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1.  INTRODUCTION

Magnetoencephalography (MEG) is a functional brain 
imaging technique, which measures the magnetic field 
arising from the electrical activity in the brain. Inferring 
the underlying source activity from the MEG measure-
ments is centered on solving an ill-posed inverse prob-
lem. As an infinite amount of source configurations can 
produce the same MEG signal, imposing constraints 
based on prior information or assumptions is required to 

solve the problem. Common priors include MRI-based 

source spaces, assuming a level of synchronicity between 

neighboring sources and selecting the solution with min-

imum energy (Becker et al., 2015).

The inverse problem is commonly solved for each 

subject individually. In the distributed source imaging 

approach, a large number of source dipoles are placed in 

fixed locations on the cortex and their amplitudes are 

then estimated by minimizing a cost function. These 
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methods include, for example, minimum norm estimates 
(MNE; Hämäläinen & Ilmoniemi, 1984) and minimum cur-
rent estimates (MCE; Matsuura & Okabe, 1995; Uutela 
et al., 1999) which use ℓ2 and ℓ1 regularization, respec-
tively. These methods have been further developed to 
incorporate, for example, noise normalization and depth 
bias correction. Popular options include the LORETA 
family of methods (Pascual-Marqui et  al., 1994; 
Pascual-Marqui, 2002, 2007), dynamic statistical para-
metric mapping (dSPM; Dale et  al., 2000), and mixed-
norm estimates (MxNE; Strohmeier et  al., 2014). The 
inverse problem can also be solved by employing a para-
metric approach, for example, by fitting individual dipoles 
on the cortex (Hämäläinen et al., 1993; Sarvas, 1987), or 
by utilizing beamforming or other source-scanning tech-
niques (Mosher & Leahy, 1999; Van Veen et al., 1997).

The source estimates of individual subjects can be 
combined to compensate for the structural differences 
and to generalize the results to a larger population. Tradi-
tionally, the group-level inference has been conducted as 
a separate step after computing the individual source esti-
mates. The subject-level data can be combined through 
either averaging in a common reference space or statisti-
cal inference. Statistical parametric and nonparametric 
mapping methods are commonly used for group analysis 
(Chau et  al., 2004; Kilner & Friston, 2010; Nichols & 
Holmes, 2002). This strict division between the first-stage 
source estimation and second-stage group analysis is 
unlikely to leverage the full potential of a multisubject data-
set. In theory, the structural and functional differences 
between the subjects introduce additional variation in the 
data which could be exploited in improving the source 
estimation accuracy of MEG. In fact, forming the group 
results by averaging individual subjects’ source estimates 
in a common reference frame has been shown to improve 
the spatial accuracy of MEG (Larson et al., 2014).

Joint analysis methods aim to improve the analysis 
outcomes by either creating a unified model for all sub-
jects or by adjusting the individual models based on data 
from other subjects. For example, the variation between 
the subjects can be used to optimize the hyperpriors of a 
hierarchical Bayes model (Henson et al., 2011; Litvak & 
Friston, 2008). The inverse problems can be coupled 
even further, for example, by presenting them as a com-
bined multitask learning problem, as recently shown by 
Janati, Bazeille, et al. (2020). If only sparsity is enforced 
for a multitask learner with, for example, an ℓq norm, the 
model will assume a perfect overlap within active source 
dipoles of each subject (Janati et  al., 2019). Minimum 
Wasserstein estimates (MWE; Janati, Bazeille, et  al., 
2020) relax this assumption through an optimal transport 
cost function. The method favors strong and focal source 
estimates and preserves the subjects’ individual signa-

tures. Multisubject methods share an assumption of sim-
ilar activation patterns between the subjects, hence the 
methods are not applicable to all datasets or experimen-
tal designs. Apart from source estimation, similar multi-
subject approaches have also been used to train MEG 
signal classifiers, which generalize well from the training 
group to a new individual (Csaky et  al., 2023; Westner 
et al., 2018; Zubarev et al., 2019).

In this study, a retinotopic mapping dataset is ana-
lyzed with three different methods combining data from 
multiple subjects to quantify the benefits of multisubject 
approaches. The first applied method is the exact low-
resolution brain electromagnetic tomography (eLORETA; 
Pascual-Marqui, 2007) with source-space averaging. The 
second method is minimum Wasserstein estimates and 
the third method is MWE with source-space averaging. 
These methods do not require predefined regions of 
interest (ROI) and they can be expected to localize a sin-
gle focal source accurately. We compare the MEG source 
locations acquired with the different methods against 
functional magnetic resonance imaging (fMRI)-based tar-
get points, which have been determined from the sub-
jects’ averaged retinotopic maps.

Retinotopic MEG responses provide a challenging, yet 
suitable test dataset for comparing the methods. As there 
are limited data on the real-world performance of the 
multisubject analysis methods, the comparison is 
restricted to the primary visual cortex (V1). The expected 
source locations are well defined, but the signal strength 
varies considerably by stimulus location. While the size of 
V1 shows great individual variability (Benson et al., 2022), 
the topology of retinotopic organization within V1 is con-
sistent across subjects and follows the cortical folding 
(Hinds et al., 2008). Neuroimaging studies on retinotopy 
have mainly been done using fMRI and very accurate ret-
inotopic maps have been extracted from the measure-
ments (Larsson & Heeger, 2006; Sereno et  al., 1995; 
Wandell et al., 2007). Here we compare the sources local-
ized with MEG to fMRI-based target locations. MEG has 
also been used in retinotopic mapping although the cor-
tical geometry and spatial resolution of the method 
increase the difficulty of obtaining accurate maps (Moradi 
et al., 2003; Nasiotis et al., 2017; Sharon et al., 2007).

