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We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on
the social force model for pedestrians who can join the attraction. We formulate the joining probability as a
function of social influence from others, reflecting that individual choice behavior is likely influenced by others.
By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns.
For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in
which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different
transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam
phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing
phenomena with a certain probability when pedestrian flux is high with strong social influence. This study
highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by
increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian
jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx

especially when the social influence is strong.

DOLI: 10.1103/PhysRevE.96.022319

I. INTRODUCTION

Collective dynamics of many-body systems has attracted
much attention in the fields of statistical physics and its
neighboring disciplines. As for the examples, one finds the
collective motion of particles [1], vehicles [2], pedestrians [3],
and animals [4]. This subject has been studied by modeling a
set of individual behavioral rules in order to quantify emergent
collective patterns from interactions among individuals. Based
on this approach, various interesting collective behaviors have
been identified such as the coherent state in highway traffic
[5] and lane formation in pedestrian flow [3]. These collective
behaviors are interesting not only because they arise without
any external controls but also because they improve the
efficiency of traffic flow. However, for the density of particles
above a certain level, the interactions among individuals may
cause jamming transitions that reduce the traffic flow efficiency
[6-8]. Jamming transitions have generated considerable re-
search interest, not only because of their relevance to collective
dynamics including the clogging effect in granular flow [9] and
the faster-is-slower effect in pedestrian evacuations [10], but
also for practical applications such as monitoring congestion
on freeways [11,12] and developing adaptive cruise control
strategies [13].

In order to understand jamming transitions and related
phenomena in pedestrian flow, experimental studies have
been performed for unidirectional [14,15] and bidirectional
flow scenarios [16—18]. Seyfried et al. [14] and Zhang et al.
[15,18] studied the shape of fundamental diagrams based on
various pedestrian flow experiments. For different sizes of
two oppositely walking pedestrian groups, Kretz et al. [16]
examined the characteristics of bidirectional flow by looking
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into passing times, walking speeds, fluxes, and lane formation.
Feliciani and Nishinari [17] investigated the lane formation
process based on experiment data of different directional splits
in bidirectional flow. Pedestrian flow through bottlenecks has
been also actively studied [19-21]. Those bottleneck studies
analyzed the influence of bottleneck width on pedestrian flow
including bottleneck capacity, time headway, and total time to
flee all the pedestrians from the bottleneck. Up to now, most of
pedestrian bottleneck studies have been performed for static
bottlenecks, meaning that the bottlenecks are at fixed locations
and their size does not change over time.

Jamming transitions in pedestrian flow have also been
investigated for various situations based on numerical sim-
ulations. With the lattice gas model, Muramatsu et al. [22]
studied jamming transitions as a function of pedestrian density
in bidirectional flow and observed a freezing transition for high
pedestrian density in a straight corridor. Later, Tajima et al.
[23] identified a jamming transition from free flow to saturated
flow at a critical density. Above the critical density, the
pedestrian flow rate stays constant against increasing density,
defining the saturated flow rate. They also presented the
scaling behavior of the saturated flow rate and critical density
depending on the width of the bottleneck and corridor. For an
evacuation scenario, Helbing et al. [10] found that an archlike
blocking appears in front of an exit, which significantly
increases the evacuation time. In another study, they reported
that a noise term in the equation of pedestrian motion
can reproduce a freezing phenomenon in which pedestrian
flow reaches a complete stop [24]. Recently, Yanagisawa
investigated the influence of memory effect on bidirectional
flow in a narrow corridor. When the memory-loss rate is above
a certain value, oppositely walking pedestrians fail to avoid
encountering each other, leading to clogging [25].

A considerable amount of literature has reported jamming
transitions in the flow of pedestrians walking from one point
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to another. In addition, previous studies provided narrative
descriptions of the case interacting with attractions such
as shop displays and public events. For instance, Goffman
[26] described that window shoppers act like obstructions to
passersby on streets when they stop to check store displays.
Those shoppers can further interfere with other pedestrians
when the shoppers enter and leave the stores. In another study,
Gipps and Marksjo6 [27] stated that an attraction in a pedestrian
facility can attract nearby pedestrians and such an attraction
may impede pedestrian traffic especially during peak periods.

Although it has been well recognized that an attraction
can trigger pedestrian jams, little attention has been paid
to characterize the dynamics of their jamming transitions.
In pedestrian facilities, pedestrians can see the attractions
and might shift their attention towards the attractions. If the
attractions are tempting enough, a fair number of pedestrians
gather around the attractions, forming attendee clusters. In our
previous studies [28,29] we characterized collective patterns of
attendee clusters and investigated how such various patterns
can emerge from attractive interactions between pedestrians
and attractions. Nevertheless, little is known about how an
attendee cluster can contribute to jamming transitions in
pedestrian flow. It is apparent that if a large attendee cluster
exists near an attraction, passersby are forced to walk through
the reduced available space. Consequently, the attendee cluster
is acting as a pedestrian bottleneck for passersby. The flow
through the bottleneck can show transitions from free flow
to jamming states and may end in gridlock. The jamming
transitions near an attraction will be the subject of this paper.
In the following we investigate jamming patterns induced by
the attraction and understand the transitions at a microscopic
level.

