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ABSTRACT

This study extends the idea of decoding word-evoked brain activations using a corpus-
semantic vector space to multimorphemic words in the agglutinative Finnish language. The
corpus-semantic models are trained on word segments, and decoding is carried out with word
vectors that are composed of these segments. We tested several alternative vector-space
models using different segmentations: no segmentation (whole word), linguistic morphemes,
statistical morphemes, random segmentation, and character-level 1-, 2- and 3-grams, and
paired them with recorded MEG responses to multimorphemic words in a visual word
recognition task. For all variants, the decoding accuracy exceeded the standard word-label
permutation-based significance thresholds at 350–500 ms after stimulus onset. However, the
critical segment-label permutation test revealed that only those segmentations that were
morphologically aware reached significance in the brain decoding task. The results suggest
that both whole-word forms and morphemes are represented in the brain and show that neural
decoding using corpus-semantic word representations derived from compositional subword
segments is applicable also for multimorphemic word forms. This is especially relevant for
languages with complex morphology, because a large proportion of word forms are rare and it
can be difficult to find statistically reliable surface representations for them in any large corpus.

INTRODUCTION

Corpus-semantic vector spaces are a useful approach to quantify representations of words and
their parts, and their semantic relationships. In these models, words are expressed as vectors in
a space which represents a fuzzy continuum of semantic, syntactic, and functional properties,
based on ideas of Harris (1954) and Firth (1968). It has been shown that these word vectors
can be correlated with portions of neural activity (Mitchell et al., 2008; Xu et al., 2016). In the
present study, we extend this idea of decoding word-evoked brain activation using a corpus-
semantic vector space to examine whether multimorphemic words can be represented com-
positionally as a sum of their constituent units and whether there are limits to building such
compositions. Specifically, in addition to constructing a vector space for words, we train alter-
native vector space models with various alternative word segmentations. The composi-
tional word representations are especially important in languages with a high number of
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multimorphemic words. We conduct our study using Finnish, a language with rich inflec-
tional morphology. The language is agglutinative, that is, the morphemes are concatenated
when embedded in a complex word. Therefore, it should be possible to represent complex
Finnish words compositionally as a simple sum of distinct morphemes.

Word decoding studies seek to determine a generalized function that maps the corpus-
semantic vector space populated by words to brain activity recorded during word processing.
Successful decoding seems to imply some level of correspondence between the corpus-
semantic model and the brain activity. In recent years, this approach has demonstrated suc-
cess: For example, Djokic et al. (2020) provide evidence that compositional models effectively
capture patterns of human meaning representation in the processing of both literal and meta-
phoric language usage. For a recent review of studies addressing the neural decoding of
semantic concepts, see Rybář and Daly (2022). Using this methodology, it has been possible,
for example, to propose a thematic distribution of word representations in the brain (Hultén
et al., 2021; Huth et al., 2016) and to demonstrate that presenting only partial information
about an object suffices to evoke its complete semantic representation (Kivisaari et al.,
2019). Although not many word decoding experiments have explicitly focused on subword
properties, some studies, such as Huth et al. (2016), included stimuli with inflected words
(e.g., those ending in -ing or -ed).

A popular method for constructing semantic spaces for word decoding studies is word2vec
(Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). In word2vec, the vectors are
trained by analyzing the context in which a word appears, typically considering a specific
number of words before and after the target word. The method enables interesting arithmetic
operations on the vectors, such as the famous example king − man + woman = queen. This
suggests a technique for building vectors for longer words or unseen words in training, by
deconstructing them into smaller components, such as syllables or subword units, and then
combining their respective vectors.

In linguistics, the smallest meaningful unit of language is the morpheme (Anderson, 2019).
A complex word, such as “un + talk + able, ” is composed of multiple morphemes that each
carry distinct semantic information. If a word is not recognized as a whole, the perceiver can
determine the meaning by analyzing the morphemes (Diependaele et al., 2012). Besides lin-
guistics, modeling morphology is an important problem in natural language processing (NLP)
applications. For example, in speech recognition applications it is often necessary to reduce
lexicon sizes in highly inflected languages. There has been success in applying information-
theoretical principles to automate morphological analysis without recourse to linguistic rules.
Here, as an example of models used in language technology applications, we look into
Morfessor, which generates statistically motivated word pieces that often resemble linguistic
morphemes (Creutz & Lagus, 2007; Virpioja et al., 2013). It aims to segment words in such a
way that the total set of word pieces would optimally describe the training corpus. Morfessor
has been successfully used to provide quantitative predictions and insights for reaction times,
eye-tracking, and brain activity measures during visual word recognition tasks (Hakala et al.,
2018; Lehtonen et al., 2019; Virpioja et al., 2011; Virpioja et al., 2018). In the present study, to
address various potential subword representations, we construct and evaluate multiple distinct
models. Two of these models are specifically designed to capture Finnish morphology: The
first model employs linguistic analysis for word segmentation, while the second uses the Mor-
fessor model. Additionally, we analyze segmentation models that are not sensitive to morphol-
ogy. These include 1-gram, 2-gram, and 3-gram models, where each word is segmented into
1, 2, or 3 character segments, respectively. We also employ a model that segments words ran-
domly and a whole-word model with no segmentation. Corpus-derived vector representations

Corpus-semantic vector space:
Captures semantic, syntactic, and
functional relationships between
word forms using statistical
information from large text corpora.
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for the word labels and individual segment labels are constructed using the word2vec embed-
ding method.