2.  MATERIAL AND METHODS

2.1.  Dataset

The analyzed dataset had been collected by Kurki et al. 
(2022) and it consisted of MEG, functional and structural 
MRI data collected from 20 volunteers (5 males, 15 
females; mean age 22, range 19–29 years). The partici-
pants had no known neurological aberrations and normal 
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or corrected-to-normal vision. Informed written consent 
had been given by all participants and the ethical approval 
for the original study had been given by the Aalto Univer-
sity Ethics Committee.

The multifocal retinotopic mapping stimulus used in 
the dataset is a modified version of the dartboard stimu-
lus used by Henriksson et al. (2012) in an fMRI study. It 
consists of 24 regions arranged in 3 rings of 8 wedges. 
The radius of the inner circle measured 0.5 degrees, while 
the outer radii of the checkerboard rings were 2.3, 4.7, 
and 8.4 degrees, respectively. During the measurements, 
the participants had been instructed to press a button 
when the color of a fixation point in the middle of the 
screen changes. Each section flashed 258 times during 
each of the 7 runs, totaling 1806 flashes per stimulus 
region altogether. One run had been excluded for two 
subjects due to problems during the measurements. No 
other data segments were excluded. The stimulus is 
shown in Figure 1.

The MEG data were acquired using a 306-channel 
system (Vectorview; MEGIN Oy, Espoo, Finland) in a 
3-layer magnetically shielded room (Imedco AG, Hägen-
dorf, Switzerland). The data were recorded at a sampling 
frequency of 1000 Hz and band-pass filtered between 0.1 
and 330  Hz during the acquisition. A continuous head 
position indicator coil arrangement was used for head 
movement correction. Anatomical landmarks were col-
lected with a Fastrak system (Polhemus, Inc., Colchester, 
VT, USA) for MEG–MRI coregistration. The stimuli were 
projected through a hole in the shielded room’s wall onto 
a back-projection screen in front of the subject with a 
3-DLP projector (PT-D7700E; Panasonic Connect Co., 
Ltd., Tokyo, Japan). The stimulus presentation was con-
trolled with PsychoPy 1.82.01 (Peirce, 2007).

The MRI data were collected with a 3 T whole-body 
MRI scanner (MAGNETOM Skyra; Siemens GmbH, Erlan-
gen, Germany) and a 30-channel head coil. Two structural 

MRI images were taken per subject for a higher signal-to-
noise ratio (SNR) and more optimal segmentation results. 
T1-weighted sequence was used for both images with a 
TR of 2530 ms, TE of 3.3 ms, and a slice count of 176. With 
field of view of 256 mm and acquisition matrix of 256 × 256 
voxels, the voxel size was 1 mm3.

As a reference, fMRI data were collected with a similar 
24-region multifocal stimulus for the same subjects who 
participated in the MEG experiment. Functional volumes 
were acquired using an echo planar imaging sequence 
with the following imaging parameters: TR of 2  s, 32 
slices with 2.5-mm slice thickness (no gap), field of view 
24 cm, imaging matrix 96 × 96, echo time 30 ms, and flip 
angle 70 degrees. The timing of the stimulus regions was 
as described by Henriksson et al. (2012). Four 4.5-minute 
multifocal fMRI runs were collected for each subject. 
One multifocal run consisted of 33 miniblocks each last-
ing 4 TRs.

2.2.  Data preprocessing

Movement compensation and temporal signal space 
separation (tSSS; Taulu & Simola, 2006) were applied to 
the raw MEG data using MaxFilter 2.2 (MEGIN Oy, Espoo, 
Finland). Bad channels were identified manually and 
given as input to Maxfilter. Next, eye blink artifacts were 
removed with ICA (“runica” logistic infomax algorithm; 
one component removed based on correlation with EOG 
signal and visual inspection) and a lowpass filter (6th 
order butterworth) with a cutoff frequency of 45 Hz was 
applied in FieldTrip toolbox (Oostenveld et al., 2011). The 
MEG data were coregistered with the MRI images using 
MRIlab (MEGIN Oy, Espoo, Finland) with the help of the 
three anatomical landmarks (left and right preauricular 
points, and nasion). The alignment was fine-tuned based 
on the digitized locations of the coils and approximately 
100 extra digitized points on the scalp surface. For details 

Fig. 1.  Visual description of the stimuli used in the analyzed dataset. Left: Stimulus region numbering. The stimulus 
consists of three rings of eight wedges to include both angle and eccentricity in the analysis. Middle and right: Two frames 
of the multifocal stimulus. The responses to the individual, temporally orthogonal stimulus blocks are separated using a 
general linear model.
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on the MEG data, please see the original article by Kurki 
et al. (2022).

As multiple stimulus areas are visible at once in the mul-
tifocal retinotopic mapping paradigm, the sensor-level 
responses of each individual stimulus area were identified 
and separated using a general linear model (for details, see 
Kurki et  al., 2022). The model’s finite impulse response 
basis functions covered the analyzed time window from 
-50 to 450  ms from stimulus onset. The modeling was 
done using custom MATLAB (Mathworks, Natick, MA, 
USA) code in the Neuroimaging methods group. The pre-
processed evoked response matrix from MATLAB was 
converted into a set of MNE-Python’s evoked response 
objects and noise covariance matrices were computed for 
each subject from 1-minute resting-state recordings col-
lected at the beginning of the measurement.