By means of numerical simulations, we characterize
jamming transitions in pedestrian flow interacting with an
attraction. The simulation model and its setup are explained
in Sec. II. Then we analyze the spatiotemporal patterns of
jamming transitions induced by an attraction and summarize
the results with phase diagrams, as shown in Sec. III
In addition, we provide microscopic understanding of the
jamming transitions by mainly looking into conflicts among
pedestrians. We discuss the findings of this study in Sec. I'V.

II. MODEL

Following the work of Helbing and Molnér [3], we describe
the motion of pedestrian i with the following equation:

dvi(t)  vee; — " .
= ij iB- 1
7 - +§f,+§f3 (1)

The first term on the right-hand side is the driving force term
indicating that pedestrian i adjusts walking velocity v; in order
to achieve a desired walking speed v, along with the desired
walking direction vector ¢;. Here ¢; is a unit vector pointing
to the direction in which pedestrian i wants to move. The
relaxation time t controls how quickly the pedestrian adapts
one’s velocity to the desired velocity. The repulsive force
terms f, ; and f, p reflect the pedestrian’s collision avoidance
behavior against another pedestrian j and the boundary B,
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respectively. In this section, the details of Eq. (1) and the
numerical simulation setup are explained.

A. Desired walking speed

Previous studies have reported that preventing excessive
overlaps among pedestrians is important to provide better
representation of pedestrian stopping behavior, which often
triggers jams. Parisi et al. [30] introduced the respect area,
which reserves a space on the order of pedestrian radius,
in order to suppress overlapping among pedestrians. Later,
Chraibi et al. [31] proposed an interpersonal repulsion model
that can prevent overlapping in one-dimensional pedestrian
flow. In their models, the driving force term becomes inactive
when a pedestrian does not have enough room for stride.
Inspired by those studies, we postulate that the desired speed
vy is an attainable speed of pedestrian i depending on the
available walking space in front of the pedestrian,

Vg = min{UOsdij/TC}v (2)

where vy is a comfortable walking speed and d;; is the
distance between pedestrian i and the first pedestrian j
encountering pedestrian i in the course of v;. The time to
collision T, represents how much time remains for a collision
of two pedestrians i and j. Further details of T, are given in
Appendix B.

B. Collision avoidance behavior

The collision avoidance behavior is modeled with f;, and

ﬁ g. Previous stlldies [3,28,29,32] specified the interpersonal
repulsion term f;; as a derivative of repulsive potential with

respect to d;; = x; — x. It is given as

- - b
fij ==V, |:C,,l,,exp (—I—J)i|a),~j. 3)
P

Here C, and [, are the strength and range of the interpersonal
repulsion. The effective distance between pedestrians i and

J is given as b;; = %\/(”dij” + Ildij — ¥ij ID* = 1yi; 11> by
assuming their relative displacement y;; = (v; — v;) Aty with
the stride time At [32]. The anisotropic function w;; represents
the directional sensitivity to pedestrian j,

1 +COS¢,'j

wij = Aij + (1 — Ajj) 7

“)
where 0 < A;; <1 is pedestrian i’s minimum anisotropic
strength against pedestrian j. In addition, the angle ¢;; is
measured between the velocity vector of the pedestrian i,
v;, and the relative location of pedestrian j with respect to
pedestrian i, d;; = X; — X;.

The boundary repulsion is given as f, g = Cpexpl(r; —
d;p)/ly)e;p, where d;p is the perpendicular distance between
pedestrian i and wall B. The unit vector pointing from wall B
to pedestrian i is given as ¢;. The strength and the range of
repulsive interaction from boundaries are denoted by C; and
Iy, respectively.
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C. Joining behavior

It has been widely believed that individual choice behavior
can be influenced by the choice of other individuals. For
instance, previous studies on stimulus crowd effects reported
that a pedestrian is more likely to shift his attention towards the
crowd as its size grows [33,34]. This belief is also generally
accepted in the marketing area, which can be interpreted as
having more visitors in a store can attract more pedestrians
to the store [35,36]. It is also suggested that the sensitivity to
others’ choice is different for different places, time of day, and
visitors’ motivation [34,37]. Based on those studies [33-37],
we assume that an individual decides whether to visit an
attraction based on the number of pedestrians attending the
attraction. The sensitivity to others’ choice can be represented
as the social influence parameter s. As suggested by Ref. [29],
we formulate the probability of joining an attraction P, by the
analogy with sigmoidal choice rule [33,34,38],