For neurocognitive validation of these various corpus-based models, we use magneto-
encephalography (MEG) data collected during visual word recognition, known to represent a
sequence of distinct neurofunctional responses (Salmelin, 2007). After presentation of a single
word, the first salient response in the occipital cortex at around 100 ms from the word onset is
modulated by low-level visual complexity (Tarkiainen et al., 1999). The following occipitotem-
poral activation at 150–200 ms shows increased activation to alphabetic input compared to
symbols (Parviainen et al., 2006; Tarkiainen et al., 1999). Activation in this time window has
also been associated with visual word forms and proposed to index early-stage morphemic
segmentation as the activation seems to be modulated by the transition probability between
the word stem and suffix (Lewis et al., 2011). Subsequent sustained activation in temporal cor-
tices, with left-hemispheric predominance, reaches the maximum at around 400 ms after the
word onset. This response is modulated by semantic congruence of a word in the context, with
more unlikely words associated with stronger response (Halgren et al., 2002; Helenius et al.,
1998; Service et al., 2007). However, the exact properties of the response are complex and
depend on the particular circumstances and task demands (Kutas & Federmeier, 2011). Based
on previous work (Chan et al., 2011; Hultén et al., 2021; Simanova et al., 2010; Sudre et al.,
2012; Xu et al., 2016), we expect reasonable decoding performance using the whole-word
model within the time window of the sustained response, from approximately 200 ms to
600 ms. We investigate whether subword models will yield successful decoding of brain
responses, similar to the whole-word model, and whether linguistically or statistically moti-
vated subword segmentation models result in better decoding accuracy than character-
based or random segmentation.

MATERIALS AND METHODS

Participants

We analyzed data from 20 participants, native Finnish speakers, all of whom were right-
handed as per the Edinburgh Handedness Inventory (Oldfield, 1971) and reported no neuro-
logical problems. The age range was 20–37 years (mean 24.4, SD 6.4), and 11 participants
were female. Data from three additional participants were collected but discarded as the per-
centage of artifact-free trials with correct responses was less than 85%. The study was
approved by the ethics committee of the Hospital District of Helsinki and Uusimaa. All sub-
jects of the study have given their informed consent. Brain activation during the experiment
was recorded with a Vectorview MEG system (Elekta Ltd, Helsinki, Finland), at the MEG Core,
Aalto NeuroImaging.

Stimuli

The words analysed in this study consisted of 170 multimorphemic Finnish words that were
randomly selected nouns from the Morpho Challenge 2007 corpus (Kurimo et al., 2008), com-
prising around 55 million word tokens of which 2.2 million are unique. For this set of
170 words, the word length varied from 6 to 15 characters (mean 9.9, SD 2.3) and the
word frequency, calculated using the Finnish internet corpus (Luotolahti et al., 2015),
varied from 0.02 to 60 words per million. The number of linguistically defined mor-
phemes varied between two and five. Histograms of word lengths and frequencies are shown
in Figure 1.

Magnetoencephalography (MEG):
A functional neuroimaging technique
for measuring brain activity by
recording magnetic fields produced
by electrical currents that occur
naturally in the brain.

Subword segment:
A segment of characters that are part
of a word; may or may not be a
morpheme.
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These words were linguistically multimorphemic according to a commercial language
structure analysis tool (Lingsoft Oy, Turku, Finland), that is, consisting of root lemma and at
least one inflectional or derivational affix. Manual inspection confirmed they were indeed
multimorphemic. Focusing only on the multimorphemic words among the stimuli ensured that
a categorical division between mono- and multimorphemic words could not drive the decod-
ing performance. In addition, a corpus frequency of at least 50 instances was required, in order
to construct reasonable semantic models for whole word forms with the word2vec algorithm
(see Brain Decoding).

We reuse brain signals evoked by these 170 multimorphemic words in a published word
recognition study (Hakala et al., 2018). In that experiment, the stimuli consisted of 480 Finnish
words (half of them monomorphemic, the other half multimorphemic), 360 pseudowords, and
additional nonword stimuli, which were included for functional localization of specific word-
reading related responses, employed in that study.

