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ABSTRACT. Time delay error is a significant error source in adaptive optics (AO) systems. It
arises from the latency between sensing the wavefront and applying the correction.
Predictive control algorithms reduce the time delay error, providing significant per-
formance gains, especially for high-contrast imaging. However, the predictive con-
troller’s performance depends on factors such as the wavefront sensor (WFS) type,
the measurement noise level, the AO system’s geometry, and the atmospheric con-
ditions. We study the limits of prediction under different imaging conditions through
spatiotemporal Gaussian process models. The method provides a predictive recon-
structor that is optimal in the least-squares sense, conditioned on the fixed times
series of WFS data and our knowledge of the atmospheric conditions. We demon-
strate that knowledge is power in predictive AO control. With a Shack–Hartmann
sensor-based extreme AO instrument, perfect knowledge of the wind and atmos-
pheric profile and exact frozen flow evolution lead to a reduction of the residual
wavefront phase variance up to a factor of 3.5 compared with a non-predictive
approach. If there is uncertainty in the profile or evolution models, the gain is more
modest. Still, assuming that only effective wind speed is available (without direction)
led to reductions in variance by a factor of ∼2.3. We also study the value of data for
predictive filters by computing the experimental utility for different scenarios to
answer questions such as how many past telemetry frames should the prediction
filter consider and whether is it always most advantageous to use the most recent
data. We show that within the scenarios considered, more data provide a consistent
increase in prediction accuracy. Furthermore, we demonstrate that given a computa-
tional limitation on how many past frames, we can use an optimized selection of
n past frames, which leads to a 10% to 15% additional improvement in root mean
square over using the n latest consecutive frames of data.
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1 Introduction
On ground-based telescopes, atmospheric turbulence causes variations in the optical path length
of the incoming light hampering the telescope’s image quality. Adaptive optics (AO) is a tech-
nique used to compensate for these variations.1,2 The basic principle is to use a star or multiple
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guide stars (artificial or natural) as a reference point to measure these variations with a wavefront
sensor (WFS) and then use a deformable mirror (DM) to compensate for the variations.

Different AO techniques have been developed for different astronomical observation sce-
narios. Some AO systems aim to produce a good correction on a wide field of view, while others
provide good corrections in multiple directions simultaneously. This paper focuses on a single
conjugate AO (SCAO) that utilizes a single guide star to obtain an excellent correction on a
narrow field of view close to the guide star.

Time delay error, also known as SCAO servo-lag error, is a significant error source in AO
systems. It arises from the overall latency between sensing the wavefront and applying the cor-
rection. The delay occurs for various reasons, such as the time required to process the raw data,
integrate the WFS frame, and calculate the control signal, as well as the DM response time. The
impact of delay can be significant, especially for AO instruments dedicated to direct exoplanet
imaging, such as the Gemini Planet Imager3 on the Gemini South telescope, Spectro-Polarimetric
High-contrast Exoplanet REsearch4 (SPHERE) instrument on the European Southern
Observatory’s Very Large Telescope (Taltal, Chile), MagAO-X (Magellan Adaptive Optics
eXtreme system5), and SCExAO (Subaru Coronagraphic Extreme Adaptive Optics6). On these
instruments, the temporal delay of AO creates a halo of stellar light appearing on the science
camera, hiding the much fainter (compared with the host star) exoplanet beneath it. This phe-
nomenon, known as the wind-driven halo (WDH), occurs particularly in windy conditions when
atmospheric turbulence is in rapid motion.7

Time delay error can be reduced with predictive control algorithms that use past telemetry
data to predict incident phase aberrations at the time when the correction is applied to the DM.
It is well known that under strong assumptions on Markovian dynamics and linear system
response, linear quadratic (LQ) control and Kalman filtering-based prediction yield asymptoti-
cally optimal predictive control.8 However, the Markovian dynamics emerging from the frozen
flow (FF) hypothesis with a single- or multi-layered turbulence offer only an approximate model
(near Markovian) in the discretized state space.

More recently, data-driven predictive methods that use a longer time series of so-called
pseudo-open loop telemetry data have been proposed in the literature and show promising results
in numerical simulations, optical bench, or on-sky settings (see, for example, Refs. 9–11). These
approaches separate the reconstruction and prediction steps, where the prediction can be made
either on WFS data or reconstructed DM commands. As the data-driven methods often rely on
longer time series of telemetry data than the auto-regressive models used with LQG controllers,
it begs the following questions: What are the limits of prediction beyond Markovian dynamics
assumptions? What are the fundamental limits of such predictive control methods in AO, and
how do these connect to other errors in wavefront estimation, such as spatial aliasing?

We approach these questions by studying predictive controllers from the perspective of
regression analysis beyond Markovian state space models. Specifically, we couple the wavefront
reconstruction and prediction steps under a single prediction problem to achieve theoretical per-
formance limits for predictive controllers with different levels of assumptions on the turbulence.
We utilize Gaussian process (GP) regression12 to obtain principled uncertainty quantification for
the predictive estimates given a time series of past observations. GP regression, also known as
kriging in spatial statistics, is a technique used for regression tasks with complex relationships
between variables. It is a tempting paradigm for AO as von Kàrmàn turbulence models are
GPs defined by their spatiotemporal covariance functions or power spectral density (PSD), and
versatile a priori information regarding the turbulence flow statistics can be introduced in the
inference task. As an example, we consider a spatiotemporal GP (see Fig. 1) emerging from a
multilayer FF turbulence. Such a probability distribution can be easily improved by hierarchical
modeling to consider the uncertainty in the estimates concerning wind speeds and the C2

N profile.
In practice, the turbulence parameters can also be identified with external algorithms and/or
devices13–16 such as stereo-SCIDAR.17,18

This paper explores the limits of predictive accuracy in GP regression by introducing two GP
prior distributions for the spatiotemporal turbulence process that capture distinct levels of infor-
mation: The first (very optimistic) prior distribution uses a multilayer FF turbulence model with
perfect knowledge of the dynamics (wind directions, speeds, r0 of all layers). In contrast, the
second more conservative, prior distribution represents a scenario where only isotropic temporal
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correlation can be modeled, i.e., only the average wind speed is known, with no information on
wind directions and C2

N profile. We also show how the spatiotemporal correlations enable the
reconstruction of frequencies above the WFS sampling frequency, lowering the aliasing error of
the DM correction. The sensitivity to high-order frequencies depends on the discretization of
the WFS model; we study these discretization errors propagated to the predictive control.