_ s(Na + Ko)
" (No+ Ko) +s(N, + Ko)'

Here N, and N, are the number of pedestrians who have
already joined and that of the pedestrians not stopping by the
attraction, respectively. In order to prevent the indeterminate
case of Eq. (5), we set K, and K, as baseline values for
N, and Ny. The social influence parameter s > 0 can be
also understood as pedestrians’ awareness of the attraction.
According to previous studies [33,34,37], we assume that
the strength of social influence can be different for different
situations and can be controlled in the presented model. Once
an individual has joined an attraction, that individual will then
stay near the attraction for an exponentially distributed time
with an average of #; [3,29,34]. After the duration of visit,
one leaves the attraction and continues walking towards one’s
initial destination, not visiting the attraction again.

®)

a

D. Steering behavior of passersby

While attracted pedestrians are joining the attraction ac-
cording to Eq. (5), passersby are the pedestrians who are not
interested in the attraction, thus they do not visit the attraction.
In this study, we assume passersby aim at smoothly bypassing
an attendee cluster near the attraction while walking towards
their destination.

Various approaches are available for modeling pedestrian
steering behavior, including the pedestrian stream model
[39], the Voronoi diagram based approach [40], and dynamic
floor field models [41-44]. Among these approaches, the
dynamic floor field models have been widely applied to model
pedestrian steering behavior. Similar to cellular automata
based pedestrian models [45,46], the dynamic floor field
models discretize the pedestrian walking space into grids on
the order of pedestrian size. In line with the eikonal equation,
the walking speed at each grid point is assumed to be inversely
proportional to the derivative of the expected travel time
function. That is, a pedestrian standing at the grid point is
going to walk in a direction minimizing the expected travel
time to a destination. The expected travel time is updated
based on the local pedestrian density at every time step.
Analogously to wave propagation in fluids, the expected travel
time is calculated along a pathway from the destination to the
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grid point, inferring that pedestrians can plan ahead to take a
pathway offering the shortest travel time. That is, the dynamic
floor field models consider that pedestrians walk along the
fastest way to the destination. Previous studies demonstrated
that using the models can significantly improve pedestrian
steering behavior in numerical simulations [41—43]. However,
the approach is computationally expensive mainly due to the
calculation of the local density for almost every time step.
For computational efficiency, we employ streamline ap-
proach to steer passersby between boundaries of the corridor.
Similar to the potential flow in fluid dynamics [47,48] and
the pedestrian stream model [39], streamlines are used to
represent plausible trajectories of particles smoothly bypassing
obstacles. For a location z = (x,y), the pedestrian velocity
components in the x and y directions are expressed as
partial derivatives of a streamline function. In this study, the
streamline function is formulated as a function of attendee
cluster size so that passersby can detour around an attendee
cluster near the attraction. The attendee cluster size is measured
atevery time step. See Appendix A for more details. According
to the streamline approach, pedestrians decide their walking
direction in response to immediate changes around them rather
than based on a prediction of travel time to the destination.
In contrast to the dynamic floor field models, the streamline
approach is computationally efficient because it does not
require one to compute the local density at every time step.

E. Numerical simulation setup

Each pedestrian is modeled by a circle with radius r; =
0.2 m. Pedestrians move in a corridor of length L = 60 m and
width W =4 m in the horizontal direction. An attraction is
placed at the center of the lower wall. Pedestrians move with
comfortable walking speed vgp = 1.2 m/s and with relaxation
time t = 0.5 s and their speed cannot exceed v, = 2.0 m/s.
The parameters of the repulsive force terms are given based
on previous works: C, = 3,[, = 0.3, Aty =2.5,C, = 6, and
I, = 0.3 [3,28,29,32,49]. The minimum anisotropic strength
Aij is set to 0.25 for attendees near the attraction and 0.5 for
others, yielding that the attendees exert smaller repulsive force
on others than passersby do. Consequently, the attendees can
stay closer to the attraction while being less disturbed by the
passersby.

