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Multiple sclerosis (MS) is a devastating immune-mediated disorder of the central

nervous system resulting in progressive disability accumulation. As there is no

cure available yet for MS, the primary therapeutic objective is to reduce relapses

and to slow down disability progression as early as possible during the disease to

maintain and/or improve health-related quality of life. However, optimizing

treatment for people with MS (pwMS) is complex and challenging due to the

many factors involved and in particular, the high degree of clinical and sub-

clinical heterogeneity in disease progression among pwMS. In this paper, we

discuss these many different challenges complicating treatment optimization for

pwMS as well as how a shift towards a more pro-active, data-driven and

personalized medicine approach could potentially improve patient outcomes

for pwMS. We describe how the ‘Clinical Impact through AI-assisted MS Care’

(CLAIMS) project serves as a recent example of how to realize such a shift
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towards personalized treatment optimization for pwMS through the

development of a platform that offers a holistic view of all relevant patient data

and biomarkers, and then using this data to enable AI-supported

prognostic modelling.

KEYWORDS

multiple sclerosis, personalized medicine, disease progression, prognosis, diagnosis,
AI, data

1 The heterogeneous disease course
of multiple sclerosis

Multiple sclerosis (MS) is a devastating immune-mediated

disorder of the central nervous system (CNS) resulting in

progressive disability accumulation in most individuals affected

(1, 2). MS imposes a significant burden on patients, affecting all

aspects of their life, and additionally, it poses a significant challenge

to society as with growing disability, indirect expenses (productivity

losses associated with sick absence, inability to work, and early

retirement) and care costs rise substantially (3).

The classical view on MS describes different clinical subtypes,

with relapsing-remitting MS (RRMS) being the most common

form, occurring in 85% of patients (National MS Society).

Patients with RRMS experience neurological exacerbation

(relapses) as well as intermittent periods of remission in which

they remain clinically stable. Relapses can either recover completely

or leave persistent clinical disability, referred to as Relapse

Associated Worsening (RAW). Among these patients ,

approximately two-thirds progress to secondary-progressive MS

(SPMS) (4). In contrast to RRMS, the disease course of patients with

SPMS or primary-progressive MS (PPMS, 15% of MS patients) is

mainly driven by a gradual worsening of disability in the absence of

relapse activity (5).

Recent research has challenged this classical view of distinct MS

subtypes, as they may not sufficiently account for the large spectrum

of multifaceted clinical phenotypes and disease courses as well as

sub-clinical disease variability (6). This disease heterogeneity is

further complicated by a high prevalence of comorbidities and

multi-pharmacy in MS. Data from the NARCOMS registry

suggested that, at the time of MS diagnosis, 35% of MS patients

suffer physical comorbidities while 18% reported a psychiatric

comorbidity (7, 8). Additionally, accumulation of clinical

disability independent of acute inflammatory relapses -

commonly referred to as Progression Independent of Relapse

Activity (PIRA) (9) - was found to occur in any of the classical

MS subtypes, including RRMS, and at any stage of the disease (10,

11). Most importantly, in a substantial proportion of people with

MS (pwMS), PIRA occurs already very early on, and this is

associated with worse long-term outcomes (2). Recent studies

have also shown that PIRA gradually becomes the dominant

driver of disability worsening as the disease progresses (9).

While new insights into PIRA continue to be unraveled, exact

criteria of how to define, assess, and monitor PIRA are still lacking.

Several definitions have been put forward, but these focus mainly

only on measuring disability worsening by means of the Expanded

Disability Status Scale (EDSS) and Confirmed Disability Worsening

(CDW) (2). Relying solely on EDSS or CDW to describe PIRA,

however, seems to be insufficient as (i) there are heterogeneous

symptoms and disease aspects contributing to disability worsening

and MS severity, and (ii) this omits sub-clinical processes such as

compartmentalized inflammation, chronically active (smouldering)

lesions, diffuse normal-appearing matter damage (12, 13), as well as

brain (14) and spinal cord atrophy (15, 16). Such processes seem to

represent relevant substrates of (silent/smouldering) disease

progression even during early stages and to contribute to

enhanced long-term disability worsening in pwMS (17). In this

regard, the topographical disease model proposed by Krieger et al.

may facilitate the interpretation of the clinical course revision,

providing a unified visualization across phenotypes, while

providing insights in the interplay between the distinct processes

of relapse activity and progression, and accounting for latent

variables such as relapse localization, frequency, severity, recovery

and progression rate (18). Additionally, this model was recently

validated in terms of brain MRI markers (19). Aligning with this

model, individuals deemed neurologically normal in early MS (e.g.,

with an EDSS score of 0) demonstrated subtle deficits in high-

challenging motor tasks (20) and often have fatigue (21) and

cognitive impairments (22). The former was also shown to

correlate with imaging markers of disease burden and brain

reserve, challenging traditional severity definitions and

underscoring the importance of looking beyond standard clinical

measures such as the EDSS (20).