Procedure

During the MEG recording, the participant was seated in a magnetically shielded room, their
head inside a Vectorview MEG system (Elekta Ltd, Helsinki Finland). The MEG system con-
tains, at 102 recording sites, 204 planar gradiometers (2 orthogonally oriented coils per site)
and 102 magnetometers. The head position in the MEG helmet was measured using indicator
coils attached to the scalp. Four electrodes attached next to the eyes were used to record
blinks and eye movements (electrooculogram, or EOG). The stimulus items were individually
projected onto a screen situated 140 cm from the participant’s forehead. The stimuli were pre-
sented in black monospace Courier New font against a gray background, with a visual angle
ranging from 2.5 to 6.2 degrees, depending on the length of the item. Trials started with a
fixation cross that was displayed for 500 ms. Thereafter, the stimulus was displayed for
1,500 ms. A new trial started immediately after that. The participant was instructed to indicate
whether the displayed item was a real Finnish word or not. The yes/no answer was given by
lifting the right or left index finger (balanced across participants). If the correct answer was not
given within 1,500 ms from the stimulus onset, the trial was discarded from further analysis.
The order of the stimuli was randomized, and the experiment was divided into six blocks, each
lasting for around 10 min, with a short resting break between the blocks.

Figure 1. Descriptive statistics of the word set used in the study. Left panel: Distribution of word lengths in characters. Right panel: Frequen-
cies of words per million words.
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MEG Data Preprocessing

The MEG data were online band-pass filtered at 0.03–200 Hz and sampled at 1000 Hz. The
continuously recorded raw data were first cleaned from external artifacts with the spatiotem-
poral signal space separation method tSSS (Taulu & Simola, 2006), implemented in MaxFilter
software (Elekta Oy), and then low-pass filtered at 40 Hz using Hamming-windowed zero-
phase FIR filter with automatic selection of length, implemented in the MNE toolbox (Version
0.19.0; Gramfort et al., 2013). The head positions of each participant were computationally
aligned into a common position with respect to the MEG helmet using the MaxFilter software.
Data inspection confirmed that online high-pass filtering and tSSS effectively mitigated any
low frequency drifts and no additional offline high-pass filtering was performed.

Electromagnetic artifact signals due to blinks and eye movements were removed using
independent component analysis. Components with high correlation with EOG channels
and spatial topography typical of ocular artifacts were manually identified and removed
(1–3 components per participant), and the MEG signal was subsequently reconstructed using
the MNE toolbox.

The MEG data analysis was done using the planar gradiometers. For decoding of presented
words using MEG data, gradiometers have been shown to perform better than magnetometers
(Dash et al., 2021). The data were epoched using a time window spanning from −200 ms to
800 ms with respect to the stimulus onset, and baseline corrected by subtracting the mean
amplitude of the 200-ms pre-stimulus time window. Epochs with gradiometer values exceed-
ing 3,000 fT/cm were discarded. Epochs that preceded an incorrect or missing response were
discarded.

In the original word recognition experiment, each item was shown only once per partici-
pant in order to avoid priming effects. As the signal-to-noise ratio is low for single trials, MEG
responses for each individual item were obtained by averaging the single trials of that item
across participants at the sensor level. Averaging source activity over participants was success-
fully used in the previous study on these data (Hakala et al., 2018). In the present study, sensor-
level data were used, as decomposing the signal into source estimates would only distribute
the sensor-level information to a less condensed form, which increases the degrees of freedom
and tends to weaken the decoding result (Sato et al., 2018).

The mean number of discarded trials per stimulus word was 2.7 with a standard deviation
of 2.4. If data from more than three participants for a given word had to be discarded, that
word was not selected for use in the present study. Thus, in the following decoding phase,
the MEG response for each of the 170 words was the average over at least 17 participants.

Brain Decoding

The schematic of the analysis is shown in Figure 2. The idea of neural decoding is to find the
optimal correspondence between the vector space X representing the measured brain activity
and corpus-semantic vector space Y of the model. That is, we are looking for the best linear
approximation for the function f: X → Y.

For the decoding, we used ridge regression, which is a multivariate linear regression with
L2 regularization (Palatucci et al., 2009). The model creates a linear mapping between the
input matrix X and target matrix Y. The columns of both the input and target matrices were
z-transformed before entering them into the linear regression. L2 regularization assigns a pen-
alty to the sum of the squared magnitudes of the coefficients (i.e., the L2 norm of the coeffi-
cients), ensuring that none of them excessively dominates the regression model. This

Brain decoding:
Refers to predicting the stimulus
word the participant is viewing from
the measured MEG response to that
word.
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regularization approach effectively mitigates the problem of overfitting, particularly in the con-
text of high-dimensional data, and helps to stabilize the numerical solution. We applied the
RidgeCV function from the scikit-learn library for our analysis (Pedregosa et al., 2011). The
regularization parameter (alpha) was automatically tuned by iterating over logarithmically

Figure 2. The experiment and analysis workflow. Top left: Magnetoencephalography (MEG) data to each stimulus word are recorded during a
lexical decision task. Top right: All words in the training corpus are segmented into subword segments using one of the segmentation schemes.
Vector representations for individual segments are constructed using the word2vec skip-gram algorithm. Vectors for each stimulus word are
constructed by summing the subword vectors of that word. Middle: The optimal linear mapping between MEG data and word vectors is
trained. Bottom: Words that were not part of the training are used to assess the accuracy of the learned mapping.
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spaced range of alpha values (from 10−5 to 105 over 100 points). A unique alpha was opti-
mized for each target dimension. This parameter search was validated using leave-two-out
cross-validation. The model was trained independently for consecutive 100-ms time windows
of MEG data that overlapped by 50 ms. Each time window contained 100 time points, corre-
sponding to the 1000 Hz sampling rate.