The scalp, skull, and brain meshes were segmented 
from the T1-weighted MRI images using FreeSurfer ver-
sion 6.0.0 (Martinos Center for Biomedical Imaging, 
Charlestown, MA, USA). All further processing and anal-
ysis steps were performed using MNE-Python 0.22.0 
(Gramfort et al., 2013) unless stated otherwise. The for-
ward models were computed using a single-shell BEM 
model. To ensure similar dipole configuration between 
the subjects, the same template source space was used 
for all subjects. First, the template source space was cre-
ated for the FreeSurfer’s fsaverage mesh using source 
spacing ico4, producing 2562 source points per hemi-
sphere with a separation of 6.2  mm. The generated 
source space was then morphed to each subject’s indi-
vidual anatomy by matching the sulci and gyri patterns of 
the inflated surfaces on an intermediate spherical surface 
(Fischl et al., 1999).

2.3.  eLORETA and source-space averaging

In order to compare the joint analysis methods against a 
more traditional multisubject baseline, an analysis pipe-
line was implemented with individual subject inversion 
using eLORETA (Pascual-Marqui, 2007) and group aver-
aging in source space. The improvement in source local-
ization accuracy by averaging the results from a group of 
subjects was first quantified in an article by Larson et al. 
(2014). In the article the authors hypothesized that aver-
aging would yield improved source localization results on 
group level through point-spread function overlap near 
the true activation sites. Although the original article uti-
lized standardized low-resolution brain electromagnetic 
tomography (sLORETA; Pascual-Marqui, 2002) for the 
inverse solution, eLORETA was selected for its more 
focal source estimates, suppression of less significant 
sources, and comparable or better performance (Jatoi 
et  al., 2014; Samuelsson et  al., 2021). eLORETA is 

designed to have zero dipole localization error, hence it is 
likely to localize the small source areas accurately on V1.

The eLORETA source estimates are computed for 
each subject individually. The inverse operator W is 
defined using an iteratively solved diagonal weighting 
matrix D∈RP×P consisting of individual weights di for 
each source point i, the leadfield matrix L∈RN×P, and the 
noise covariance matrix Σ ∈RN×N. Here N and P  denote 
the number of sensors and the number of source dipoles, 
respectively.

	 W = D−1LT LD−1LT+ λ2Σ( )−1 	 (1)

	
di =

1
x0

Li
T LD−1LT+ λ2Σ( )−1Li .

	
(2)

The addition of the term 
1
x0

 with x0 = 1 Am was done 

to set the unit of D to 1 / Am2 as noted by Samuelsson 
et al. (2021). The inverse operator can then be used to 
fetch the source estimate X! from the sensor data Y :

	 X! =WY . 	 (3)

The regularization parameter λ2 was determined as 

λ2 = 1
SNR2  using an estimated SNR of 2. The signal-to-

noise ratio for each subject and stimulus was estimated 
and averaged over the duration of the visual response 
between 0 and 300 ms. The resulting SNR values were 
then averaged over all subjects and stimuli. The mean 
SNR over all subjects was 2.0 with a standard deviation 
of 1.3.

The individual source estimates for each subject were 
morphed back to the fsaverage mesh for further analysis. 
A pointwise arithmetic mean of the morphed source esti-
mates was then calculated with 1, 5, 10, 15, and 20 sub-
jects for each stimulus. To select the most representative 
subject as the “baseline” individual, the locations of peak 
activations were estimated using eLORETA. A geodesic 
distance was then computed between the peaks and 
fMRI-based targets for each subject and stimulus area. 
The subject with the median peak–target distance clos-
est to the group median was selected as the representa-
tive individual. Distance mean, median, and standard 
deviation over all subjects and stimulus areas were 
22.5 mm, 17.2 mm, and 20.2 mm, respectively. Subject 
9’s median distance, 17.7 mm, was closest to the group 
result. The 5–20 subject groups were formed in a numer-
ical order starting from the most representative subject to 
avoid biasing the results by favoring consistent data 
quality in the groups with a low number of subjects. Each 
subject group includes the individuals from the previous 
step; in other words, Subject 9 is included in the 5-subject 
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results and subsequently all 5 subjects are included in 
the 10-subject results and so on.

2.4.  Minimum Wasserstein estimates

The minimum Wasserstein estimates (Janati, Bazeille, 
et  al., 2020) cast the inverse problem as a multitask 
regression problem, solving the source estimates for all 
subjects simultaneously. Even though the inverse solu-
tion is computed as one large operation, the source esti-
mates for different subjects are not identical. Here these 
individual estimates are referred to as subject-specific 
MWE. The source estimates were computed for groups 
of 1, 5, 10, 15, and 20 subjects.

A basic multitask learner with sparsity constraints 
assumes an exact functional correspondence between the 
subjects, which is an untrustworthy prior (Janati et  al., 
2019). In MWE, this correspondence is relaxed by defining 
a regularization component which aims to minimize the 
Wasserstein distance between the activation barycenters. 
The Wasserstein distance is also known as earth mover’s 
distance, as it combines the distance and the difference in 
the measured quantity into a single transportation cost 
metric. In our case, the geodesic distances between active 
dipoles and their amplitudes are measured.

The minimum Wasserstein estimate is defined for S 
subjects as

X!
1
,...,X!

S
= argmin

X1,...,XS

1
2n

s=1

S

∑ Y s− LsXs

2

2
+Ω X1,...,XS( ),

�
(4)

where superscript s indicates a subject-specific variable. 
The regularization function Ω is defined with two compo-
nents. The first component controls the sparsity of the 
source estimates with an ℓq norm. Here q was set to 0.5. 
The second component controls the spatial variance 
between the subjects through averaged Wasserstein dis-
tances W  between the source estimates Xs  and their 
barycenter X . A generalized form of the Wasserstein dis-
tance is used, allowing for both positive and negative 
source amplitudes:

	
Ω X1,...,XS( ) =defλ Xs

q

q
+ µmin

X

1
S

s=1

S

∑W Xs,X( ).
	