The social force model in Eq. (1) is updated for each
simulation time step Az = 0.05 s. Following previous studies
[50-52], we employ the first-order Euler method for numerical
integration of Eq. (1). We refer the readers to Appendix C for
further details. We note that Ar = 0.05 s yields good results in
our numerical simulations without excessive overlaps among
pedestrians. This is possible because pedestrians reduce their
desired waking speed when they encounter other pedestrians
in a course of collision. Smaller values of Az can be selected
for better resolution of pedestrian trajectories [53]. Based on
Eq. (5), the joining probability is updated for every 0.05 s. For
convenience, the evaluation time of Eq. (5) is the same value as
At. As pointed out in Ref. [54], there is no established value
for update frequency of pedestrian decision. An individual
evaluates the joining probability when one can perceive the
attraction 10 m ahead. If the individual decides to join the
attraction, then the desired direction vector ¢; is changed from
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é; into €4;. Here €; ¢ and €,; are unit vectors indicating the
initial desired walking direction of pedestrian i and pointing
from pedestrian i to the attraction, respectively. For simplicity,
K, and K are set to be 1, meaning that both options are equally
attractive when the individual would see nobody within 10 m
from the center of the attraction. An individual i is counted as
an attending pedestrian if the individual’s efficiency of motion
E; = (V; - €:,0)/vp is lower than 0.05 within a range of 1 m from
the boundary of the attendee cluster. The individual efficiency
of motion E; indicates how much the driving force contributes
to pedestrian i’s progress towards the destination with a range
from O to 1 [24,28]. We assumed that E; = 0.05 is tolerant
enough to distinguish a weak motion of attendees near an
attraction from actively walking pedestrians not visiting the
attraction. The average duration of visiting an attraction ?; is
set to be 30 s.

For our numerical simulations, a straight corridor will be
considered to study pedestrian jams induced by an attraction.
In the straight corridor, one can consider two possible patterns
of flow, i.e., bidirectional and unidirectional flows. In the
bidirectional flow, one half of the population is walking
towards the right boundary of the corridor from the left and
the opposite direction for the other half. In the unidirectional
flow, all pedestrians are entering the corridor through the left
boundary and walking towards the right.

An open boundary condition is employed in order to
continuously supply pedestrians to the corridor. By doing so,
pedestrians can enter the corridor regardless of the number of
leaving pedestrians. Pedestrians are inserted at random places
on either side of the corridor without overlapping with other
nearby pedestrians and boundaries. The number of pedestrians
in the corridor is associated with the pedestrian influx Q, i.e.,
the arrival rate of pedestrians entering the corridor. The unit of
Q isindicated by P/s, which stands for pedestrians per second.
Based on previous studies [55,56], the pedestrian interarrival
time is assumed to follow a shifted exponential distribution.
That is, pedestrians are entering the corridor independently
and their arrival pattern is not influenced by that of others.
The minimum headway is set to 0.4 s between successive
pedestrians entering the corridor, which is large enough to
prevent overlaps between arriving pedestrians.

III. RESULTS AND DISCUSSION

A. Jam patterns in bidirectional flow

Our simulation results show different patterns of pedestrian
motion depending on influx Q and social influence parameter
s. The free flow phase appears when both Q and s are small.
From Fig. 1(a) one can observe that passersby walk towards
their destinations without being interrupted by the cluster of
attracted pedestrians. Passersby walking to the right form lanes
in the lower part of the corridor while the upper part of the
corridor is occupied by passersby walking to the left. This
spatial segregation appears as a result of the lane formation
process, which has been reported in previous studies [3,16—18].
Simultaneously, the attracted pedestrians form a stable cluster
near the attraction. If both Q and s are large, we can see a
freezing phase in which oppositely walking pedestrians reach
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FIG. 1. Representative snapshots of different passerby flow pat-
terns, showing a section of 30 m in the center of the corridor, i.e.,
15 m < x < 45 m. The attraction, depicted by an orange rectangle, is
located at the center of the lower wall with open boundary conditions
in the horizontal direction. Closed black and green circles indicate
passersby walking to the right and to the left, respectively. Open red
circles depict pedestrians attracted by the attraction. In bidirectional
flow, we can observe (a) the free flow phase in the case of Q = 4 P/s
and s = 0.5, in which passersby can walk towards their destinations
without being interrupted by the cluster of attracted pedestrians, and
(b) the freezing phase in the case of Q =4 P/s and s = 1, where
oppositely walking pedestrians stopped because they block each
other. Note that P/s stands for pedestrians per second, being the
unit of pedestrian flux Q.

a complete stop because they block each other, as shown in
Fig. 1(b).

To quantify spatiotemporal patterns of pedestrian flow, we
measure the local efficiency E(x,t) for a given time ¢ and
segment x in the horizontal direction:

1
E(t) = o > E. 6)

ieN(x,t)

Here N (x,t) is the set of passersby in a 1-m-long segment x at
time . The individual efficiency of motion E; = (¥; - €;.0)/vo
can be understood as a normalized speed of pedestrian i in the
horizontal direction. The local efficiency E(x,t) indicates how
fast passersby in segment x progress towards their destination
at time ¢. If |[N(x,r)] =0, we set E(x,t) = 1, inferring that
the passersby can walk with their comfortable speed vy if they
are in the segment x at time ¢. Thus, E(x,f) = 1 indicates that
the passersby can freely walk without reducing their speed,
while E(x,r) = 0 implies that the passersby have reached a
standstill.