2 A changing landscape in
treatment strategies

The heterogeneity in disease progression among individuals

with MS (both clinically and sub-clinically) contributes to a high
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diversity in treatment responses across pwMS (23). As there is no

cure available yet for MS, the primary therapeutic objective is to

slow down disability progression and to reduce relapses as early as

possible during the disease to maintain and/or improve the health-

related quality of life (24).

To this end, all regulatory-approved disease-modifying

treatments (DMT) have shown their worth in preventing relapses

during the few years of the clinical trial in which their efficacy was

evaluated. However, the impact on the long-term accumulation of

disability and chronic subtle disease processes was often limited as

even the most effective DMTs available were only able to mitigate

the short-term risk of disability progression by 30-42% (25). A

recent review from Gasperini et al. emphasizes how dire the

situation really is, indicating that only 30- 40% of patients

receiving a DMT remain stable over a period of 5 to 7 years, and

only up to 10% over a period of 7 to 10 years after initiating

DMT (26).

Despite the approval of ±20 different DMTs by the European

Medicines Agency (EMA) and the US Food and Drug

Administration (FDA) (27, 28), concerns about side effects and

efficacy might discourage many pwMS from initiating a high-

efficacy DMT therapy (29, 30), an issue further aggravated by

therapeutic inertia (31). Additionally, those who do receive a

DMT usually start with one of the less effective but well-

established therapies due to their minimal side effects (32).

Traditionally, it’s only when these well-established DMTs fail to

prevent relapses and disability progression, that the treatment is

escalated to a higher-efficacy treatment, which usually is more

expensive, might have more pronounced side effects, and is

potentially more challenging to administer (oral and injectables

versus infusions) (33). However, multiple studies support the

observation that reducing the accrual of neurological damage in

the initial stages of the disease potentially improves overall clinical

outcomes throughout the patient’s lifespan when employing early

intervention with higher efficacy DMT (34–38). Additionally,

DMTs were shown to be more efficacious, and side effects less

likely to occur in younger patients (39). Taken together, these

studies question the traditional treatment escalation paradigm

which is therefore nowadays considered outdated by most

physicians. Instead, current thinking emphasizes the potential

advantages of early initiation of high-efficacy DMTs, indicating

the need for and the significance of an early MS diagnosis, proactive

monitoring to detect disease activity early, and shared decision-

making as crucial elements in patient care (32, 40).

Additionally, given the shortcomings of current DMTs to halt

long-term disability accumulation, a next generation of DMTs

might focus more on the silent progression of the disease. A first

novel category of DMTs in this regard are potentially the Bruton

tyrosine kinase inhibitors. This new class of drugs might become the

first to target both acute inflammatory relapses as well chronic

inflammatory processes in the CNS thought to drive disability

accumulation (41). In this context, especially the early recognition

of individuals prone to developing PIRA will be essential. A better

understanding of PIRA and RAW as well as their interplay,

combined with data-driven prognosis, will enhance the selection

of current and future DMTs and allow to treat patients beyond just

relapse activity. Nevertheless, certain variables pose challenges to

the trajectory of precision medicine and treatment optimization on

an individual level. While there are guidelines on the use of DMTs

in MS (24), these are all based on expert judgment and differ across

countries, even within the EU (28, 37). This variance extends to

therapy selection post-diagnosis or during follow-ups, driven by

perceived levels of clinical and subclinical disease activity

and progression.

3 Precision medicine enables
treatment optimization

Accumulating evidence suggests that the reactive treatment of

lesion activity is insufficient, negatively impacting long-term patient

outcomes (42). In the complex landscape of MS treatment, an

increasing acknowledgment of disease heterogeneity and

underlying disease mechanisms underscores the imperative for a

paradigm shift toward proactive, data-driven precision medicine

(43). However, despite its promise, such data-driven approaches

come hand in hand with substantial challenges.

The understanding of the complex and heterogeneous

underlying neuropathology of MS is still limited. The adoption of

precision medicine in MS is further complicated by the chronic

nature of the disease, exhibiting variable courses over time.