(5)

While the regularization of eLORETA is based on the 
signal quality (SNR), the proper amount of regularization 
for MWE is found by adjusting the hyperparameters until 
the desired number of source dipoles is active. The main 
tuning hyperparameters of the minimum Wasserstein 
estimates are λ and µ, which control the sparsity and 
spatial variance between the subjects, respectively. Opti-

mizing the spatial variance hyperparameter is based on 
finding the value µmax, after which the source estimate is 
no longer sparse and spreads over the cortex. The source 
estimate is relatively stable for values under µmax as 
demonstrated in Figure 2. Here a modified binary search 
capable of finding the upper limit was used to find µmax. 
Following the suggestion of Janati, Bazeille, et al., µ was 

set to 
1
2
µmax as a safe heuristic.

The sparsity parameter λ is determined as a fraction of 

the theoretical λmax =
||LTY ||∞

n
, after which the inverse 

solution should be uniformly 0 (Janati, Bazeille, et  al., 
2020). As with µ, a modified binary search is employed to 
find the value for λ ∈[0,1] for which a suitable number of 
source points are active on average. The relationship 
between λ and the number of active source points is 
shown in the right panel of Figure  2. A target of three 
active points per subject was used for unilateral stimuli 
and six for stimuli on the vertical meridian, which were 
expected to cause bilateral activations. The numbers 
were selected based on localization accuracy and param-
eter search convergence. Optimal values for the main 
hyperparameters λ and µ vary per stimulus and have to 
be optimized individually for each case.

Additionally, the entropy regularization and marginal 
relaxation of W  can be controlled with hyperparameters 
ε and γ . In practice, these hyperparameters have an 
effect on the smoothness of the results and the speed of 
model convergence (Janati, Bazeille, et al., 2020). They 

were given values of ε = 5
3P

 and γ = 1 based on the orig-

inal publication.
The minimum Wasserstein estimates, along with a 

handful of other multitask regression methods, are imple-
mented in the MuTaR package for Python (Janati, 2021). 
An MEG and EEG -friendly interface for generalized MuTaR 
solvers is provided by the GroupMNE package (Janati, 
Massich, & Gramfort, 2020). The GroupMNE package also 
includes preprocessing functions necessary to prepare the 
data for the source estimation. Version 0.0.1 of GroupMNE 
and version 0.0.1 of MuTaR were used.

2.5.  MWE with source-space averaging

Averaging the subject-specific minimum Wasserstein 
estimates was selected as the third method in the com-
parison to test whether the results would be further 
improved from individual estimates. Similar to eLORETA, 
Euclidean averages were computed per vertex in source 
space. Unlike the implementation of eLORETA employed 
here, the minimum Wasserstein estimates also infer 
the direction of the dipole currents. To prevent opposite 
dipole moments from cancelling each other out, the  
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Fig. 3.  Retinotopic reference points from fMRI data. (A) Average polar angle and eccentricity maps for the 24-region 
multifocal stimulus. (B) Reference points within left and right V1 extracted from the fMRI maps shown separately on the 
polar angle and eccentricity maps.

averages were calculated on absolute values. The sub-
jects were analyzed and averaged in the same numerical 
order as with the other two methods.

2.6.  Extracting retinotopic targets from fMRI data

Functional MRI data were analyzed with SPM12 (Well-
come Department of Imaging and Neuroscience, Lon-
don, UK) and custom MATLAB code. Functional volumes 
were corrected for interleaved acquisition order and for 
head motion. No spatial smoothing was applied. The 
data were denoised with the GLMdenoise toolbox Ver-
sion 1.4 (Kay et  al., 2013). The timing of the multifocal 
stimulus regions was entered as regressors of interest to 
the general linear model and convolved with the canoni-
cal hemodynamic response model. Six head motion 
parameters were included as additional regressors.

The multifocal responses were converted to eccentric-
ity and polar angle maps. The data were averaged across 

individuals on the average cortical surface (fsaverage) 
using FreeSurfer and custom MATLAB code. Reference 
coordinates for the MEG results were extracted from the 
average retinotopic maps within V1. Both eccentricity 
and polar angle information was used to search for the 
closest location on the cortical surface. Polar angle infor-
mation was weighted twice as much as eccentricity. The 
results are shown in Figure 3.

2.7.  Evaluation of source localization accuracy

The source estimation accuracy of each method was 
evaluated using three metrics: peak–target distance, 
polar angle-based retinotopy, and eccentricity-based 
retinotopy. The metrics are based on an assumption 
that the primary visual cortex is responsible for the  
earliest activation peak seen in the sensor-level evoked 
responses. This assumption is supported by the results 
from numerous EEG studies, which mostly agree that 

Fig. 2.  The relationships between MWE hyperparameters and average active source points for one stimulus. The 
sparsity limits are different for each stimulus and subject count. Left: Plot of the spatial variance hyperparameter µ 
exhibits the transition value µmax between 15 and 20, after which the source estimate loses sparsity. Right: The sparsity 
hyperparameter λ shows behavior similar to µ with a clear sparsity threshold at approximately λ = 0.55.
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the peak between 60 and 100 ms can be attributed to 
the V1 (Di Russo et al., 2002). However, it is likely that 
the subsequent visual cortices, especially V2 and V3, 
contribute to the total signal recorded from the occipital 
cortex and subsequently shift the location of the peak 
activation. The MEG inverse problem is severely ill-
posed making it difficult to separate the contributions 
from two or more close-by sources (Hagler & Donald, 
2014). For the purposes of this study, the accuracy-
reducing effect of the crosstalk is expected to influence 
all localization methods equally.