Figure 2 shows the corresponding spatiotemporal repre-
sentation of different pedestrian flow patterns. As shown in
Fig. 2(a), in the free flow phase, the local efficiency E(x,t)
is almost 1 over the stationary state period, meaning that all
the passersby walk with their comfort speed. In the freezing
phase, the local efficiency E(x,t) suddenly becomes zero near
the attraction around at = 450 s and then the low-efficiency
area expands to the left and right boundaries of the corridor in
the course of time [see Fig. 2(b)].

Next we identify the freezing phase by means of cumulative
throughput at x =30 m, according to Ref. [57]. If the
cumulative throughput does not change for 120 s, it infers
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FIG. 2. Local efficiency for a given time ¢ and location x,
E(x,t), for different pedestrian flow patterns in bidirectional flow.
The attraction is located at x = 30 m, at the center of the corridor.
Light yellow and dark red colors indicate lower and higher values,
respectively. (a) Free flow phase with Q =4 P/s and s =0.5
and (b) freezing phase with Q =4 P/s and s = 1. Note that the
spatiotemporal representation of local efficiency is dark red for (a)
t < 800sandt > 1200 s and (b) r < 300 s.

the appearance of the freezing phenomenon. We obtain the
freezing probability P by counting the occurrence of freezing
phenomena over 50 independent simulation runs for each
parameter combination (Q, s). The freezing probability Py
tends to increase as Q and s increase [see Fig. 3(a)]. For
small value of Q < 1.4 P/s, Py is zeroup to s = 2, indicating
that the freezing phenomenon is not observable. We classify
parameter combinations of (Q,s) yielding P, = 0 as the free

i,
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FIG. 3. (a) Freezing probability P, as a function of influx Q and
social influence parameter s in bidirectional flow. Different symbols
represent different values of Q. (b) Stationary state average of local
efficiency near the attraction E, against s in bidirectional flow with
Q =4 P/s. Each point depicts a value of E, obtained from one
simulation run. Here free, freezing, and co indicate the free flow
phase, freezing phase, and coexisting phase, respectively. In the
coexisting phase, one can observe freezing phenomena with a certain
probability Py. (c) Phase diagram summarizing the numerical results
of bidirectional flow. The parameter space of pedestrian influx Q and
social influence parameter s is divided into different phases by means
of Py for bidirectional flow.
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flow phase and Py =1 for the freezing phase. We call the
parameter space between the envelopes of Py = 0and Py =1
the coexisting phase, noting that both phases can appear
depending on random seeds in the numerical simulations.

In order to further quantify different phases, we calculate
stationary state average of local efficiency E(x) in the vicinity
of the attraction. Here E(x) is given as

E(x) = (E(x,1)), )

where (-) represents the average obtained from a simulation
run after reaching the stationary state. We select a section
of 27 m < x < 33 m to evaluate the stationary state average
value in the vicinity of the attraction and the minimum value
of E(x) is denoted by E,. Note that E, is selected in a way
to reflect the largest possible efficiency drop in the section.
Figure 3(b) presents E, against s in the case of Q =4 P/s.
One can observe that E, is almost 1 for s < 0.6, depicting
the free flow phase. For 0.6 < s < 0.8, some data points of
E, are positive while others are zero. That is, two distinct
pedestrian flow patterns can be observed for the same value of
s depending on random seeds. For s > 0.8, E,, is always zero,
corresponding to the freezing phase.

Figure 3(c) summarizes numerical results of phase charac-
terizations. The parameter space of pedestrian influx Q and
social influence parameter s is divided into different phases by
means of Py. In the coexisting phase, one can observe freezing
phenomena with a certain probability Py.