The decoding accuracy was evaluated by the two versus two test, that is, the training step
was performed by omitting two words, which were then used to test the classification accu-
racy, and the procedure was repeated for all combinations of word pairs, similarly to Mitchell
et al. (2008). Successful classification means that when the test words w1 and w2 are projected
from the measurement space to the corpus-semantic vector space, the sum of the distances
from their projected positions ( p1, p2) to their actual positions (a1, a2) using the cosine
metric is smaller than the sum of the cross distances ( p1 to a2 and p2 to a1), that is,
d( p1, a1) + d( p2, a2) < d( p1, a2) + d( p2, a1). The statistical significance of the overall
decoding accuracy was estimated using 1,000 permutations by randomizing the (whole)
word labels. The word-label significance threshold was set at the 95th percentile of the
distribution obtained from these permutations.

When word vectors are constructed by summing the vectors of subword segments, it is
likely that words containing identical segments cluster together in the word vector space to
a certain extent, regardless of the nature of the individual segment vectors. This happens
because when vectors are composed of component vectors, any shared components tend
to align the vectors in a similar direction. The resulting model may then represent word sim-
ilarities that are a byproduct of this summing process. This may enable successful decoding
even when the individual segment vectors lack useful information, as the test words share seg-
ments with the words in the training set. To evaluate the significance of semantic information
in the segment vectors, we further conducted a segment-based permutation test. In this test,
rather than permuting word labels, we permuted the segment labels as follows.

Consider a set of segments comprising all word segments from the set of words under study.
Each segment label is associated with a unique segment vector. We shuffled the pairing
between segment labels and segment vectors so that each segment label became uniquely
associated with a randomly selected segment vector from the set. Subsequently, we con-
structed word vectors as previously, but utilizing this permuted set of segment vectors. The
procedure is illustrated in Figure 3.

The overall accuracy in the decoding task was then calculated, and the process was
repeated 1,000 times, each time reshuffling the pairing between segment labels and segment
vectors. The segment-label permutation threshold was set at the 95th percentile of the
obtained distribution. The significance of the decoding accuracy with the original ordering
was then assessed against this threshold. Additionally, by comparing the significance thresh-
olds obtained from segment-label permutation with those from word-label permutation, we
can gain insight into whether the semantic model contributes to successful decoding. If the
significance threshold for segment-label permutation test is substantially higher than that for
word-label permutation, it suggests that decoding is possible regardless of the identity of seg-
ment vectors that make up the word vectors. In this case, the decoding works because the
word vectors align due to the common segment vectors. If, however, the threshold for
segment-label permutation is similar to that of word-label permutation, this suggests that
replacing segments of a word is comparable to changing the entire word, and the success
of decoding depends on the information contained in the subword segment vectors that is
provided by the corpus-semantic model.
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Word Segmentations

The training corpus used in the study was the Finnish internet corpus consisting of a total of
3.6 billion words (Luotolahti et al., 2015). The whole-word model was trained directly for the
surface word forms as they appeared in the corpus. For the subword-based models, the
words in the corpus were segmented into morphemic units before training the corpus-
semantic models. The segmentation to linguistic morphemes was done using a commercial
linguistic analysis software for Finnish by Lingsoft Oy (Turku, Finland). The analyzer uses
hand-crafted rules that produce good, although not perfect, linguistically defined segmenta-
tion. The resulting corpus contained 5.4 × 109 morphemes, of which 9 × 105 were unique. The
number of linguistic morphemes per target word varied between two and five.

The domain of NLP offers means for statistical morpheme segmentation. As an example of
such a model, we use the Morfessor model (Creutz & Lagus, 2007; Virpioja et al., 2013), in
which words are assumed to be composed by concatenation of morphemic units, for example,
think + er. The cost of a word is then calculated by summing the cost of individual mor-
phemes, e.g., I(thinker) = I(think) + I(er), where the cost I is the surprisal or negative log prob-
ability of the word segment. The morphemes are not defined a priori; instead, they are learned
from data during the model training in an unsupervised manner. Morfessor seeks to determine
a set of morphemic units that minimize the average surprisal of all words in the corpus, while
trying to keep the set of morphemes as small as possible following the minimum description