The exact peak timings between 60 and 100 ms were 
first computed for all subjects and stimuli individually 
from the sensor data. A median value was then calcu-
lated for each subject using the peak times of the stimu-
lus responses. Values overlapping with the 60 and 100 ms 
borders were excluded from the median calculation, as 
they were likely not the local maximum representing the 
V1 peak but either a point on a slope or a mix of V1 and 
subsequent visual cortices. These subject-specific 
median time points were then used in all source estima-
tions. Overall median peak timing was 83 ms with stan-
dard deviation of 9 ms.

Quantitative analysis was performed by measuring the 
geodesic distance between the dipole with the highest 
amplitude (peak activation) and the target vertex derived 
from fMRI data for each stimulus. The fMRI-based target 
points were the same in each comparison regardless of 
the subject count or tested method. To aid the interpreta-
tion of the distance metric, the average geodesic dis-
tance between the target vertices in the middle of V1 
(corresponding to sectors 9 and 13 in Fig.  1) and the 
other target vertices on the same hemisphere was mea-
sured to be 17.8  mm, with the closest neighbor being 
6.3  mm away. The vertex displaying the global peak 
amplitude was selected as the activation location for uni-
lateral stimuli, while one peak from each hemisphere was 
selected for stimuli on the vertical meridian. For visualiza-
tion purposes, the location of the primary visual cortex on 
the fsaverage mesh was derived from the location of the 
calcarine sulcus and cortical folding patterns (Fischl 
et al., 2007). In FreeSurfer nomenclature, these anatomy-
based labels are known as exvivo labels.

Qualitative analysis of the localization accuracy was 
then performed by visually inspecting the peak loca-
tions plotted on the fsaverage mesh. Each of the peak 
activation foci was colored based on either the stimulus 
angle or eccentricity. The results were compared with 
the fMRI-based retinotopic maps shown in Figure  3. 
The analysis mainly focused on assessing the relative 
spatial layout of the peaks. This inspection was done 
for both polar angle and eccentricity plots of 1, 10, and 
20 subjects.

3.  RESULTS

3.1.  Comparison of source estimates

Examples of source estimates computed using eLORETA 
and MWE are shown in Figure  4. While eLORETA and 
MWE produce individualized source estimates for each 
subject, averaging the source estimates condenses them 
into a single estimate representing the whole group. 
Regardless of the averaging, the minimum Wasserstein 
estimates are much more sparse and focal compared 
with eLORETA. The sparsity of MWE is a consequence of 
the ℓ0.5 norm and it is enforced by the parameter optimi-
zation method, which aims for a set number of active 
source points. The eLORETA-based estimates on other 
hand are very spread with all subject counts. The esti-
mates also differ by their peak amplitudes. Estimates 
computed using eLORETA have similar magnitudes 
around 1⋅10−11 Am while the peak MWE amplitudes for 
the same data vary between 1 and 1⋅10−8  Am.

Based on literature and earlier retinotopic mapping 
studies, the unilateral stimulus in the middle of the upper 
left visual quadrant (sector 16 in Fig.  1) is expected to 
activate the lower portion of the calcarine sulcus on the 
right hemisphere. Similar activity levels are estimated in 
both hemispheres of eLORETA-based source estimates, 
but the peak activations are located approximately near 
the correct locations.

The minimum Wasserstein estimates display bilateral 
activation with more than one subject, but the amplitudes 
on the right hemisphere are considerably higher. As with 
eLORETA, the peak activation is located on the wrong 
hemisphere for a single subject, but increasing the sub-
ject count moves the peak near the correct location on 
the right hemisphere. Averaging the sparse subject-
specific estimates blurs and spreads the active patch a 
little as the results from individual subjects do not overlap 
perfectly. Despite this, the estimated patch of activity is 
near the expected location, and the accuracy is improved 
by increasing the subject count. The estimated source 
amplitudes vary between the subjects, causing the differ-
ence between the subject-specific and averaged MWE 
amplitudes in Figure 4.

Source estimates for all 24 stimulus areas are shown 
in Figure 5 for averaged eLORETA, Figure 6 for subject-
specific MWE, and in Figure 7 for averaged MWE. These 
figures illustrate the progression of the activation hot 
spot in response to the location of the stimulus. This is 
especially evident with minimum Wasserstein estimates, 
as the sparse estimates are mostly contained on the 
expected hemisphere. The signal is also weaker for the 
stimuli in the outer eccentricity circles and the upper 
visual field, as the sources are farther away from the 
sensors. The effect is best captured in the averaged 
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eLORETA plots. Additionally, the averaged MWE plots in 
Figure 7 illustrate the considerable differences between 
the individual source estimates. The active patches in 
the source estimates are spread over a much larger area 
compared with the estimates of individuals.

3.2.  Geodesic distances between peak  
activations and V1

The localization accuracy was analyzed by measuring the 
geodesic distance between the target vertices derived 
from the fMRI retinotopic maps and the peak activation 
locations on the fsaverage mesh. The results of these 
measurements are presented in Table  1 and Figure  8. 
Peaks were considered outliers if the distance between 
the peak and the V1 label was over 80 mm or the peak 
was located on the wrong hemisphere. The outliers were 
replaced with a value of 80 mm (Winsorized) in the mean, 
median, and standard deviation calculations. The num-
ber of outliers varied between 1 and 2 with eLORETA and 
between 1 and 5 with MWE.