Finally, we study how the number of past WFS measurements used for the prediction and
reconstruction affects the prediction in different noise and atmospheric conditions. We compare
different settings by computing the Bayes cost associated with different time series lengths and
parametrizations of the system. As expected, when more precise prior knowledge of the dynam-
ics is available, prediction can benefit from longer telemetry time series. Finally, we demonstrate
that given a computational limitation on how many past frames we can use, it is better to use a
sparse temporal sampling than a series of the last consecutive frames.

2 Related Work
This paper continues the development of predictive methods for AO control. Previous literature
on the topic (see, for example, Ref. 19) demonstrated the potential for improved performance and
increased stability of AO systems when predictive control techniques are used. However, further
research is needed to optimize these methods for specific applications, improve their accuracy
and efficiency, and analyze their effectiveness under different atmospheric conditions.

Predictive control algorithms include various types of model-based control methods such as
Kalman filtering-based linear-quadratic-Gaussian controllers (LQG, e.g., Refs. 8, 20–27), as well
as, closely related optimal controllers such as the H2 controller.

28,29 In these works, the atmos-
pheric turbulence is usually modeled with an autoregressive model in a predefined state space
(either modal or zonal), and the derivation of the model sometimes includes parameter identi-
fication from past telemetry. The optimal control strategies also allow modeling dynamics
beyond atmospheric turbulence, such as DM dynamics. These concepts have also been extended
to tomographic systems; see, for example, Refs. 30 and 31.

More recently, neural-network-based reinforcement learning (RL) methods have been stud-
ied in various works.32–37 In RL, the control/system model is usually parametrized with a neural
network, and the desired control is learned from the telemetry data with minimal prior assump-
tions on the system. However, RL is not limited to NN models, and similar strategies can be used
with linear models, which leads to LQG-like derivation of the control law.38,39 A mathematical
analysis of the overlap between RL and optimal control strategies is available in Ref. 40.

Another approach is to separate the reconstruction and prediction steps of AO control, that
is, use a predictive filter that operates on an open-loop estimate (pseudo-open-loop measurement/
reconstruction on the closed-loop system) of the full turbulence.10 These predictive filters aim to
forecast the future wavefront based on past wavefront measurements utilizing a variety of tech-
niques, such as Fourier analysis and Zernike polynomials, as well as machine learning. Fourier-
based methods decompose the wavefront into its constituent frequency components and predict
the future behavior of each component, while Zernike polynomials are a set of orthogonal

Fig. 1 Stack of spatial turbulence fields at consecutive time steps. When expanded to the temporal
axis, the cumulative spatial phase aberrations can be modeled as a spatiotemporal GP. The result-
ing process is stationary and non-isotropic, with a covariance function that depends on spatial
atmospheric parameters (fried parameter, C2

N profile, L0) and temporal parameters (wind speed
and direction).
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functions that can be used to represent the wavefront and predict its future behavior (e.g.,
Refs. 41–43). Machine learning methods can learn a predictive model of the wavefront based
on historical data and make predictions based on the learned model (e.g., Refs. 10 and 44–47).

This work is closely connected to minimum variance predictive controllers, where the pre-
diction model is constructed by utilizing the temporal or spatiotemporal covariance structure of
turbulence.9,48,49 The cross-correlations can either be derived from the atmospheric model9,48,49 or
by utilizing machine learning techniques.10,11,50 On the one hand, we expand the work of
Doelman48 from the temporal to the spatio-temporal domain, include the WFS model, and give
estimates for optimal predictive control limit in all spatial locations on the telescope pupil. On the
other hand, we discuss the spatio-temporal minimum variance prediction matrix (e.g., in Ref. 49)
beyond deriving the minimum variance predictor for a fixed Markov state space. In particular, we
derive the theoretical limits of minimum variance predictive control and study the effect of WFS
modeling accuracy and the effect of the chosen past measurements on prediction accuracy under
different imaging conditions and levels of prior information on the atmosphere.

Hence, we also take into account that the turbulence itself is not observed directly but
through a WFS measurement, which connects our considerations to works that study priors from
the perspective of wavefront reconstruction (see, e.g., Ref. 51). Moreover, methods that enable
reconstruction above the sampling frequency of WFS have lately gained attention in the AO
literature. Oberti et al.52 discussed how data from several misaligned WFS could be used to
obtain super-resolution reconstructions, and Berdeu et al.53 studied how the discretization of
the reconstruction grid affects the aliasing error. The super-resolution has also been studied
in the context of pyramid WFS. Correia et al.54 showed how a single pyramid WFS, with facets
(the four pupil images on the detector plane) that are adjusted to offset, also enables super-
resolution. Contrarily, we use single slope-based WFS and utilize the FF structure of turbulence
and past telemetry to gain information on the high-order spatial frequencies.

3 Atmospheric Turbulence as a Spatiotemporal GP

3.1 Spatial Modeling
The atmosphere is the main cause of distortion in the phase of the light that reaches ground-based
telescopes. This distortion is caused by the random mixing of air at different temperatures, that is,
the atmospheric turbulence, constantly moving due to wind. This movement causes variations in
the refractive index of the air and, thus, in the optical path length of the incoming light. The
turbulence is typically modeled as a series of thin, independent layers at different heights with
different levels of turbulence strength. As the light propagates through such a thin layer, the
resulting phase variations ϕðx; yÞ can be modeled by a two-dimensional homogeneous GP
described by the von Kàrmàn PSD

EQ-TARGET;temp:intralink-;e001;114;292k̂ϕðκÞ ∝ ðjκj2 þ 1∕L2
0Þ−

11
6 ; (1)

where κ is the spatial frequency, and L0 is the so-called outer scale of the layer. The PSD
expresses the amount of turbulent energy at a given spatial frequency. By the Wiener–
Khinchin theorem, the corresponding covariance function kϕðrÞ is given through the Fourier
transform of the PSD. By computing the Fourier transformation, we get

EQ-TARGET;temp:intralink-;e002;114;217kϕðrÞ ¼
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where r0 is the Fried parameter (defining the total turbulence strength), Γ is the gamma function,
and K5

6
is the modified Bessel function of the second kind. For a detailed derivation of the PSD

and the covariance function, see, e.g., Conan.55 The final cumulative optical path aberrationsΦ is
the sum of the aberrations along the line of sight

EQ-TARGET;temp:intralink-;e003;114;128Φðx; yÞ ¼
XL
l¼1

ffiffiffiffiffi
ρl

p
ϕlðx; yÞ; (3)

where L is the total number of layers, and ρl and ϕl are, respectively, the relative strength and the
phase aberrations of the l’th turbulence layer. The collection of the relative strengths ½ρ1; : : : ; ρL�
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at the considered layers is called the discrete C2
N profile. The spatial turbulence statistics can be

estimated, for example, from telemetry data.13

In what follows, we restrict our attention to the von Kàrmàn model given in Eq. (1), but let us
in any case remark that deviations from the von Kàrmàn power law close to the ground56,57 and in
the upper troposphere and stratosphere58–60 are well-documented. Similarly, the turbulence taking
place in the telescope dome (so-called dome seeing) has different characteristics and is naturally
dependent on the dome geometry.61 While there are methods to estimate these deviations, such as
proposed by Helin et al.,62 they are based on solving an ill-posed problem over a relatively long
time series of telemetry data leading to inherent uncertainty about temporal fluctuations. The
non-stationarity of the turbulence is discussed more thoroughly in Ref. 63.