B. Jam patterns in unidirectional flow

In unidirectional flow, we can also define the free flow
phase if Q and s are small [see Fig. 4(a)]. The localized jam
phase appears in the vicinity of the attraction for medium and
high Q with the intermediate range of s, as can be seen from
Fig. 4(b). Passersby walk slow near the attraction because
of reduced walking area and then they recover their speed
after walking away from the attraction. One can observe that
pedestrians walking away from the attraction tend to form
lanes. This is possible because the standard deviation of speed
among the walking away pedestrians is not significant after
the pedestrians recover their speed. According to the study
of Moussaid et al. [58], the formation of pedestrian lanes is
stable when pedestrians are walking at nearly the same speed.
Once the walking away pedestrians form lanes, the lanes are
not likely to collapse. An extended jam phase can be observed
when both Q and s are large, in which the pedestrian queue
is growing towards the left boundary and then the queue is
persisting for a long period of time [see Fig. 4(c)]. In the
extended jam phase, the attendee cluster does not maintain
its semicircular shape any more in that passersby seize up
the attracted pedestrians. Meanwhile, pedestrians in the queue
still can slowly walk towards the right side of the corridor
as they initially intended. When Q and s are very large,
the extended jam phase can end up in freezing phenomena
with a certain probability, indicating that passersby cannot
proceed beyond the attraction due to the clogging effect.
Some passersby are pushed out towards the attraction by
the attracted pedestrians and inevitably they prevent attracted
pedestrians from joining the attraction. Consequently, the
attracted pedestrians cannot approach the boundary of the
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FIG. 4. Same as Fig. 1 but for unidirectional flow. Passersby are
walking from the left to the right. We can observe (a) the free flow
phase in the case of Q =5 P/s and s = 0.5, which is similar to
the case of bidirectional flow, (b) the localized jam phase in the
case of QO =5 P/s and s = 1, in which passersby walk slow near
the attraction before they pass the area, and (c) the extended jam
phase in the case of Q =5 P/s and s = 1.8, in which the passersby
queue is growing towards the left boundary. Sometimes the extended
jam phase ends up in freezing phenomena if Q and s are very large.

attendee cluster, although they keep their walking direction
towards the attraction. Simultaneously, the passersby near the
attraction attempt to walk away from the attraction, but they
cannot because they are blocked by the attracted pedestrians.
Eventually, the pedestrian movements near the attraction come
to a halt.

In order to reflect speed variation among passersby for a
given time ¢ and segment x, we introduce the local standard
deviation o (x,t), which is given as

|N( 7,2 e

1€N(x 1)

o(x,t) = E(x,)]* 3

If o(x,r) is 0, the speed of passersby is homogeneous in
segment x for a given time ¢. On the other hand, large o (x,1)
indicates significant speed difference among passersby and
possibly suggests the existence of stop-and-go motions in
passerby flow with low local efficiency [31,59,60].

As can be seen from Fig. 5(a), in the localized jam phase,
one can observe a low-efficiency area in the vicinity of the
attraction. In the low-efficiency area, passersby are likely to
reduce their speed near the attraction and then speed up when
they walk away from the attraction. In the extended jam phase,
the low-efficiency area appears near the attraction as in the
localized jam [see Fig. 5(b)]. In contrast to the case of a
localized jam, the low-efficiency area begins to extend towards
the left boundary and then the local efficiency remains low for
a long period of time over a spatially extended area. In the
low-efficiency area, some passersby move while others are at
near standstill and consequently stop-and-go motions can be
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FIG. 5. Plots of E(x,t) (left column) and o(x,7) (right col-
umn) for different pedestrian jam patterns for unidirectional flow.
(a) Localized jam phase in unidirectional flow with Q =5 P/s and
s = 1, in which passersby are likely to reduce their speed near the
attraction and then speed up when they walk away from the attraction.
The local standard deviation o (x,t) is notable in the low-efficiency
area, reflecting that some passersby walk with high speed while others
walk slowly. (b) Extended jam phase in unidirectional flow with
Q =5 P/s and s = 1.8. The low-efficiency area begins to expand
towards the left near + = 500 s and then the local efficiency remains
low for a long period of time over a spatially extended area.

observed as reported in previous studies [31,59,60]. Figure 6
shows the presence of stop-and-go motions near the attraction.
Therefore, the local standard deviation o (x,¢) becomes notable
in the low-efficiency area. Due to the passersby flowing out
from the low-efficiency area, a high local standard deviation
o(x,t) is observed near the attraction. Although the average
speed of passersby is significantly decreased in the left part
of the corridor, the local standard deviation o (x,t) is not zero,
indicating that the speed variation among passersby is still
observable.

Based on observations presented in Figs. 4 and 5, we
characterize the localized jam and extended jam phases in
terms of E(x) as in Eq. (7). Similarly to the bidirectional flow
scenario, we select a section of 27 m < x < 33 m to calculate
E,. Likewise, a section of 12 m < x < 18 m is selected for
upstream of the attraction and E\;, denotes the minimum value

520

500
w
— 480
)
(0]
€ 460
£

440

420 : '
24 25 26 27

location x (m)

FIG. 6. Representative trajectories of passersby in the extended
jamphase (Q = 5P/sand s = 1.8). One can observe that the progress
of the passersby is interrupted several times, indicating stop-and-go
motions near the attraction.
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FIG. 7. (a) Stationary state average of local efficiency near the
attraction E, against s in bidirectional flow with Q =5 P/s. Each
point depicts a value obtained from one simulation run. Here free,
loc, and ext indicate the free flow phase, localized jam phase, and
extended jam phase, respectively. In the extended jam phase, one
can observe freezing phenomena with a certain probability Py.
(b) Same as (a) but for E,,, measured upstream of the attraction.
(c) Freezing probability P, as a function of influx Q and social
influence parameter s in unidirectional flow. (d) Phase diagram sum-
marizing the numerical results of unidirectional flow. The parameter
space of pedestrian influx Q and social influence parameter s is
divided into different phases by means of local efficiency measures.

