al.,
2023a). Similarly, mesotrophic peatland vegetation is often more sus-
ceptible to drying compared to ombrotrophic peatland species as they
are acclimated to a steadier supply of water. As such, they are more
vulnerable to the warming climate (Laine et al., 2021), and retrieving
data from their state of well-being is increasingly important. Overall, our
results suggest that exponential OPTRAM is more effective with meso-
trophic species, while MSI performs better for ombrotrophic species.
This outcome implies that the selection of the monitoring method for
assessing moisture content of Sphagnummosses should be guided by the
specific species or habitat under investigation.

This study marks the first application of the spectral region ranging
from 1337 nm to 1412 nm (corresponding to, e.g., the Cirrus band of
Sentinel-2 MSI) to calculate OPTRAM. Previous satellite-based peatland
studies have used a wavelength range centered around 2200 nm
(Burdun et al., 2020a, 2020b, 2023; Räsänen et al., 2022), while other
satellite-based OPTRAM moisture studies have also applied either this
band (Sadeghi et al., 2017; Huang et al., 2019; Ambrosone et al., 2020;
Hassanpour et al., 2020; Das et al., 2023; Mokhtari et al., 2023) or a
band centered around 1610 nm (Dubinin et al., 2020; Acharya et al.,
2022; Das et al., 2023).

Based on our findings, the spectral band centered at 1375 nm holds
significant promise for moisture estimation in mesotrophic peatland
sites. However, it is crucial to validate this finding across a wider range
of natural peatland environments before considering broader applica-
tions. Furthermore, for OPTRAM to be reliably used for peatland

moisture estimation via satellite remote sensing, future research should
focus on establishing universal edge parameters that are robust across
different species compositions to avoid the need for calculating edge
parameters for each study.

Based on our results, the CWT method, which performed best for all
Sphagnum species, holds great potential in light of new and future
hyperspectral satellite missions (e.g., EnMAP, PRISMA, CHIME). On the
other hand, results from the hyperspectral data did not surpass those
from the multispectral data using OPTRAM and MSI. This result implies
that multispectral satellite sensors (e.g., Sentinel-2, Landsat series) have
an important role in certain peatland monitoring applications, and that
hyperspectral satellite data may not be a requirement for estimating
moisture content in Sphagnum-dominated peatlands. However, given
our observation that exponential OPTRAM performs better with meso-
trophic species and MSI with ombrotrophic species, recommending the
use of different methods for varying habitats may pose practical chal-
lenges, given the presence of multiple habitat types within large peat-
land complexes (Rydin and Jeglum, 2006). Although, in the future, high
spatial resolution satellite data may provide more useful aid for identi-
fying habitat types of peatlands (Arasumani et al., 2023) and hence
make it more convenient to use habitat-specific methods for peatland
moisture estimation.

4. Conclusion

In this study, we assessed the applicability of hyperspectral and
multispectral data for estimating Sphagnum moisture content using
seven spectral moisture indices, OPTRAM and CWT. The dataset,
encompassing nine Sphagnum species, enabled a comprehensive analysis
of these methods, offering insights into their performance across
different species and habitats. Furthermore, the results obtained here
shed light on the strengths and weaknesses of each method, contributing
to an understanding of their applicability in detecting Sphagnum mois-
ture content. Overall, our results demonstrated that the moisture con-
tent of Sphagnum mosses can be estimated using both multi- and
hyperspectral data. However, the most effective retrieval method
depended on the habitat type. The CWT outperformed the other
methods when all Sphagnum species were considered, but for the
mesotrophic group, the exponential OPTRAM provided superior results
with no species dependency, while the ombrotrophic species favored the
MMSI. These results indicate that the monitoring method should be
tailored to the specific habitat being studied.

The CWT method, which performed best for all species with the least
species dependency, is a promising method in the context of recently
launched and future hyperspectral satellite missions. However, our re-
sults additionally emphasized the potential for using multispectral sat-
ellite sensors in peatland studies, as the multispectral exponential
OPTRAM and MSI could estimate the Sphagnum moisture for the
mesotrophic and the ombrotrophic species as well as their hyperspectral
counterparts with less species dependency.
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Appendix A. Appendix

Fig. A1. Scatterplots between the moisture content and (a) STR calculated for reflectance at 1505 nm with all species, (b) STR calculated for reflectance at 1375 nm
for the mesotrophic species and (c) STR calculated for reflectance at 1510 nm for the ombrotrophic species
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Fig. A2. Scatterplots between the moisture content and (a) OPTRAM, (b) exponential OPTRAM, (c) CWT, (d) MMSI, (e) RDI, (f) NMDI, (g) WI, (h) fWBI980 and (i)
fWBI1200. Green points correspond to observation between 0 and 48 h and gray points correspond to 168 h observations. The R2 and the RMSE values are the results
of a simple linear regression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

References

Acharya, U., Daigh, A.L.M., Oduor, P.G., 2022. Soil moisture mapping with moisture-
related indices, OPTRAM, and an integrated random Forest-OPTRAM algorithm from
Landsat 8 images. Remote Sens. 14 (15), 3801. https://doi.org/10.3390/
rs14153801.

Ambrosone, M., Matese, A., Di Gennaro, S.F., Gioli, B., Tudoroiu, M., Genesio, L.,
Toscano, P., et al., 2020. Retrieving soil moisture in rainfed and irrigated fields using
Sentinel-2 observations and a modified OPTRAM approach. Int. J. Appl. Earth Obs.
Geoinf. 89, 102–113. https://doi.org/10.1016/j.jag.2020.102113.

Arasumani, M., Thiel, F., Pham, V.-D., Hellmann, C., Kaiser, M., van der Linden, S., 2023.
Advancing peatland vegetation mapping by spaceborne imaging spectroscopy. Ecol.
Indic. 154, 110665 https://doi.org/10.1016/j.ecolind.2023.110665.

Arkimaa, H., Laitinen, J., Korhonen, R., Moisanen, M., Hirvasniemi, T., Kuosmanen, V.,
2009. Spectral reflectance properties of Sphagnum moss species in Finnish mires. In:
6th EARSeL SIG IS Workshop, Imaging Spectroscopy: Innovative Tool for Scientific
and Commercial Environmental Applications, pp. 16–19.

Banskota, A., Falkowski, M.J., Smith, A.M.S., Kane, E.S., Meingast, K.M., Bourgeau-
Chavez, L.L., French, N.H., et al., 2017. Continuous wavelet analysis for
spectroscopic determination of subsurface moisture and water-table height in
northern peatland ecosystems. IEEE Trans. Geosci. Remote Sens. 55 (3), 1526–1536.
https://doi.org/10.1109/tgrs.2016.2626460.
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