3.2 Spatiotemporal Model
On the millisecond scale of AO control, the changes in the turbulence pattern itself are small, and
the temporal evolution is mainly driven by advection, i.e., wind at the altitudes of the layers.
Hence, Taylor’s FF hypothesis provides a good approximation to the time evolution; i.e., each
turbulent layer is modeled as a thin static “frozen” layer sliding over the telescope with an indi-
vidual wind speed and direction.

There have been attempts to involve also other physical effects from the underpinning
Navier–Stokes equation, such as kinematic diffusion64 and intermittency.65 To our knowledge,
these dynamics models have not been studied in a predictive control context.

We now formulate two spatiotemporal distributions that will be considered in the regression
below. The first distribution is based on exact knowledge of the FF model, including the correct
C2
N profile, and it is therefore optimistic. In the second distribution, we assume that we have

an estimate of the weight-averaged wind velocity over the atmosphere and, more importantly,
that the spatial and temporal statistics are essentially treated independently since there is no
deterministic flow originating from the spatial process.

We note that the first distribution is overly optimistic since it assumes perfect detection of FF
model hyper-parameters. Poyneer et al.66 showed that even though FF was detected most of
the time from Altair and Keck AO system telemetry, it only covered 20% to 40% of the total
controllable phase and originated usually from one to three layers. The latter distribution is more
realistic as it neglects strong spatiotemporal correlations emerging in advection-dominated time
scales. This model still assumes stable coherence time and von Kàrmàn spectrum, making it
somewhat over-optimistic. Uncertainty in these hyperparameters can be added to the models
similarly to uncertainty in the wind directions. The models can also be combined to simulate/
predict where part of the FF cannot be identified or turbulence is only partially in FF but still
follows stable coherence time.

3.2.1 FF-induced spatiotemporal GP

Let us first introduce the GP model based on FF with the exact knowledge of the layered model.
We will refer to it as the FF-GP for convenience.

Consider FF on a single layer. At a given initial time instance, t ¼ 0, the phase aberrations
ψðx; y; 0Þ ¼ ϕðx; yÞ follow a two-dimensional GP statistics, i.e., ϕðx; yÞ ∼ GPð0; kϕðrÞÞ. We
expand the spatial GP to the time domain according to the FF model

EQ-TARGET;temp:intralink-;e004;117;206ψðx; y; tÞ ¼ ϕðxþ vxt; yþ vytÞ; (4)

where v ¼ ðvx; vyÞ stands for the two-dimensional wind velocity vector. Consequently, the
covariance function of the spatiotemporal process is obtained by

EQ-TARGET;temp:intralink-;sec3.2.1;117;157kψððx1; y1; t1Þ; ðx2; y2; t2ÞÞ ¼ kϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2 þ ðt1 − t2ÞvxÞ2 − ðy1 − y2 þ ðt1 − t2ÞvyÞ2

q �
:

The full multi-layer phase aberrations at the entrance pupil Ψ are obtained by adding the
single-layer spatiotemporal GPs together, that is

EQ-TARGET;temp:intralink-;e005;117;95ΨFF ∼ GPð0; kΨFF
ððx1; y1; t1Þ; ðx2; y2; t2ÞÞÞ; (5)
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where

EQ-TARGET;temp:intralink-;sec3.2.1;114;724kΨFF
ððx1; y1; t1Þ; ðx2; y2; t2ÞÞ ¼

XL
l¼1

ρlkψl
ððx1; y1; t1Þ; ðx2; y2; t2ÞÞ:

3.2.2 Wind-averaged FF-GP

The information about atmospheric profiles, including wind directions, can contain various
uncertainties. Here, we assume that reliable information is only available regarding the weight-
averaged wind velocity jvavgj through the atmosphere. In practice, reliable information is often
available regarding jvavgj, e.g., the coherence time τ0 is directly related to this quantity via

EQ-TARGET;temp:intralink-;e006;114;594τ0 ¼ 6.88−
3
5

r0
jvavgj

; (6)

where r0 is the Fried parameter. The uncertainty regarding wind direction can be rephrased as an
assumption that each direction is equally probable, i.e., the wind direction is uniformly distrib-
uted θ ≔ vavg∕jvavgj ∼ UðS1Þ, where S1 stands for the unit circle. We will refer to this model as
wind-averaged FF-GP (WAFF-GP).

We formulate WAFF-GP as a zero-mean process ΨWAFF ∼ GPð0; kΨWAFF
ððx1; y1; t1Þ;

ðx2; y2; t2ÞÞ, where

EQ-TARGET;temp:intralink-;e007;114;479kΨWAFF
ððx1; y1; t1Þ; ðx2; y2; t2ÞÞ ¼

1

jS1j
Z
S1
kϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2 þ ΔsθxÞ2 − ðy1 − y2 þ ΔsθyÞ2

q �
dθ;

(7)

with the convention Δs ¼ ðt1 − t2Þjvavgj and θ ¼ ðθx; θyÞ ∈ S1. The covariance function speci-
fied by the identity in Eq. (7) is well defined as it is an average of well-defined covariances.12

Note that the process formulated this way coincides with the spatial von Kàrmàn statistics
for any fixed time t1 ¼ t2, i.e.

EQ-TARGET;temp:intralink-;sec3.2.2;114;379kΨWAFF
ððx1; y1; tÞ; ðx2; y2; tÞÞ ¼ kϕððx1; y1Þ; ðx2; y2ÞÞ:

For the purpose of this study, WAFF-GP presents a more pessimistic model of spatiotem-
poral statistics, where less information is included than is often practically available. That being
said, one could relax the definition in Eq. (7) further by assuming a weighted average over jvavgj
with respect to some probability density, e.g., a uniform distribution over a confidence interval
½jvavgj − ϵ; jvavgj þ ϵ� modeling the measurement accuracy. Furthermore, WAFF and FF models
can be combined together to create a prior for conditions where we, for example, detect three FF
layers that cover 40% of the turbulence, and movement of the other layers cannot be detected.66

4 Reconstruction and Prediction
In this section, we describe the observational model in AO and how the Bayesian inference and
prediction are carried out.