Figure 3. Illustration of the segment-label permutation procedure with a set of three words and linguistic segmentation. Top: The set of words
and the set of segment vectors. Middle: The pairing of segment labels with segment vectors is shuffled. Bottom: Words are composed of seg-
ments and represented by the sums of corresponding segment vectors. Shuffling the segment labels results in a set of word vectors that rep-
resent nonsensical words, effectively scrambling the semantic information. The procedure retains the inherent structure of the word vector set,
which arises due to patterns of shared segments within the word set. If two words contain a common segment, the corresponding nonsensical
words will also share a segment.
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length principle (Rissanen, 1978). The morphemic units that emerge from the Morfessor model
approximate linguistic morphemes but are generally somewhat longer, and words with a high-
frequency surface form are usually left unsegmented (Virpioja et al., 2018). The number of
morphemes per target word, determined by Morfessor, varied between 1 and 3 (SD 0.46).
Deviation from linguistic standard can be an undesired property if the task is to find linguistic
morphemes, but it resonates well with both the idea of neural optimization (Hopfield & Tank,
1985) and psycholinguistic models that consider the balance between the cost of storing
words as explicit representations and the additional computational cost that may be required
for segmentation and combination of distinct subword segments (Kuperman et al., 2009;
Lehtonen et al., 2006). It may also reflect aspects of the brain’s processing, particularly if
the brain similarly avoids decomposing some high-frequency inflected words.

Several recent studies have shown that statistically derived units indeed offer a plausible
description of how humans might process morphology. Results from word recognition studies
that have recorded reaction times (Virpioja et al., 2011; Virpioja et al., 2018), eye movements
(Lehtonen et al., 2019), and MEG (Hakala et al., 2018) have shown that the quantitative word
surprisal values derived from the Morfessor model were associated with longer reaction times,
longer fixations, and increased amplitude of evoked activity at the bilateral middle superior
temporal cortices. Furthermore, these associations were stronger and partially independent
from those obtained for common psycholinguistic variables, including frequency measures,
which have typically proven the strongest predictors of reaction times (Brysbaert et al., 2016).

Morfessor was trained on the Morpho challenge 2007 corpus (Kurimo et al., 2008; Virpioja
et al., 2013). The morphological segmentation of the Finnish internet corpus resulted in 5.04 ×
109 segments. Of these, 1.2 × 105 were unique. Thus, both the linguistic and statistical mor-
phological models segmented words into an approximately equal number of parts, but the
lexicon in the statistical model was notably smaller. The segmentations for each word used
in this experiment are provided in the Supporting Information, available at https://doi.org/10
.1162/nol_a_00149. Of the 170 words used in the experiment, 58 words were segmented
identically by the two morphological analyzers, and in 71 cases the segmentation by Morfessor
was incomplete or completely unsegmented (i.e., two or more segments were joined together)
compared to the linguistic segmentation. Details for different types of segmentation differences
are given in Table 1.

In addition to the morphology-based segmentation models, we constructed three character-
level n-gram models that segment each word into segments of 1, 2, or 3 characters in length.
We also constructed a model that employs random segmentation. The segmentation into

Table 1. Performance of the statistical Morfessor method compared against the linguistic segmentation

Category Number of words
Identical segmentation 58

Incomplete segmentation 40

Unsegmented 31

Incorrect segmentation, stem 28

Incorrect segmentation, suffix 13

Total 170
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random units was done by splitting each word into n segments at randomly selected positions
where n is a random number from the uniform distribution U(2, lwi

/2) where lwi
is the length of

the word wi being processed. For repeated instances of a particular word in the corpus, iden-
tical segmentation was used. We initially tested four separate random segmentation models,
each with different random seeds. They all showed similar performance, hence we report here
the results of one segmentation.

Corpus-Semantic Models

In the vector space model, a word is mapped to the vector space as a function of the context in
which the word is typically used in the language. For a thorough review on different method-
ologies for building vector space models, see, e.g., Lenci (2018). Here, the corpus-derived
semantic spaces were generated using the word2vec skip-gram algorithm (Mikolov, Chen,
et al., 2013). The skip-gram algorithm works by training a neural network with a single hidden
layer. The model is usually described and trained for whole words, but here we apply it also to
pre-segmented text and therefore refer to segments. Given a segment, the network is trained to
predict surrounding segments in some text context. The input layer of the network represents
segments as one-hot vectors while the output layer gives the probabilities of the surrounding
segments. If two segments frequently appear in similar contexts in the training corpus, the
weights of the hidden layer for these segments tend to become similar. At the end of the train-
ing, each segment is assigned a vector representation that corresponds to the weights of the
hidden layer.

The whole-word model was trained using the Finnish internet corpus (Luotolahti et al.,
2015) with unsegmented surface forms. Each subword model was trained separately using
the same corpus, but prior to training, every word in the corpus was segmented according
to the respective segmentation scheme. The word vector used in the subsequent decoding
phase is the sum of the vectors corresponding to the segments that form the target word.