of E(x) in the section. Figures 7(a) and 7(b) provide plots of
local efficiency measures in the stationary state, £, and Eyp,
produced with Q =5 P/s. For small values of s, free flow
phase can be characterized by

E,~1, E,~1. )

For 0.6 < s < 1.05, data points of E, show a clear decreasing
trend against s. As can be seen from Fig. 7(b), data points of
Eyp are still near 1 up to s = 1.05. Thus, the localized jam
phase can be characterized by

0<E,<1, Egp~1. (10)

When s is larger than 1.05, some data points of E, and
E,, become zero, indicating that freezing phenomena can
be observed. In contrast, positive E, and E,, values show a
decreasing trend against s for a section of 1.05 < s < 2; then
they become nearly constant if s is larger than 2. Consequently,
the extended jam phase can be characterized by

0<E,<1, 0<Ey,<l. (11)

In contrast to the bidirectional flow scenario, P is always
smaller than 1 in unidirectional flow, indicating that the
freezing phase does not exist [see Fig. 7(c)]. However,
there exists parameter space producing Py > 0, inferring that
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freezing phenomena can be observed depending on random
seeds. Interestingly, in unidirectional flow, Py is increasing
and then decreasing against s for large Q. It can be understood
that the proportion of passersby decreases considerably as s
increases above a certain value, so the attracted pedestrians are
less likely blocked by the passersby.

Figure 7(d) summarizes numerical results of phase char-
acterizations. We divide the parameter space of Q and s into
different phases by means of local efficiency measures E, and
Eyp. Note that, in the extended jam phase, one can observe
freezing phenomena with a certain probability P.

C. Microscopic understanding of jamming transitions

In previous sections we have observed various jam patterns.
In bidirectional flow, the free flow phase can turn into a
freezing phase if Q and s are large. Jamming transitions in
unidirectional flow are different from those of bidirectional
flow: from free flow to localized jam and then to extended jam
phases. In addition, it is possible that the extended jam phase
ends up in freezing phenomena for large Q and s.

While previous sections focused on describing collective
patterns of various jam patterns, this section presents the
appearance of such different patterns at the individual level
in a unified way. This inspired us to take a closer look at
the conflicts among pedestrians. Similar to previous studies
[61,62], we employ a conflict index to measure the average
number of conflicts per passerby. When two pedestrians are in
contact and hinder each other, we call this situation a conflict.
The number of conflicts N, ;(¢) is evaluated by counting the
number of pedestrians who hinder the progress of passerby
i at time ¢. In our simulations, most conflicts appear near
the attraction; therefore, we calculate the conflict index for
pedestrians in location x such that 25 m < x < 35 m. The
conflict index is measured as

1
ne(t) = —— Y Nei(t), (12)

INp ieN,

where N, is the set of passersby near the attraction.

The representative time series of conflict index n.(t) are
presented in Fig. 8. As can be seen from Fig. 8(a), a sharp
increase of the conflict index indicates the appearance of the
freezing phenomenon, which leads pedestrian flow into the
freezing phase. In Fig. 8(b) the conflict index increases and
then decreases in the course of time. We can observe alocalized
jam phase in which the jam near the attraction does not further
grow upstream. Figures 8(c) and 8(d) are generated with the
same parameter combination (Q,s) = (5,1.8) in unidirectional
flow but with different sets of random seeds. As shown in
Fig. 8(c), in the extended jam phase, the conflict index n.(¢)
is maintained near a certain level after reaching the stationary
state, indicating the persistent jam in the corridor. In Fig. 8(d)
the behavior of the n.(¢) curve is similar to that of the extended
jam phase in the beginning, but the curve abruptly increases
near = 600 s. That is, the pedestrian flow eventually ends up
in a freezing phenomenon in that conflicting pedestrians fail
to coordinate their movements.