4.1 AO System and Wavefront Sensing
Single-conjugate AO systems use a single natural guide star as the reference source. The wave-
front control comprises two main components: the WFS and the DM. The WFS measures the
distortion caused by the atmosphere in the incoming phase along the line of sight, and the DM
then compensates for these distortions by taking a shape that cancels them out. The WFS is
usually set downstream from the DM, effectively measuring the deviation from a flat wavefront
(closed-loop residuals). However, if the DM influence function and the control delay in the sys-
tem are known, the open-loop measurement can be recovered through the so-called pseudo-open
loop scheme.

This paper focuses on the open-loop setup, i.e., we assume that the WFS observes the full
phase error caused by the atmosphere. We model the DM with Gaussian influence functions.
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Next, let us describe the non-direct observation model. We assume that WFS measures the
gradient of phase aberrations ϕ averaged over a period Δτ set by the AO system’s frame rate on a
given spatial sampling defined by, e.g., the number of lenslets in the Shack–Hartmann WFS
(SHS)

EQ-TARGET;temp:intralink-;e008;117;688wi ¼
1

jBij
Z

tþΔτ

t

ZZ
Bi

∇ϕðx; y; tÞdx dy dt ∈ R2; (8)

where Bi is the sub-aperture surface indexed by i ¼ 1; : : : ;M. The concatenation of w at all
possible locations is denoted by a measurement vector w ∈ R2M. However, the methods dis-
cussed in Secs. 4.2 and 5 apply to any linear or linearly approximated WFS, where the math-
ematical model can be written out as a matrix.

Furthermore, suppose our computational resources allow utilizing the latest p subsequent
data vectors with recording intervals of Δt in the prediction task. Let us denote these vectors by

EQ-TARGET;temp:intralink-;e009;117;579w1;w2; : : : ;wp ∈ R2M; (9)

with the (loose) convention wk ¼ wðkΔtÞ for any time-dependent entity.

4.2 Bayesian Inference and Prediction
Let us consider the incoming phase aberrations and their representation on a discrete grid. We
utilize evenly spaced spatial grids following the Fried geometry or a super-sampled grid where
each SHS-lenslet consists of an evenly spaced pixel grid (e.g., 4 × 4 or 8 × 8 pixels); see Fig. 2.

For any fixed time instance t, the state vectorϕðtÞ belongs toRN2

(minus the inactive pixels).
Here, N2 is the number of pixels (either in the Fried or a super-resolution grid), that is, N is the
number of spatial locations along a single spatial dimension. Let us write

EQ-TARGET;temp:intralink-;sec4.2;117;444ϕ1;ϕ2; : : : ;ϕp ∈ RN2

;

for the state vectors representing the phase on the different time steps, following the notation
in Eq. (9).

Fig. 2 Different discretization of the state and measurement domains used in this study. Thick
black lines depict a 4 × 4 SHS sensor, the red points represent the locations of the DM actuators
in the Fried geometry, and the blue points are the so-called extended Fried grid, where a set of
pixels are added between the Fried grid. The SHS measures the average gradient over each lens-
let. This work considers discretization grids depicted by the thin black lines to various amounts of
pixels [4 × 4 (in the figure) to 8 × 8] and more coarse discretization grids defined by the Fried geom-
etry and extended Fried grid (red dots, blue dots).
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Our aim is to predict/reconstruct ϕpþ2 as the typical time lag in next-generation telescopes is
around two-time steps (expanding the method to non-integer delays is trivial). Therefore, our
state vector will include ϕpþ2 as well. Let us denote the concatenated state and data vectors as

EQ-TARGET;temp:intralink-;sec4.2;114;699Φ ¼

0
BBB@

ϕ1

..

.

ϕp

ϕpþ2

1
CCCA ∈ Rðpþ2ÞN2

and W ¼
0
@ w1

..

.

wp

1
A ∈ R2pM:

We can formulate our prediction task as an inverse problem of solving for Φ in

EQ-TARGET;temp:intralink-;e010;114;617W ¼ AΦþ ϵ; (10)

where the forward operator is given as a block diagonal matrix

EQ-TARGET;temp:intralink-;e011;114;582A ¼

0
BBB@

A 0 : : : 0 0

0 A ..
. ..

.

..

. . .
.

0 A 0

1
CCCA ∈ RpM×ðpþ1ÞN: (11)

Each matrix A in Eq. (11) maps an incoming state ϕi, i ¼ 1; : : : ; p, to the corresponding data
vector wi according to Eq. (8). We model the noise ϵ as a zero-mean Gaussian random variable
with a symmetric positive definite covariance matrix Cnoise ∈ R2pM×2pM .

In the Bayesian paradigm, the solution to an inference problem Eq. (10) is the conditional
distribution of Φ given observational data W, i.e., the posterior distribution. By the Bayes’ for-
mula, the Gaussian prior models crafted in Sec. 3.2 combined with the Gaussian likelihood yields
a Gaussian posterior.

Here, the Gaussian prior distribution over Φ has zero mean and the covariance matrix Cprior

given by

EQ-TARGET;temp:intralink-;sec4.2;114;401ðCpriorÞij ¼ kΨFF∕WAFF
ððxi; yi; tiÞ; ðxj; yj; tjÞÞ;

where i; j ¼ 1; : : : ; ðpþ 2ÞN2 corresponds to global indexing over the spatial and temporal
variables.

It follows that the Gaussian posterior distribution is defined by the covariance matrix

EQ-TARGET;temp:intralink-;e012;114;339Cpost ¼ ðA⊺C−1
noiseAþ C−1

priorÞ−1 (12)

and the mean vector

EQ-TARGET;temp:intralink-;sec4.2;114;301Φpost ¼ CpostA⊺C−1
noiseW:

The sought-for prediction entails assessing the marginal posterior distribution of ϕpþ2, i.e.,

the last N2 components in Φ. For convenience, let us denote by P∶Rðpþ2ÞN2

→ RN2

, a matrix
projection that maps the full-state vector to the state at time pþ 2, i.e., PΦ ¼ ϕpþ2. It follows
that the predictive posterior at time pþ 2 is given by a Gaussian distribution with the mean
PΦpost and the covariance matrix PCpostP⊺.