The dimension of the hidden layer and the context window size are controlled by hyper-
parameters. A context window size N indicates that N segments before and N segments after
the target segment are considered in the training (Mikolov, Sutskever, et al., 2013, eq. 1). The
size of the context window has been empirically shown to influence the degree to which vector
representations emphasize syntactic versus semantic characteristics. For example, Bullinaria and
Levy (2007) note that a reduced context window dimension yields optimal outcomes for a
syntactic clustering task, while tasks with a semantic focus exhibit a performance trend that is
comparatively less sensitive to variations in context window size. We trained all models with context
window size 7 which has been shown to produce reasonable 300-dimensional word representations
(Lapesa & Evert, 2014). We also examined the effect of context window size (from 2 to 7) on a
subset of the models to determine the sensitivity of the approach to this parameter.

We additionally used hierarchical clustering of the word vectors of the different models to
visualize the organization of the word vectors. We used the complete linkage algorithm, with
cosine distance, which determines the distance between any clusters as the longest distance
between any points in that cluster. The dendrograms for each model are included in the
Supporting Information. As expected, in the whole-word, linguistic and Morfessor models,
the organization of the word-vector space reflects a mixture of word meanings and morpho-
logical information. The character-level n-gram models reflect mostly character-based infor-
mation, but when segmentation coincides with morphological suffixes, some morphological
organization is evident. In random segmentation, the clustering is not readily interpretable.
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RESULTS

The sensor-level time courses of activation, averaged over the 170 words and 20 participants,
are shown in Figure 4. The timing of peak amplitudes shows the typical pattern in a word
reading task, from posterior transient responses within 200 ms after word onset to a sustained
response in the temporal cortex between 200 and 600 ms.

The results of the classification performance for each corpus-semantic model are shown in
Figure 5 for context size 7. This figure illustrates the significance threshold obtained through
word-label permutation, set at p < 0.05. The thresholds were calculated for each model sepa-
rately; however, since they were similar across models, the highest value, 0.57, was adopted for
use. All models reached significant results in the interval 350–500 ms. The decoding accuracy
for the whole-word (black, circle), linguistic (diamond, dark gray), and Morfessor (square,
gray) models showed relatively similar levels (0.65–0.69). The character-based 1-, 2- and
3-gram models reached comparable accuracies. The decoding accuracy of the random seg-
mentation model (triangle down) remained slightly lower than that of the other models, with
the maximum value at 0.64.

Thus it seems all models are able to reach a reasonable decoding accuracy when com-
pared to the chance level obtained by word-label permutation test. However, when we car-
ried out the subword segment-label permutation, salient differences emerged between the

Figure 5. Decoding accuracy for corpus-semantic models as a function of time. The models are based on different subword units, and the
models are visualized with different shades of gray and symbols. The dashed horizontal line is the significance threshold (p < 0.05), obtained
through word-label permutation.

Figure 4. Time course of MEG signal amplitude. Signals recorded by the 204 MEG gradiometers are overlaid. Each word was first averaged
across participants, and then an overall average was calculated across all words. Topographies are shown for the 150 ms and 400 ms time
points, which are consistently associated with distinct neurofunctional responses in visual word recognition studies.
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models. In Figure 6, the decoding accuracy at 400 ms is compared to the chance level
obtained by permuting the segment labels. The Morfessor and linguistic models yielded sig-
nificant decoding accuracy. However, random segmentation no longer reached significance.
Furthermore, for the character-based models, the subword chance levels markedly exceeded

Figure 7. Decoding accuracy for context sizes 2–7 for the whole-word, linguistic, and Morfessor models. All context sizes show very similar
decoding accuracy.

Figure 6. Decoding accuracy for corpus-semantic models at context size 7 for the best-performing time window centered around 400 ms (dark
gray bar) and significance thresholds (p < 0.05) for segment-label permutation test (light gray bar), calculated for each model separately. The
dashed horizontal line shows significance threshold (p < 0.05) of word-label permutation test (calculated for each model, highest value across all
models shown). As the words in the whole-word model are not segmented, there is no associated segment-label permutation threshold.
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the word-label chance level, with the difference increasing systematically for smaller
segments.

We evaluated the effect of the context size with a subset of the models. Figure 7 shows the
effect of the context size for the whole-word, linguistic, and Morfessor models. The choice of
this hyperparameter has little effect in the decoding results, justifying the use of the largest
context size, 7, with all the models in the present study.

We additionally checked whether the decoding is possible only from subword segments
that have never been a part of the original multimorphemic target word, thus, simulating per-
formance for out-of-vocabulary items. We removed from the training corpus all the sentences
that contained any of the multimorphemic 170 target words and repeated the experiment for
Morfessor-derived and linguistic segmentations (Figure 8). The performance of the linguistic
model remained almost unchanged when decoding out-of-vocabulary items. However, there
was a decrease in performance for the Morfessor model. Notably, 27 words could not be rep-
resented using Morfessor segmentations, as there were no longer the required minimum of 50
instances of corresponding segments in the corpus to train reliable segment vectors. Conse-
quently, they were omitted from the decoder training.