The mean, median, and standard deviation statistics 
decrease for all methods when the number of subjects is 
increased from 1 to 10. The most prominent changes are 

observed between one and five subjects after which the 
metrics fluctuate as new data are added to the set. Com-
pared with subject-specific results, the five-subject 
median distances are reduced by 8.6 mm (43%) for aver-
aged eLORETA, 8.7  mm (42.9%) for subject-specific 
MWE, and 9.7 mm (47.8%) for averaged MWE. With 10 
subjects, the median distances are reduced by 6.9 mm 
(34.5%) for averaged eLORETA, 6.6  mm (32.5%) for 
subject-specific MWE, and 9.4 mm (46.3%) for averaged 
MWE when compared with individual solutions. Consid-
ering that on average the targets in the middle of V1 (sec-
tors 9 and 13) are 17.8 mm away from their neighbors, 
many of the peaks are likely localized to wrong retino-
topic areas especially with low subject counts. After 10 
subjects the median distances stay within 25% of the 
10-subject values for MWE-based estimates, while aver-
aged eLORETA results see a decrease of 49.6% between 
10 and 15 subjects.

Increasing the subject count moves the averaged 
eLORETA peaks closer to each other as seen in the stan-
dard deviations of the peak–target distances. The standard 
deviations are reduced by 6.7 mm (30.6%) for eLORETA, 
by 1.5 mm (5.9%) for subject-specific MWE, and by 2.4 mm 
(9.4%) for averaged MWE when the subject count is 

Fig. 4.  Source estimates of a visual stimulus in the middle of the upper left visual quadrant (sector 16, shown in the 
top left corner of the figure) for 1, 10, and 20 subjects. All estimates are plotted on an inflated fsaverage mesh with no 
thresholding. The V1 outlines and the peak activation locations are marked with purple.
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increased from 1 to 5. With the exception of the 15-subject 
results, the averaged eLORETA standard deviations are fur-
ther reduced by up to 1 mm (6.6%) as the subject count is 
increased toward 20. The standard deviation for subject-
specific MWE is reduced by up to 5.5 mm (22.9%) and for 
averaged MWE by up to 5.1 mm (22.1%)

3.3.  Peak activation locations

The retinotopic organization of peak activation locations 
was examined by plotting the peak locations on an inflated 
cortex and coloring them based on their polar angle and 
eccentricity. For a visual reference, an anatomy-based 
label of the primary visual cortex is drawn with a purple 
outline. A single global peak was selected for unilateral 
stimuli while the vertical meridian stimuli were given one 

peak per hemisphere. As the activation peaks for different 
stimuli can be localized to the same vertex, the size of the 
bubbles is adjusted based on the number of overlapping 
peaks. The improvements shown in these plots support 
the distance metric results. With increased subject counts, 
the peaks converge toward V1 and the retinotopic organi-
zation of the peaks becomes more evident. For reference, 
the locations of the peaks can be compared with the fMRI 
targets shown in Figures 3 and 5–7.

The peak activation charts are plotted in Figure  9 
based on the polar angle of the stimulus and in Figure 10 
based on their eccentricity. For an individual subject, the 
eLORETA peaks are scattered around the occipital lobe 
with an individual outlier visible on the medial surface of 

Fig. 5.  Source estimates for averaged eLORETA with 20 
subjects. Columns correspond to eccentricity rings and 
the rows correspond to the polar angle wedges. Peak 
values and V1 labels are highlighted in purple and the fMRI 
target points in cyan. The variation in signal strength is 
evident from the lower amplitudes in the estimates for outer 
eccentricity rings and upper visual field stimuli.

Fig. 6.  Source estimates for subject-specific MWE 
computed with 20 subjects. Columns correspond to 
eccentricity rings and the rows correspond to the polar 
angle wedges. Peak values and V1 labels are highlighted 
in purple and the fMRI target points in cyan. The 
amplitudes exceed the color bar limits in many of the 
estimates. A low threshold value was selected to show 
the full extent of all estimates, as the values differ by a 
factor of 108.
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the right parietal lobe. Already with 10 subjects the major-
ity of the peaks are inside or very close to the primary 
visual cortex label. A level of retinotopic organization can 
be seen especially in the eccentricity plot. The foveal 
stimulus regions, shown in blue, are located close to the 
occipital pole. The more peripheral stimulus regions, 
shown in yellow and red, are represented farther away 
from the occipital pole on the medial surfaces of the 
hemispheres. The results are further improved with 20 
subjects and the peaks follow established retinotopic 
maps for the most part, especially on the left hemisphere.

When the minimum Wasserstein estimate is computed 
for an individual subject, the peaks are slightly less dis-
persed compared with eLORETA. Increasing the subject 

count from 1 to 10 brings the peaks closer to the V1 label 
especially on the right hemisphere, but a number of them 
are still located outside its borders. Increasing the sub-
ject count further to 20 offers no apparent improvement 
distance wise compared with the 10-subject chart nor is 
there an observable improvement in the retinotopic orga-
nization of the peaks. The results are not as good as with 
eLORETA, but they are nevertheless improved by pooling 
the data from more subjects.

The source-space averaged MWE offers progression 
similar to eLORETA and subject-specific MWE. As with 
averaged eLORETA, including 20 subjects provides the 
best results, although MWE’s accuracy does not meet 
the same level despite the source-space averaging. The 
10- and 20-subject results are very similar between the 
subject-specific and averaged minimum Wasserstein 
estimates. Averaging the MWE results provides a minor 
improvement with 20 subjects, which is most prominent 
in the eccentricity charts.