Since the conditional mean and the MAP estimate coincide for a Gaussian posterior, the
natural choice for the point estimate (i.e., the prediction to be used in control) is the mean value
of the posterior. The spatiotemporal AO prediction matrix RFF∕WAFF thus takes the form

EQ-TARGET;temp:intralink-;e013;114;174RFF∕WAFF ¼ PCpostA⊺C−1
noise: (13)

Furthermore, the corresponding DM commands are calculated as standard least-squares-fit
to the DM influence function. Also, the posterior covariance PΦpost can projected to DM space
using the least-squares-fitting matrix.
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5 Bayesian Utility of Experimental Designs
Experimental design is the process of determining how to perform an experiment such that the
informativeness of the data is maximized; therefore, the uncertainty in the estimates produced is
minimized. For a general review of Bayesian optimal experimental design (OED), we refer the
reader to Chaloner and Verdinelli.67 For AO control, the design of the experiment can mean,
e.g., the choice of the length of telemetry time series that are given as input for the predictive
controller, as described in Sec. 6.4. It could also address other design parameters, though outside
the scope of this paper, such as the number of sub-apertures to be included in the WFS or the
modulation amplitude for a pyramid WFS in given conditions.

In this paper, we study the informativeness of past WFS measurements on the predictive
reconstruction quality. It is a naturally occurring question since the computational resources are
scarce in AO, and one would naturally like to minimize the amount of data that is processed.
Also, the GP model allows one to write the Bayesian expected loss/utility as a function of
the posterior covariance matrix, as described in Eq. (14). These formulas are relatively efficient
in evaluating and making computing optimal values for the decision variables feasible even for
high-dimensional problems as encountered in AO.

Let us briefly review the basics of Bayesian OED in our framework. For this, assume that we
have a parameter d ∈ Rn that defines an experimental design for AO control, and let us account
for the dependence of the forward model on the design parameter by writing the system matrix as
AðdÞ. One then chooses a loss function uðΦ;W; dÞ and defines the expected loss (or negative
utility) of the design as

EQ-TARGET;temp:intralink-;sec5;117;479UðdÞ ¼ EΦ;W ½uðΦ;W; dÞ�;
for which small values indicate informative measurements (if the choice of the loss function is
adequately chosen). Comparing different experimental designs involves computing UðdÞ (and
possibly also its gradient) for a number of d, which can be a nontrivial and computationally
demanding task in general. However, in our linear and Gaussian setting, choosing the loss func-
tion as the quadratic loss

EQ-TARGET;temp:intralink-;sec5;117;396uðΦ;W; dÞ ¼ kPðΦ −ΦpostðW; dÞÞk2
2

results in the well-known A-optimality criterion. More precisely, the corresponding expected loss
(or minimization target) reduces to

EQ-TARGET;temp:intralink-;e014;117;347UðdÞ ¼ trðPCpostðdÞP⊺Þ; (14)

where the dependence of Cpost on d is inherited from AðdÞ via Eq. (12). For derivations of these
formulas, see, e.g., Burger et al.68

In Sec. 6.4, we will evaluate the utility of the data on the optimality criteria for the different
prior models and different noise levels. Thus, the design variable dwill be the choice of timesteps
p used for computing the posterior. Note that including more time steps in the prediction process
always decreases the uncertainty about the unknown, thus reducing the expected error. However,
if a clearly diminishing return in the value of longer telemetry time series is observed, then one
may conclude that the benefit from the usage of the extra data does not merit the required addi-
tional computational expense.

6 Numerical Experiments
This section demonstrates the performance of spatiotemporal GP prediction (FF-GP and WAFF-
GP) through numerical experiments, where we utilize the HciPy toolbox.69 We design the
numerical experiments to demonstrate three key features of the approach: the predictive capacity,
the noise reduction (see Sec. 6.2), and the ability to recover spatial frequencies above the
sampling frequency of the WFS (see Sec. 6.3).

Furthermore, we demonstrate how discretization of the measurement model affects the
reconstruction quality and how the Bayes loss can be used to decide the right reconstructor
design for the given conditions and AO system (see Sec. 6.4). The quantity of interest in
these experiments is mainly the variance of the posterior distribution that gives essentially the
measure for the performance of different priors in different experiments. We compare FF-GP and

Nousiainen et al.: Power of prediction: spatiotemporal Gaussian process modeling. . .

J. Astron. Telesc. Instrum. Syst. 039001-9 Jul–Sep 2024 • Vol. 10(3)



WAFF-GP models with the standard minimum variance reconstruction that only considers spatial
statistics, called spatial GP (S-GP).

The three different reconstruction models are

1. FF-GP: the FF-GP prior that assumes perfect information about the FF and is defined
by Eq. (5)

2. WAFF-GP: the wind-averaged FF-GP prior unknown wind direction and C2
N profile

defined by Eq. (7)
3. S-GP: a spatial prior that only considers spatial information, that is, every time step is

reconstructed separately. The model is non-predictive.

The Bayes formula straightforwardly gives the standard spatial reconstruction method S-GP
for a single frame. It yields a Gaussian posterior distribution with the covariance matrix

EQ-TARGET;temp:intralink-;e015;114;585Cpost ¼ ðA⊺C−1
noiseAþ C−1

spatialÞ−1 (15)

and the mean vector

EQ-TARGET;temp:intralink-;e016;114;547ϕp
post ¼ CpostA⊺wp: (16)

As mentioned above, this reconstruction technique does not consider temporal statistics, and
it is, hence, always limited by the temporal delay of the AO system.

6.1 Simulation Set-Up
We simulated a 3.2-m telescope with 14% central obstruction and linear slope-based WFS
(see Sec. 4.1) with 16 × 16 lenslets (e.g., 20-cm actuator spacing). The WFS sampling is chosen
to represent XAO systems. Instead of simulating data by sliding two-dimensional FF layers and
interpolating, we generate the data by constructing the spatiotemporal covariance matrix as
explained in Sec. 3.2 and sampling from the model. Generating data in this manner does not
include any approximations, such as interpolating the temporal movement; that is, no high-order
frequencies are dampened in the temporal movement.

The parameters for the von Kàrmàn turbulence are r0 ¼ 16.8 cm and L0 ¼ 20 m. The time
step between frames is set to Δτ ¼ 2 ms, and the atmosphere is composed of seven layers. A
complete list of the parameter values employed in the simulations can be found in Tables 1 and 2.

Table 1 Simulation parameters.