Consequently, given the longitudinal disease aspect, one must

account for the fact that data might be incomplete at times,

particularly in routine practice. In addition, the influence of

comorbidities adds another layer of complexity (44). Various

biomarkers are deemed relevant for their role in identifying

diverse MS aspects and patterns of progression in MS, aiding

diagnosis, prognosis, and treatment selection (45). However, they

might not capture the full complexity of MS and their interpretation

requires a nuanced understanding of the disease context. Moreover,

the heterogeneous nature of MS challenges the development of

universally applicable biomarkers and complicates the tracking of

different treatment effects on an individual basis (46).

Notably, with a variety of treatment options being available (27,

28), emerging biomarkers, including liquid and imaging markers,

have shown potential in monitoring treatment efficacy (45, 47).

However, the validation, availability, and implementation of

biomarker assessments in real-world clinical practice is often still

missing as this differs significantly from their application in clinical

trials. Moreover, biomarkers that demonstrate both sensitivity and

specificity in the context of progressive MS are still lacking (47).

While early diagnosis and prognosis modelling are pivotal for

timely and effective treatment initiation, the ability to clearly

define and disentangle disability accumulation attributed to RAW

or PIRA will be key to optimizing individual treatment over the

course of the disease.

Advancements in artificial intelligence (AI) can offer enhanced

and data-driven support by considering longitudinal data on

multiple biomarkers simultaneously and subtyping patients more

accurately. In particular, this can include biomarkers more related

to PIRA such as motor dysfunction beyond EDSS (2, 48), optical
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coherence tomography (49–51), magnetic resonance imaging

markers predictive of disability worsening such as brain atrophy

(14), slowly expanding lesions and paramagnetic rim lesions (52–

54) and cognitive impairment (55–57), as well as subjective markers

[i.e. patient-reported outcomes (PROs) such as quality of live (58,

59)]. We believe that a holistic overview of the patient will be crucial

to avoid overlooking relevant information, including both existing

and new biomarkers as our disease understanding evolves

further (Figure 1).

Such transformative approaches hold the potential to

significantly enhance treatment strategies and extend the adjusted

quality of life years for individuals with MS. Nevertheless, the

current landscape is still fragmented, often focusing on singular

aspects or biomarkers rather than adopting a more holistic and

FIGURE 1

A clinical decision support tool should be capable of visualizing the very heterogenous MS patient data, the AI-supported analysis of this data and
the outcome of prognostic models using this data, enabling a data-driven discussion between the neurologist and patient to identify the best DMT
for the patient.
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comprehensive approach. Data strategies to reduce the level of

heterogeneity, particularly improving data harmonization by means

of a common data model, are wishful to guarantee standardization

in clinical decision making (60). However, the implementation of

such initiatives is still in the early stages. Care pathways for pwMS

are also not commonly standardized and while some diagnostic and

treatment guidelines and recommendations are available (1, 61, 62),

the assessment of relevant outcomes may not always be sufficiently

covered and integrated into the routine clinical workflow (63). A

modular-integrative framework of digital patient pathways for MS

management and treatment is needed, which should incorporate

AI, data harmonization and review relevant research concerning the

use of pathways in healthcare (64, 65). Although initial evidence of

acting upon AI-driven MRI biomarkers has indicated to improve

patient outcome (66), the evaluation of impact in real-world

practice and evidence on whether acting upon data-driven models

and biomarkers truly improves the quality of life for patients with

MS are crucial components that demand more attention in the

pursuit of effective precision medicine strategies for MS.

4 Clinical impact through AI-assisted
MS care

A data-driven and personalized clinical decision support tool is

urgently needed for MS, to prevent and slow down disease

progression more efficiently via optimizing treatment. The EU-

funded ‘Clinical Impact through AI-assisted MS Care’ (CLAIMS,

www.claims.ms) project aims to address this need. The project will

develop, validate and seek regulatory approval for an AI-driven

clinical decision-support platform, which offers the MS care team a

holistic view of the patient through the visualization of all relevant

patient data and the prognosis on the expected disease trajectories

under different treatment regimens.

Initially, the project focusses on the development and

optimization of these prognostic models via the use of

retrospectively collected clinical routine data in combination with

clinical trial data. A detailed description of this retrospective multi-

center observational study (called RECLAIM) is accessible via

ClincialTrials.gov. This study aims to collect and harmonize both

clinical and subclinical data and store it in a central database on a

secure cloud environment. Data harmonization will be following

the common data model proposed in Parciak et al. (67), but kept to

the minimum necessary as we aim to stay as close as possible to the

real-world clinical setting and to ensure the clinical relevance.