DISCUSSION

We sought to determine whether cortical responses to multimorphemic words can be decoded
using representations built as a sum of the vectors of their subword segments. We approached this
question by recording MEG responses to multimorphemic words in a visual word recognition task,
on the one hand, and building distributional corpus-semantic models of whole words, linguistic
morphemes, statistical morphemes, and random word segments, on the other hand. Furthermore,
to explore the limits of subword representations we additionally evaluated the performance of
character-based 1-, 2- and 3-gram models. We linked these various models to the MEG mea-
sures using ridge regression. The success of this mapping, and thus the effect of the segmenta-
tion, was evaluated by predicting from the MEG data which word the participant was reading.

Successful Decoding of Brain Responses to Words Using Subword Representations

The decoding accuracy reached around 0.65 using a corpus-semantic model of whole words
which did not include additional information about morphology. Similar accuracy was

Figure 8. Decoding accuracy for the linguistic and Morfessor models when sentences containing the target words were excluded from the
training corpus to simulate out-of-vocabulary (OOV) decoding. For comparison, results using the original corpus are also presented.
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achieved with the morpheme-based models which did not include the exact whole-word
units. This level is on par with the results of previous studies that have used distributional
corpus-semantic models to decode MEG responses evoked by noninflected simple written
nouns (Derby et al., 2018; Hultén et al., 2021; Simanova et al., 2014; Sudre et al., 2012;
Xu et al., 2016). The decoding was performed using sensor-level MEG data that were averaged
over participants. Thus, although there is notable interindividual variation of spatiotemporal
functional patterns, overall, the item-level MEG signals obtained by averaging across different
participants nonetheless incorporated systematic between-item variation that enabled success-
ful decoding.

The analysis of MEG data provided time-sensitive decoding accuracy. The accuracy
exceeded significance threshold at 350–500 ms. This time window has been consistently asso-
ciated with semantic and morphosyntactic processing using MEG (Fruchter & Marantz, 2015;
Helenius et al., 1998; Service et al., 2007; Sudre et al., 2012; Vartiainen et al., 2009). A seman-
tic effect around 400 ms that was dissociated from pre-lexical properties was also observed in
intracranial electroencephalography (Hirshorn et al., 2016). In studies of morphological
processing, the identification of morphemes has been associated with an earlier processing
window at around 170 ms. (For a review of these findings, see, e.g., Leminen et al., 2018.)
This processing stage has been, in most cases, linked to pre-lexical morphological decom-
position or other processes that operate on the word-form level. Therefore, it seems probable
that the decoding performance in the present study can be associated with semantic or syn-
tactic properties rather than mere form-level features.

The decoding accuracies were remarkably similar for all models we studied. However, sig-
nificance testing revealed that some of the models bore more relevance than others. As the
goal was to examine summation of subword segments, it was essential to establish a signifi-
cance threshold by permuting the segments, not merely the word labels, which is the typical
approach. Both the segment-label and word-label chance levels highlighted corpus-based
statistical (Morfessor) and linguistic subword models as well-functioning models of cortical
activity evoked by words. However, for the corpus-based random segmentations and
character-based 1- and 2-gram models, the decoding accuracy remained below the
segment-label permutation threshold. For the 3-gram model, the decoding accuracy reached
significance but even in that case the segment-label chance level notably exceeded the
word-label chance level. This suggests that the individual subword vectors were not appro-
priate although, as a sum, they were able to decode the word label from the MEG signals.

Decoding With Character-Based Models

We can try to understand the successful decoding using the character-based models in more
detail. The boundaries defined by the segment-label permutation test, shown in Figure 6, can
be loosely interpreted as a measure of the inherent structure within the set of word vectors.
This structure emerges from the alignment of word vectors due to shared components, which
reflects patterns of shared segments across words. The alignment facilitates effective decoding
and functions independently of the specific information in each segment vector. In the extreme
case of 1-gram model, the segments consist only of individual characters which are unlikely to
carry meaningful semantic information. Since the positions of the characters are not consid-
ered, words that share the same characters are reduced to identical word vectors. Why would
the evoked brain responses correspond to the common segments found in the words? Either
the shared characters themselves or another correlated feature enable decoding. Given that all
stimulus words are multimorphemic and have one or more regular suffixes, one possibility is
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that words sharing several common characters (or 2-grams) are, on average, more likely to
contain identical suffixes. Consequently, words sharing grammatical categories tend to cluster
together, at least to some extent. Visualization of word clustering using dendrograms (included
in the Supporting Information), provides some support for this hypothesis as clusters of words
with similar suffixes appear in the 1- and 2-gram dendrograms. However, drawing definite
conclusions based on the present results is difficult.