Telescope

Parameter Value Units

Telescope diameter 3.2 m

Obstruction ratio 14 Percent

Sampling frequency 500/1000 Hz Hz

Measurement noise 100/4 S/N %

WFS wavelength 0.79 μm

WFS lenslets 16 Across the pupil

Pixels 128 Across the pupil

DM actuators 17 Across the pupil

DM influence function Gaussian —

DM coupling 40 Percent
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6.2 Wavefront Prediction, Noise Reduction
The reconstruction for different spatiotemporal priors (for the whole time interval) is obtained
with equations described in Sec. 4.2, and the prediction is the marginal distribution of ϕpþ2. The
spatial reconstruction (S-GP) is obtained via Eqs. (15) and (16). Since this method does not
model temporal evolution, the reconstruction does not include the variance from the time delay.
Hence, following the standard error budget modeling, we add the temporal variance term to the
estimate to obtain the right uncertainty estimate for the reconstruction error. The variance of the
change between two frames, that is, the variance of ϕðx; y; t1Þ − ϕðx; y; t2Þ, can be calculated
using the spatiotemporal covariance function Eq. (5)

EQ-TARGET;temp:intralink-;e017;117;421σ2temp ¼ Varðϕðx; y; t1Þ − ϕðx; y; t2ÞÞ ¼ 2kψð0Þ − 2kψððx; y; t1Þ; ðx; y; t2ÞÞ: (17)

The variance of the reconstruction error at a given location for this method is then the sum of
the appropriate diagonal element in the posterior covariance Eq. (15) and the temporal vari-
ance Eq. (17).

We compare the performance of the FF-GP andWAFF-GP predictive reconstruction with the
non-predictive S-GP model by examining the full posterior variance Eq. (12) and the posterior
variance filtered with DM influence functions. Since the SH-WFS is a slope sensor that is not
sensitive to the piston mode, the uncertainty in the piston mode dominates the posterior variance.
Furthermore, the global piston mode does not affect the performance of the AO system. Hence,
we filter out the piston mode in the uncertainty and the mean in all comparisons.

Figure 3 shows the piston-free predictive reconstruction accuracy of low and high noise
regimes on phase and DM space, where we discretize the wavefront according to 8 pixels per
WFS lenslet. The images illustrate the spatial uncertainty for different methods (FF-GP, WAFF-
GP, and S-GP), i.e., the diagonal of the marginal covariance matrix of ϕpþ2 as an image. We
observe that FF-GP delivers the smallest posterior variance, the WAFF-GP the second smallest,
and the S-GP the largest for both noise levels, as expected. The posterior variances for WAFF-GP
and S-GP are symmetrical since they do not consider the lateral movement in the FF hypothesis.
On the other hand, the FF-GP takes into account the advection, and hence, at the edges of the
telescope pupil, we see a reduction in variance downstream of the wind. Moreover, the phase
reconstruction accuracy (i.e., no DM) of all the methods shows a checker-board-like pattern
because the SH operator essentially gives information on the edges of lenslets. The pattern
is most pronounced for S-GP and WAFF-GP. The FF can again use the FF advection to lower
the uncertainty in the middle of lenslets.

Figure 4 shows the relative gain of using the predictive reconstruction models compared
with the non-predictive S-GP model on DM space. In low noise conditions, FF-GP offers a factor
of 3 to 3.5 (depending on the aperture location) improvement in the posterior variance, while
WAFF-GP offers a factor of 2 to 2.4 improvement [see Fig. 4(a)]. In high noise conditions, the
improvement factors are 2.0 to 2.25 and 1.4 to 1.8 [see Fig. 4(b)]. The performance gain is

Table 2 Atmospheric parameters.

Atmosphere parameters (15 cm at 500 nm)

Layer Wind direction (angle) Wind speed (m/s) C2
n L0 (m)

1 80.2 8.5 0.672 20

2 90.0 6.55 0.051 20

3 95.7 6.6 0.028 20

4 101.4 6.7 0.106 20

5 177.6 22 0.08 20

6 183.3 9.5 0.052 20

7 189.1 5.6 0.01 20
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attributed to three different terms: temporal error, measurement noise, and aliasing. Prediction-
wise the MAP estimate gives the minimum variance estimate of the future turbulence. Also, the
usage of multiple measurements from the past allows the predictive reconstructor to average the
measurement noise. Moreover, the usage of FF advection enables recovering frequencies above
the cutoff frequency of the WFS, as we can see from the diminished checkerboard pattern for
the FF model in Fig. 3.

6.3 Effect of Modeling Errors
The uncertainty estimates derived in the preceding subsection were obtained with the full WFS
measurement model accuracy (i.e., 8 × 8 pixels inside each lenslet). However, using the full
accuracy model comes with a cost in computational complexity in computing the posterior dis-
tribution Eq. (12) and the reconstruction matrix Eq. (13), and deriving such estimates with full
accuracy becomes computationally unfeasible when bigger telescopes and longer time series are
considered (see Sec. 7.1.1). Here, we examine the effect of the discretization parameter S of the
WFS model that defines the discretization grid and, consequently, the accuracy of the model and
the computational expense. We consider five different discretization grids: the Fried grid (S ¼ 1),

Fig. 3 Piston-free predictive reconstruction accuracy/variance (nm2) in low [panel (a), S/N = 100]
and high [panel (b), S/N = 4] noise regimes. The upper rows correspond to the full-phase estimate,
and the lower row images are the least-squares fit to the DM modes. The images illustrate the
spatial uncertainty, i.e., the diagonal of the marginal posterior covariance matrix ϕpþ2, as an image
for different methods (FF-GP, WAFF-GP, and S-GP). As S-GP does not predict, the temporal
variance of two timesteps has been added to the variance estimate; see Eq. (17).
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an extended Fried grid, where extra pixels are added in between DM actuators (S ¼ 2þ 1),
4 × 4 pixels inside each lenslet (S ¼ 4), 6 × 6 pixels inside each lenslet (S ¼ 6), and the full
8 × 8 grid (see Fig. 2). Since our model in Eq. (12) does explicitly account for modeling errors,
the accuracy of the WFS model also affects the posterior variance calculations. Hence, instead of
uncertainty estimates, we ran a simple Monte Carlo simulation and compared the reconstruction
accuracy of the models. The data are created with the full 8 × 8 grid (S ¼ 8).

Figure 5 presents a comparison between the considered discretization levels. Figure 5(a) is
for the FF prior, and Fig. 5(b) is for the WAFF model. The fitting error image in both figures is
obtained by projecting ϕpþ2 to the DM influence functions. As expected, the reconstruction error
is small for both models with larger S. The WFS model for S ¼ 1 basically assumes that a WFS
does not measure spatial frequencies above the DM spacing, making it more prone to aliasing
error, while the S ¼ 4 pixels grid provides performance very close to the full discretization grid
for both models; hence, all the following experiments are calculated using S ¼ 4.