The combination of real-world with clinical trial data is an

important aspect of the study. Clinical trial data is very

homogeneous and highly curated, making it an ideal dataset to

develop AI-driven prognostic models. For instance, MRI scans

obtained in clinical trials adhere to a standardized protocol,

include all necessary sequences, and ensure follow-up scans

within a specific timeframe. In contrast, MRI scans acquired in a

real-world setting frequently don’t meet these requirements (68,

69). As the CLAIMS project aims to create AI-based prediction

models applicable in real-world clinical settings, it is crucial to also

incorporate routine care data in the development and validation

phases. By combining both types of data, we aim to achieve an

extensive dataset that leverages the strengths of both types of data

ensuring applicability in a routine clinical care setting where

confounding factors (e.g., comorbidities), low quality data and

missing data are common (70, 71).

The focus will be on modelling disease progression. Disease

progression models often have strong assumptions about the

monotonicity of disease progression processes, the missingness

model and associated completeness of the data, the longitudinal

regularity of the observations, and homoscedastic noise

characteristics of the measurements. Due to the different MS

subtypes, and relapse and recurrence events, many of these

assumptions do not hold in a MS setting. Furthermore, when

using clinical observational data, data points are missing-not-at-

random, both because patients often miss their appointments, but

also because certain examinations (clinical assessments, MRI, etc)

are performed as a function of patient presentation. Tackling this

requires us to explore applicability of advanced and appropriate

models of data imputation, and from generative models that

explicitly model the causal relationships of the observations.

Contrary to clinical research trials where patients are assigned

to a treatment or placebo arm at random, in an observational

setting, DMTs are given to patients according to guideline

recommendations and patient presentation. Observational data is

thus biased by these guidelines, and appropriate measures are

needed to control for this bias. Causal inference mechanisms via

counterfactuals allows one to model such observational data and

predict what the potential outcome would have been under a

counterfactual treatment. By disentangling causes and effects, one

gains a clearer understanding of the underlying biological or

pathological markers that are predictive of the observed effect and

outcome. This enables a more grounded clustering of patients (e.g.,

what are the patient characteristics that predict drug efficacy),

providing an explanation of the optimal therapeutic inference

(e.g., what is the biological reason why a certain drug is optimal

for a specific patient). While some of these challenges have been

addressed in highly controlled randomized clinical research

environments, solving them using an observational experimental

setup would allow one to exploit large amounts of data while

ensuring the models remain accurate when deployed in a real-

world environment where the aforementioned problems exist.

Observational studies using real-world data allow for more

heterogeneous and comprehensive cohorts, thereby elevating

external validity and supplying valuable insights to guide

treatment approaches (69).

At the time of writing this paper, the first version of the

CLAIMS platform was already available, building upon a

regulatory cleared AI solution for brain MRI quantification, a

patient app for pwMS and a regulatory cleared AI solution for

optical coherence tomography (OCT) quantification (72–75), but

without the prognostic models (Figure 2). The complete clinical

decision support platform, including the prognostic models, will be

included in prospective clinical trial (called PROCLAIM), designed

to obtain regulatory approval, and bringing it to the market as soon

as possible. Meanwhile, the platform will be iteratively improved as
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new biomarker data becomes available and models are further

refined. This iterative approach ensures that the CLAIMS project

achieves true clinical impact for patients sooner rather than later.

5 Digital health and how this
support prognosis

The CLAIMS project is exploring an additional avenue for the

identification of promising markers of disease progression by

capturing digital biomarkers using digital health tools. A first set

of digital health tools includes AI solutions tailored for the

quantification of brain MRI scans (74, 75). Notable advancement

of these tools’ accuracy, in combination with rigorous technological,

workflow, clinical and even initial health economic validation

makes that this solution steadily gains recognition as standard of

care. In the United States, this trend towards embracing AI-based

brain MRI quantification is further exemplified by the recent

provision of two new Current Procedural Terminology (CPT)

codes. Evidence has shown that by using such a solution, disease

activity can be detected up to 3 years earlier with a potentially

significant impact on treatment decisions (66).