As segment length extends to 3-grams, the segments become more individuated and some
segments correspond to actual morphemes and words, enabling word2vec to endow these
segments with more meaningful information. In the case of the random model, the threshold
for segment-label permutation is lower compared to that of n-gram models, suggesting that
there is less inherent structure due to shared segments compared to n-grams. Furthermore,
the decoding accuracy also stays below this threshold, indicating that the individual segments
are not informative enough for successful decoding. In the models that more closely approx-
imate real morphemes, there are many long segments corresponding to word roots that are
mostly unique within the stimulus set. The majority of the organization of the word-vector
space is then a function of how word2vec organizes the segment vectors in relation to each
other. Therefore, only the corpus-based Morfessor-derived and linguistic subword segments
seem to contain semantic information such that their sum is comparable to the semantics of
the whole word.

Relevance to Morphological Processing in the Brain

The details of word segmentation in the human brain and morphological processing is an
active area of neurolinguistics. There is still no clear consensus on the specifics of the processing
despite the abundance of both data and theoretical accounts (Leminen et al., 2016; Leminen
et al., 2018). For example, there are different views regarding how the brain learns which
subword segments correspond to morphemes, and whether the meanings of the different
morphemes are accessed separately before that of the whole word (i.e., the sublexical
hypothesis; Taft, 1994) or whether morphological information is considered only after the
whole word has been represented (i.e., the supralexical hypothesis in Giraudo & Grainger,
2001). Even the need for distinct morphemic representations linking orthography and
semantics has been called into question (Baayen et al., 2011; Milin et al., 2017).

Our present results suggest that corpus-based statistical and linguistic segmentations both
provided subword vectors that carried semantic relevance and that summation of those sub-
word vectors served as an equally good model of brain-level word representations as a whole-
word model. The summed subword vectors worked also when the original multimorphemic
target words had been removed from the training corpus, thus the relevant information for
decoding came from the other appearances of those subword segments in the training mate-
rial. If we assume that the success of the model in predicting neural activity reflects some sim-
ilarity between the representations described by the model and those present in the human
brain, then our findings may be interpreted to suggest that morphemes are represented in
the brain, along with the whole-word forms. To directly assess morphemic representations
in the brain, one would need to show participants word segments, not complete multimorphe-
mic words; however, such stimuli would seem quite strange to a human.

From the practical experimental point of view, the present method using subword represen-
tations provides a means of decoding multimorphemic words from brain data. Accordingly,
the subword compositionality demonstrated here would enable experimenting also with
words for which there is no statistically reliable surface representation in any large corpus,
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and even with pseudowords, as long as they are composed of word-like parts. This approach
was here evaluated on the agglutinative Finnish language, and future studies are needed to
examine its applicability to other types of languages.

Limitations

In the current study, we utilize the Morfessor model as an example of a statistical approach
where morphological information is derived in an unsupervised manner. Several other word
models can leverage morphological regularity, but they are not tested in this study. For
example, FastText (Bojanowski et al., 2017) encodes the word vector as a sum of all character
n-grams of a word, and could also be used in the decoding tasks. Based on FastText word
vectors, Nikolaev et al. (2022) constructed a generative model for multimorphemic Finnish
words that represents word as a summation of latent vectors representing the meanings of
its lexeme and its inflectional features. Even more elaborate representations (Marelli & Baroni,
2015), in which word suffixes are represented as matrices and a morphologically complex
word is represented by multiplying a stem vector with a suffix matrix could be possible.
Transformer-based architectures, which are capable of encoding token positions, also seem
to be naturally suited for the task (Devlin et al., 2019).

The 2 versus 2 test is a common metric of classification accuracy. In the present study
design, it assesses the ability to choose between two words with above chance accuracy,
which may be viewed as a relatively weak notion of brain decoding. Nevertheless, it allows
comparison between word segmentation models. Other applications for brain decoding might
require ability to identify the word from a larger set of possibilities.

Beyond corpus-derived word vectors, it may be possible to enhance the classifier with extra
information, like word frequencies and a range of other features. However, these aspects were
not tested in this study, as the focus was on segmentation models. Distinguishing the influence
of frequency from the already encoded semantic and contextual information in these vectors
poses a considerable challenge.

The stimuli used were multimorphemic Finnish nouns, which is, naturally, only one word
class. Whether the results can be generalized to other word classes, such as verbs, which may
be processed differently in the brain remains to be explored.

CONCLUSIONS

Our results suggest that while decoding accuracy of all models exceeded the typically used
significance threshold for word-label permutation test, the critical segment-label permutation
test revealed that only those segmentations that were morphologically aware reached signifi-
cance in the brain decoding task. The observation that neural decoding of multimorphemic
word forms can be achieved with corpus-semantic word representations derived from compo-
sitional subwords is especially relevant for study on languages with complex morphology
where a large proportion of word forms are rare and it can be difficult to find statistically reli-
able surface representations for them in any large corpus. This study demonstrates that decod-
ing is possible using purely information-theoretic principles, without a priori knowledge about
the semantics or morphological structures of the language, thus mitigating the conceptual gap
between linguistics and neuroscience. This opens avenues for more quantitative exploration of
combinatorial processing mechanisms in the brain. These findings can inform the develop-
ment of advanced language learning tools and more sophisticated computational models that
better mimic the brain’s processing of language.
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