6.4 Utility of Measurements
The numerical experiment of this section aims to investigate the utility of including more past
timesteps in the prediction for both spatiotemporal models, FF-GP and WAFF-GP. Using a
longer time series increases the computational demands of the prediction, and thus, beyond
a certain point, additional data only provide a small benefit; thus, one can limit the number
of time steps. In the experiment, the utility of the measurement is computed for time series
lengths of 1 to 16 for two different noise levels. The utility function used is the square root
of the trace of the posterior covariance matrix, i.e., the square root of the Bayesian A-optimality
indicator, which measures the expected reconstruction error over the discretization grid projected
to DM space. The expected reconstruction errors are compared with the setting where only the
prediction’s current measurement at t ¼ 0 is used (e.g., AR model of the first order). The tele-
scope and atmosphere parameters used are the same as in Secs. 6.2 and 6.3.

We note that since the covariance of the posterior does not depend on the data in the con-
sidered Gaussian setting, we do not need to draw data from the prior for this experiment. The
results are shown in Fig. 6. For the FF-GP model, the quality of the prediction increases more
with additional data, and the slope of the curves only starts leveling out near the end of the
considered history interval. The improvement is more modest for the WAFF-GP model. Be that
as it may, considering all data in the studied history range (and beyond) seems advantageous for
both prior models as long as it is permitted by the computational constraints.

Fig. 4 Relative gain in the variance of the spatial prediction in DM space for the spatiotemporal
models in low [panel (a), S/N = 100] and high [panel (b), S/N = 4] noise regimes. The images
illustrate the ratio between the baseline spatial prediction (S-GP) variance and the spatiotemporal
predictions (FF-GP and WAFF-GP) variances. A significant gain in the posterior variance is
observed for both spatiotemporal models.
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6.4.1 Choice of data history

The limiting factor for using a long history of data is the matrix inversions for deriving the control
matrix [Eq. (12)], not the capability to keep longer time series accessible for the controller.
Hence, in addition to the question on a useful history length, another important question is which
previous time steps should be used in the prediction. As the considered Gaussian priors exhibit
structures of a certain size, it may not be optimal (given limitations in computational resources) to
use only the most recent available data but rather choose more sparse temporal presentations
from the past data.

To investigate this, we compute an optimal combination of history data to be included in the
prediction by resorting to a greedy algorithm that iteratively includes data from past timesteps to
minimize the associated expected reconstruction error. The posterior covariance matrix is formed
and projected to the DM space, the A-optimality target is computed for each possible addition,
and the choice that yields the lowest target value is added to the time series. The algorithm can be
iteratively continued to include data from as many past timesteps as desired. In the numerical
experiment, we compute the first five optimal choices; to be precise, the first included data
always correspond to the latest timestep, t ¼ 0, and the other four timesteps are chosen with
the algorithm. We note that choosing the data in a greedy manner does not guarantee that the

Fig. 5 Effect of the discretization accuracy on the reconstruction accuracy in Monte Carlo simu-
lation. (a) FF-GP prior. (b) WAFF-GP prior.
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choices would be globally optimal, but such an optimization approach is adopted due to com-
putational limitations.

Figure 7 shows the target values for the first four iterations of the greedy algorithm for both
the FF-GP and the WAFF-GP models, with 2 ms frame rate and a signal-to-noise ratio of 100. As
expected, choosing the latest data is not the optimal solution; instead, it seems to be better to
choose the data that are temporally sparser than the frame rate at which the system operates.

The chosen timesteps, in the order that they were included by the algorithm, are
½0; 5; 13; 9; 2� for the FF-GP and ½0; 13; 6; 17; 3� for the WAFF-GP. In both cases, the final sam-
pling of the data corresponds to intervals of roughly 6 to 8 ms (two to four frames). The optimal
timesteps for the FF-GP lead to a relative expected error of 0.725, which corresponds to the same
value as using the 11 to 12 latest consecutive timesteps and gives a 10% improvement compared
with using just five latest consecutive steps; cf. Fig. 6. For the WAFF model, the corresponding
numbers are 13 to 14 steps and 15%.

We also experimented with how the frame rate and measurement noise affect the optimal use
of history data. A faster frame rate favors sparser presentation while increasing the measurement
noise leads to more dense temporal sampling.

7 Discussion
We present a predictive approach based on GP modeling. In the context of the FF assumption and
linear wavefront sensing, the presented FF-GP model is optimal in the least-squares sense con-
ditioned on the fixed times series of WFS data and the specified spatiotemporal (Von Kàrmàn)
prior to the turbulence. Hence, the derived improvements correspond to the limits achievable by
predictive control for Von Kàrmàn turbulence. We also studied a less informative model, WAFF-
GP, with only coarse assumptions about the atmosphere. These models allow a closed-form esti-
mate of how good reconstruction and prediction can ideally be achieved with given assumptions
on the telescope geometry and atmospheric conditions and our knowledge of them.

As mentioned above, the linear predictive filter/reconstructor RFF is optimal in the least-
squares sense conditioned on the fixed time series of WFS data and the specified spatiotemporal
prior to the turbulence. Consequently, the results show that nonlinearity is only encountered in
predictive control under the FF hypothesis when nonlinear WFSs are considered.

Furthermore, the results indicate that utilizing spatiotemporal correlations increases the pre-
diction accuracy in numerical simulations, reducing variance up to a factor of 3.5 compared with
a non-predictive approach, while an uncertain wind profile leads to an improvement of 2.3, which
aligns well with the theoretical limits in 48 and on-sky results on Keck II.11 However, as dis-
cussed in Ref. 70, it is unclear if these spatiotemporal correlations provide performance gain
on real-world data. The predicted performance gain depends on various aspects, such as atmos-
pheric conditions, WFS used, the WFS model accuracy, telescope geometry, and sampling rate.

Fig. 6 Relative expected prediction errors for the FF-GP and WAFF-GP models for different
lengths for the time series data in comparison to only using the current state information.
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Moreover, if the predictive controller (e.g., empirical orthogonal functions [EOF]) is learned
from simulated data, the predicted performance gain depends on the way the data are simulated.
For example, the temporal interpolation of the FF turbulence screens dampens higher frequencies
from the temporal spectral, leading to smoother, more predictable turbulence. Also, disentangling
aliasing error and temporal error using an idealized phase sensor can lead to more optimistic
performance gains.

The numerical simulations were conducted with a fairly small 16 × 16 system. However,
since the turbulence is spatially isotropic and the WFS model operates locally, the conclusions
translate (approximately) to bigger systems with similar actuator spacing, e.g., SPHERE.