4.  DISCUSSION

The objective of this study was to evaluate the perfor-
mance of a selection of multisubject analysis methods in 
a retinotopic mapping task. The three tested methods 
included eLORETA with source-space averaging, mini-
mum Wasserstein estimates, and MWE with source-
space averaging. In contrast to the existing literature on 
multisubject inversion, we focused on real measurement 
data and a task, which has proven challenging for MEG. 
By increasing the number of subjects in our analysis 
pipeline, the spatial accuracy was improved for all meth-
ods. Moving from 1 to 10 subjects, for example, reduced 
the median distances between the peak activations and 
fMRI-based targets by 33–46%. The most significant 
reductions in the median distances were observed 
between one and five subjects, after which the distance 
metrics effectively level off. However, increasing the sub-
ject count still further moved the peaks closer to each 
other and their expected retinotopic locations within V1.

Analyzing the peak locations visually also supported 
the distance metric results. Increasing the subject count 
allowed for more accurate mapping of the different stim-
uli as evidenced by the increasingly organized locations 
of the peak activations within V1. The progression over 
the subject counts was the most pronounced with aver-
aged eLORETA, as there was a clear difference between 
the 1-, 10-, and 20-subject results. Especially the 
20-subject chart followed the expected retinotopic maps 
of V1 quite well. Improvements were also seen with 
subject-specific and averaged MWE when the subject 
count was increased, but the accuracy did not reach the 
level of averaged eLORETA. Additionally, the difference 

Fig. 7.  Source estimates for averaged MWE computed 
with 20 subjects. Columns correspond to eccentricity 
rings and the rows correspond to the polar angle wedges. 
Peak values and V1 labels are highlighted in purple and 
the fMRI target points in cyan. A low threshold value was 
selected to show the full extent of all estimates, as the 
values differ by a factor of 108. The source estimates are 
more spread compared with the subject-specific estimates, 
demonstrating the intersubject variability in the results.
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Fig. 8.  Geodesic distances between the peak activations and the fMRI-based target vertices. Each dot represents 1 of 
the 24 areas in the visual stimulus. The group medians are drawn with a cross. Peaks localizing over 80 mm away from 
the V1 or on the wrong hemisphere are considered outliers and their distance values have been replaced with 80 mm 
(Winsorized) in the median distance calculations. Left: Distances for eLORETA with source-space averaging. Center: 
Subject-specific results for minimum Wasserstein estimates (Subject 9). Right: Results for source-space averaged 
minimum Wasserstein estimates.

Fig. 9.  Polar angle-based peak activation location charts for each analysis method with 1, 10, and 20 subjects. Each dot 
corresponds to a stimulus area except for the stimuli on the vertical meridian, which have two points per area. The size of a dot 
signifies the number of peaks localizing to the same vertex. The peaks appear more organized with increasing subject counts.

Table 1.  Winsorized mean, median, and standard deviation statistics of the geodesic distances between the peak 
activations and the fMRI-based target vertices for the compared methods.

eLORETA and AVG Subject-specific MWE MWE and AVG

N Mean Mdn Std Mean Mdn Std Mean Mdn Std

1 24.7 20.0 21.9 28.7 20.3 25.5 28.7 20.3 25.5
5 15.4 11.4 15.2 21.3 11.6 24.0 19.4 10.6 23.1
10 14.9 13.1 14.2 18.4 13.7 18.5 16.3 10.9 18.0
15 13.7 6.6 19.3 24.9 14.6 25.5 23.2 12.4 25.5
20 12.1 8.3 14.4 19.7 13.5 19.3 15.1 8.2 19.2

All numbers are presented in millimeters.
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between the 10- and 20-subject results was not as high 
with MWE-based estimates compared with eLORETA.

The results are in line with previous studies on multi-
subject analysis of MEG data. For example, Larson et al. 
(2014) tested both simulated and real-world scenarios 
using sLORETA and source-space averaging. In their 
simulations, the localization accuracy improved by 
around 35–40% by increasing the subject count from 1 to 
20. In a real-world scenario with auditory N100 responses, 
the centroid error was decreased by 7 mm (∼46%) when 
the subject count was increased from 1 to 10. The meth-
ods based on multitask learning also benefit greatly from 
a higher subject count. For example, Lim et  al. (2017) 
employed subject-specific ROIs derived using fMRI 
localizer tasks as the source space for group lasso. In 
their simulations, the area under curve (AUC) increased 
by 45–100% when 16 subjects were considered instead 
of 1 subject. Compared with conventional minimum-
norm estimates or MWE, the size of the ROIs limits the 
spatial resolution and the all-or-none nature of the method 
conceals the individual signatures in the source esti-
mates. Janati, Bazeille, et al. (2020) also obtained similar 
results from their simulations with MWE. Moving from 2 
to 16 subjects reduced the generalized Wasserstein dis-
tance by roughly 45% while the AUC increased by about 
60%. The previous studies also display the saturation 
point at roughly 10 subjects, after which the distance 
metrics start to level off (Janati, Bazeille, et  al., 2020; 
Larson et al., 2014; Lim et al., 2017).