Patient apps, another major trend in the digital health tools,

could enhance the early detection of disease progression in pwMS

and allow monitoring disease progression in between visits with

their treating physician. This can be achieved by monitoring

symptoms and disability progression through capturing patient-

reported outcomes (PROs), through passive monitoring of various

FIGURE 2

The first iteration of the clinical decision support platform being developed in the CLAIMS project. It offers a concise overview of the most important
data for making a clinical decision.
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markers (activity, sleep, vital signs, …) or through the digital

administration of tests assessing for example cognition, vision,

mobility, etc. (76, 77). In addition, these tools can play an

important role in increasing and monitoring medication

adherence, improving a patient’s lifestyle through creating

awareness, and to educate and empower patients in managing

their disease better. As such, disease monitoring via digital health

tools provides a dynamic, more continuous, and more nuanced

understanding of disease progression.

Development of such tools poses a socio-technical challenge.

Any tool which aims to obtain regulatory clearance for use in a

clinical setting will need to obtain sufficient technical and clinical

evidence, which is often a long and laborious process. A bigger

challenge, however, is patient adoption and thereafter adherence in

using the tools. Concerns on data security and privacy need to be

adequately addressed and simultaneously, it needs to be very clear

to patients that they will benefit from enhanced care and

personalized interventions driven by a more holist ic

understanding and monitoring of their health status and disease

progression. CLAIMS aims to address this by empowering and

educating patients on the need to better monitor their disease. In

this light, the patient app used in CLAIMS is positioned as a

companion app, available to support the patient as needed,

focusing on topics of interest to the patient, rather than

mandating the app usage. Actively involving patients and

capturing their feedback on the app utilization, whether via real-

world usage or within a clinical study setting, will contribute

valuable insights, allowing to further refine the tools and

ultimately, the clinical decision support platform.

Besides patient adherence, integration into routine clinical

workflows poses another challenge. To address this, the clinical

decision support platform in CLAIMS aims to keep the steps of

platform adoption to a bare minimum. It aggregates all of a patient’s

data, including data from the patient app, from the AI-driven MRI

analysis and from the AI-driven OCT-analysis. While the full

datasets and analyses will be available via this platform, the main

dashboard focusses on providing a holistic overview of all clinically

actionable measures and markers. While this is rather

straightforward for subjective and episodic data such as with

questionnaires or simple tests captured via the patient app, this

will be harder to achieve for data from passive monitoring. The

latter is known to generate large longitudinal datasets where AI

algorithms are needed to identify subtle patterns and disease

subtypes, and to predict trajectories.

Patient-reported outcomes (PROs) represent a unique occasion

to involve patients using digital health tools and measure the impact

of health care on outcomes that hold utmost significance to pwMS.

However, the variety of PRO measures available and the absence of

standards across different healthcare centers and countries present a

considerable challenge (58). The recently established initiative

‘Patient-Reported Outcomes for Multiple Sclerosis’ (PROMS),

consisting of an interdisciplinary, international network of

different stakeholders, addresses the challenge of creating PRO

measures that meet the diverse needs of all parties involved to

enhance the influence of both scientific research and patient

perspectives on the lives of pwMS (59). In this context, digital

health tools enable meaningful assessments, but patient satisfaction

can influence assessment compliance and indirectly affect outcome

measures. To assess patient satisfaction with digital tools, patient-

reported and expert-reported experience measures (PREM) should

be collected in parallel (78).

6 The road ahead

As our understanding of MS increases, it becomes evident that we

should go beyond making treatment decisions solely based on

relapses, EDSS progression and lesion activity and move towards

proactively treating pwMS for the best possible prognostic outcome.

A focus on maintaining/improving health-related quality of life and

slowing down disease progression and disability worsening - also

independent of relapse activity - has sprouted a clear need for data-

driven and personalized clinical decision support tools in MS. Such

tools are crucial to administer the right drug to the right patient at the

right time to preserve long-term neurological function while

minimizing side effects. However, such solutions require well

validated biomarkers and models that clearly link to the specificity

of the disease course and outcome at individual patient level and can

be easily implemented along the clinical care path of the patient.

The CLAIMS project aims to develop such a data-driven and

personalized clinical decision support tool while addressing the

posed challenges. Biomarker validation and model building will be

performed in the retrospective RECLAIM study using both real

world data and data from clinical trials. Subsequently, the

prospective PROCLAIM study will evaluate the envisioned

platform in daily clinical routine, evaluating feasibility and impact

on patient care pathways and patient outcome. As such the project

will generate a platform for daily clinical routine that provides a

holistic view of each patient including existing and novel biomarker

assessments to better monitor relapse related disability worsening

and progression independent of relapse activity. Driven by deep-

learning-based disease subtyping and progression models, the

platform will allow the estimation of individual disease

trajectories and as such contribute to the urgent need of a more

pro-active and data-driven precision medicine in MS care.
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