Moreover, our results indicate it is always advantageous—or at least inside the preceding
18 frames and with the tested model parameters—to include more history steps into the model if
permitted by the available computational resources. However, at around 16 frames, the gain from
including extra timesteps starts to level out slowly. Moreover, we demonstrated that given maxi-
mum history length, a sparse sampling of past data over a longer time span leads to better pre-
dictions than a sequence of the last consecutive frames. An optimized choice of five history steps
provides in the studied setting an additional 10% to 15% improvement in the RMS, indicating
that optimized use of history data may also be important for machine learning-based minimum
variance predictive control, such as EOF.10

Fig. 7 Optimization process for choosing the most informative timesteps from the past. The upper
plot is for the FF model, and the lower plot is for the WAFF model (frame rate 2 ms and S/N = 100).
At every optimization step (first, second, third, and fourth), we plot the expected L2 error of adding
the step (t ) compared with the expected L2 error of just including step 0 (relative to the first-order
prediction). The black circles indicate the chosen step, which is then omitted in subsequent
calculations.
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7.1 Computational Complexity

7.1.1 Non-real-time computations: computing the posterior distribution

To apply the predictive reconstruction matrix in Eq. (13), one must solve for (or be able to operate
with) the posterior covariance matrix in Eq. (12). The calculation of the inverse of the dense
matrix in Eq. (12) is computationally expensive. For a dense symmetric positive definite matrix
of size n × n, a standard matrix inversion method, say, the Cholesky decomposition, has a com-
putational complexity of Oðn3Þ. Hence, operating with the inverse of a matrix of an 8-m class
telescope already requires substantial memory resources, and the computational requirement
would be in the order of teraFLOPs or more. As an example, 8-m-class XAO (40 × 40 DM)
systems with p ¼ 5 past telemetry require inverting a matrix of 91;524 × 91;534 when S ¼ 4

and 7752 × 7752 when the S ¼ 1 (Fried grid), if the size of the matrix is optimized without any
approximations. Performing such computations efficiently might involve specialized hardware,
parallel processing, and optimized algorithms to handle the scale of the problem efficiently,
especially when degrees of freedom (DoF) is scaled up to 104, in the next generation of extremely
large telescopes.

Since the posterior variance does not depend on the data, the predictive reconstructor in
Eq. (13) needs only be updated when the prior information (e.g., the wind direction, wind speed,
or r0) changes. The presumed rate of change in the atmospheric parameters determines the update
rate for the posterior covariance.

A connection exists between the method discussed here and EOF, which uses a batch of past
data to fit the spatiotemporal covariates of pseudo-open-loop telemetry. If we replace the WFS
model with an ideal phase sensor (identity matrix), the EOF prediction matrix will converge to
the prediction matrix derived from the FF model on the infinite data limit (stable atmospheric
statistics). The EOF is machine learning-based, so it can potentially adapt to more general tur-
bulence statistics, while ST-GP formulation proved a way to deal with aliasing error and study
the theoretical limits of predictive control.

7.1.2 Real-time computations: applying the mean prediction matrix

The real-time computation needed for AO control is the mean prediction of the marginal dis-
tribution corresponding ϕpþ2, i.e., a matrix multiplication between the past sequence of WFS
data and the prediction matrix RFF∕WAFF defined in Eq. (13). The reconstruction matrix shape is
the 1292 × ðp × 2400Þ ¼ 1292 × 12;000, if p ¼ 5. Again, the prediction matrix need not be
recomputed as long as the atmospheric conditions stay the same. Assuming dense matrices,
multiplication with the prediction matrix requires a few hundred GFLOPS of computing band-
width, which falls comfortably within the capabilities of conventional computers available today.

7.2 Conclusion and Future Work
To conclude, this paper studies the limits of predictive control with spatiotemporal GP models.
It discusses how reconstruction errors, such as temporal error, photon noise, and aliasing, can be
minimized with predictive control in an optimized manner, given the computational limitation of
the hardware used. It also studies how modeling errors, particularly WFS model discretization,
affect the quality of the predictive controllers.

The concepts presented in this paper offer several avenues for future research. This work
assumes that the knowledge of atmospheric parameters (either the full wind profile or just r0 and
τ0) is given a prior. However, it would also be possible to incorporate their estimation into
the algorithm by modeling them as random parameters and computing a maximum likelihood
estimate at each measurement step. This is a considerable advantage of the Bayesian approach,
including additional sources of uncertainty that can be done systematically. An especially inter-
esting direction would be to see if we can recover FF parameters from on-sky data (e.g., SPHERE
telemetry) and utilize them in predictive control.

Also, the application of experimental design to AO could be investigated further, and many
other ways of optimizing the measurement could be considered. An interesting approach could
be to discretize the data inhomogeneously along the spatial and temporal axes depending on its
informativeness. Since older data can be assumed to be less important, one could consider
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coarsening the discretization for older timesteps as new data are introduced. Moreover, our
approach provides a systematic way to include stochastic vibrations in the model and to use
Bayesian OED to ensure that the data relevant for predicting the vibrations are included in the
prediction process.

This paper considers a simplified AO design with an SHS sensor operating in an open-loop
setup. Theoretically, the method adapts to a closed-loop system via the pseudo-open-loop
scheme, which is already provided by some real-time systems working on-sky. However,
pseudo-open-loop adaption requires knowledge of hardware/software time lags, DMs’ and
WFS’ response times, as well as calibration errors. Any bias in these reduces the method’s per-
formance and can lead to instabilities in the closed-loop control. Although this paper does not
explore the effect of the mentioned error sources, it is important to consider them when imple-
menting and deploying the technique on real hardware.

Finally, these concepts can be used to study speckle statistics under predictive control. The
predictive control uncertainties could be propagated through a coronagraphic system to give the
WDH intensity under optimal predictive control with the given assumption of the atmosphere.
Overall, the presented method not only enhances the accuracy and resolution of reconstructions
but also opens new avenues for advancing predictive control and reconstruction methodologies
and provides a deeper understanding of the limits of given prediction models, e.g., those based on
machine learning.

Code and Data Availability
The data and codes used in this paper are available on GitHub in Jupyter Notebook format. The
data are completely numerically simulated and produced by the codes. Please visit our GitHub
repository [https://github.com/jnousi/ST-GP4AO.git] to access the codes. The repository contains
Jupyter Notebook files that outline the analysis steps taken in this study. The code is documented
and annotated to help readers understand the methodology and reproduce the results.

We encourage readers to use the data and codes for their own research and to cite this paper as
the source of the data. If you have any questions about the data or the codes, please do not hesi-
tate to contact us.
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