Improvements in the spatial accuracy have been 
attributed to anatomical differences between subjects and 
increase in spatial information when multiple measure-

ments are combined (Janati, Bazeille, et al., 2020; Kozunov 
& Ossadtchi, 2015; Larson et  al., 2014). These effects 
manifest themselves, for example, through point-spread 
function overlap at the true activation location. Multisub-
ject inversions might benefit from a higher SNR compared 
with individuals, as they have a higher number of effective 
samples. The increase in information content has been 
quantified by Kozunov and Ossadtchi (2015), who reported 
a threefold increase in combined leadfield matrix rank 
when nine subjects were considered instead of one sub-
ject. By now the multisubject analysis seems to benefit 
from the variability between the subjects, but an important 
point to note is the variable quality of the MEG recordings. 
The differences in sensor- or source-level signal-to-noise 
ratios among the subjects were not significant, but the 
combined effects of variable data, coregistration, and for-
ward model quality might nonetheless help to explain the 
decrease in accuracy in our results when comparing 5- 
and 10-subject source estimates.

The MWE algorithm can be augmented to include the 
concomitant estimation of subject-specific noise level, 
which could potentially improve the localization accuracy 
and amplitude estimation. Here the simplified version of 
the method was used due to issues with parameter opti-
mization and numerical stability when the concomitant 
estimation was enabled. The peak amplitudes estimated 
by the minimum Wasserstein estimates varied by a factor 
of 108, which has a notable effect on the source-space 
averaging results. While the source-space averaged 
MWE fared better in the distance metrics compared with 
the subject-specific MWE, the results were likely driven 
by the high-amplitude individuals instead of being a faith-

Fig. 10.  Eccentricity-based peak activation location charts for each analysis method with 1, 10, and 20 subjects. Each 
dot corresponds to a stimulus area except for the stimuli on the vertical meridian, which have two points per area. The size 
of a dot signifies the number of peaks localizing to the same vertex.
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ful representation of the group results. Averaging sparse 
source estimates may not be as robust a method for 
forming group results as with widely spread MNE results, 
since the active areas are less likely to overlap.

Previous publications on retinotopic localization with 
MEG are limited in numbers, group sizes, and extent of 
the stimuli. Nevertheless, the spatial accuracy of MEG 
has shown promise in visual tasks when evaluated 
against fMRI-defined retinotopic maps (Cicmil et  al., 
2014). For example, Moradi et al. (2003) achieved a mean 
localization error of under 5 mm for sources inside the 
primary visual cortex. Detailed retinotopic maps have 
been produced using magnetoencephalography by, for 
example, Nasiotis et  al. (2017). Retinotopically con-
strained source modeling has also been used to estimate 
the activation patterns of visual cortices (Hagler & Donald, 
2014; Inverso et al., 2016). Additionally, combining MEG 
with EEG has been demonstrated to improve the source 
localization accuracy with a polar angle-based visual 
stimulus (Sharon et al., 2007).

Moving toward more automated and accurate multi-
subject analysis pipelines could be especially beneficial 
in the context of visual neuroscience, as accurate map-
ping is often a result of manual work on a small number 
of subjects. In an optimal situation, combining the data 
from multiple subjects would improve the results, gen-
eralize to different stimulus types, and decrease the 
amount of operator intervention required. On the other 
hand, one should be aware that the multisubject analy-
sis methods are not applicable to all experimental 
designs. For example, averaging the source estimates 
prevents statistical testing against the mean, as the 
individual source estimates are lost in the process. The 
methods might also introduce a bias or produce incor-
rect activation patterns if the true sources are inconsis-
tent between the subjects. Likewise the inconsistencies 
and errors in tissue segmentation and forward modeling 
between the subjects can have an effect on quality of 
the results. For the purposes of this study, we have con-
sidered the contributions of these errors to be similar 
between the source estimation methods. Joint analysis 
methods producing individualized results, such as the 
minimum Wasserstein estimates, could in theory pro-
duce better results compared with simple averaging as 
they are designed to have room for these intersubject 
inconsistencies instead of forcing them to a common 
activation pattern.

The results are influenced by the choice of metrics, 
which is highlighted by our peak activation location plots. 
Despite the median distances remaining similar between 
10- and 20-subject estimates, the plots in Figures 9 and 10 
show noticeable improvement in the organization of the 
peaks. In this study, we examined the V1 peak activation 

by selecting the time point with the highest amplitude 
between 60 and 100 ms. However, the accuracy-reducing 
effects of V2 and V3 activation cannot be entirely ruled out 
by temporal constraints, as there is a considerable level of 
activity on V2 and V3 at the time of V1 peaking (Hagler & 
Donald, 2014). The extent of the stimulus responses is 
also limited to individual points, ignoring the specificity of 
the estimates and any coincident activation centers apart 
from the bilateral responses to vertical meridian stimuli. 
Examining, for example, the top 5% of active vertices 
would likely yield different results especially with the widely 
spread minimum-norm estimates. eLORETA estimates 
high levels of bilateral activity with unilateral stimuli, while 
the activations in minimum Wasserstein estimates are very 
much focused on the visual cortex. Visual assessment of 
the source estimates also shows that MWE estimates the 
overall activation on the correct hemisphere better than 
averaged eLORETA.

While a number of joint analysis methods have been 
published, it is a relatively new concept in MEG context. 
Majority of the comparisons are focused on simulations 
and the tasks and metrics are not consistent between the 
publications. Additional systematic evaluations and com-
parisons with real data would be beneficial, as would be 
the inclusion of the temporal dimension. After all, tempo-
ral resolution is one of the key strengths of electrophysi-
ological methods. Kozunov and Ossadtchi (2015) and 
Lim et  al. (2017) address the source time courses, but 
otherwise the focus has been on individual time points 
and simulated localization accuracy. In terms of spatial 
accuracy, our results support the hypothesis that the 
increased information content and variation in data pro-
vided by multisubject datasets can be leveraged for 
improved results.

DATA AND CODE AVAILABILITY
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nymized, hence sharing the data is prohibited by the 
Finnish data protection legislation.
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