Apart from the conflict index n.(¢), we have also observed
that increasing s for a given value of Q likely increases the size
of the attendee cluster and consequently reduces the available
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FIG. 8. Representative time series of conflict index n.(¢). (a) In
the beginning, the n () curve of the freezing phase in bidirectional
flow with Q =4 P/s and s = 1 is virtually zero, indicating that the
pedestrian flow is initially free flow. However, the curve shows a sharp
increase near ¢t = 460 s, signaling the onset of freezing phenomenon.
(b) The n.(r) curve of the localized jam phase in unidirectional flow
with Q = 5P/s and s = 1 exhibits an upward trend until # = 1350 s
and then it shows a downward trend leading to zero. (c) For the
extended jam phase in unidirectional flow with Q =5 P/s and s =
1.8, one can see that the n.(¢) curve sharply increases near t = 320 s
and thereafter oscillates around n.(¢r) = 0.25. (d) Same parameter
combination (Q,s) as (c) but with a different set of random seeds.
The behavior of the n.(¢) curve is similar to that of the extended jam
phase until + = 600 s. However, the curve abruptly increases near
t = 600 s, indicating the appearance of the freezing phenomenon.

walking space near the attraction. The narrower walking space
tends to yield higher freezing probability in that pedestrians
tend to have less space for resolving conflicts among them.
Therefore, we suggest that an attendee cluster can trigger
jamming transitions not only by reducing the available walking
space but also by increasing the number of conflicts among

(a) (b) ()
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pedestrians near the attraction. See Appendix D for further
discussion of this issue.

Furthermore, changing other simulation parameters can
affect the jamming transitions. For instance, increasing
often results in a larger attendee cluster near the attraction,
activating jamming transitions for lower values of s. Larger
corridor width W possibly reduces the freezing probability
for a given value of s by providing additional space for
resolving pedestrian conflicts. However, increasing W does
not effectively reduce the freezing probability when W is large
enough in that an attendee cluster can grow further as W grows.
In Appendix E we show the influence of #; and W on jamming
transitions.

D. Fundamental diagram

In addition to the phase diagram presented in Figs. 3(c) and
7(d), one can further describe the dynamics of passerby flow
by means of a fundamental diagram. The fundamental diagram
depicts the relationship between flow and density, which has
been widely applied to analyze traffic dynamics to represent
various phenomena including hysteresis [63] and capacity
drop [64]. We calculate pedestrian flow quantities including
density p, speed u, and flow J over two 6-m-long segments
in length for every 5 s. Note that pedestrian flow quantities J,
p, and u are calculated for passersby, not including attracted
pedestrians. The details are explained in Appendix F. The first
section of 27 m < x < 33 m is selected for passerby traffic
near the attraction and 12 m < x < 18 m for upstream traffic.

To explore the dynamics of passerby traffic, we plot
fundamental diagrams for different phases in bidirectional
flow near the attraction. As shown in Fig. 9(a), in the free
flow phase, a linear relationship between p and J is observed.
The corresponding local speed u stays near a comfortable
walking speed vg = 1.2 m/s. In Fig. 9(b) an inverse-A shape
is observed, reflecting that capacity drop occurs near p =
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FIG. 9. Fundamental diagram of passerby traffic near the attraction. For each panel, the upper part shows the fundamental diagram and the
lower part shows the corresponding local speed u. Note that pedestrian flow quantities J, p, and u are calculated for passersby, not including
attracted pedestrians. Arrows are guide for the eyes, indicating the evolution of fundamental diagram in the course of time. (a) Free flow phase
in bidirectional flow with Q@ = 4 P/s and s = 0.5. (b) Freezing phase in bidirectional flow with Q = 4 P/s and s = 1. (c) Localized jam phase
in unidirectional flow with Q = 5 P/s and s = 1. (d) Extended jam phase in unidirectional flow with Q = 5 P/s and s = 1.8. (e) Generated
from the same parameter combination (Q,s) as (d), but from a different set of random seeds. The passerby flow turns from an extended jam

into the freezing phenomenon.
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1.2 P/m? and then the pedestrian traffic turns into the freezing
phase as depicted in Fig. 2(b). The corresponding local speed
u curve begins to sharply decrease near r = 460 s, relevant to
the appearance of the congestion branch. This is similar to the
metastable state induced by conflicts among pedestrians [65].

Likewise, we also plot fundamental diagrams and cor-
responding local speed curves for various jam patterns in
unidirectional flow. Figure 9(c) shows that in the localized jam
phase, (p,J) begins to scatter after the density level reaches
around p = 1.2 P/m?. The cluster of scattered data points
reflects that speed fluctuation begins to appear, in agreement
with Fig. 5(b). In contrast, the fundamental diagram upstream
of the attraction only shows a linear relationship between p
and J, similar to arrow 1 in Fig. 9(c). That is, upstream traffic
is not influenced by the speed reduction near the attraction,
thus speed fluctuation is invisible.

In the extended jam phase, a w shape is observed in the
fundamental diagram as depicted in Fig. 9(d). As indicated
by arrow 2, one can see a cluster of (p,J) slightly off from
the free flow branch, which corresponds to a moderate speed
drop from near t = 320 s to near t = 510 s. Simultaneously,
the maximum flow rate J is lower than that in the free flow
branch. This can be understood as a transition period in which
local speed u is gradually decreasing. After the transition
period, one can see data points of (p,J) widely spread over
in the fundamental diagram, while the local speed u slightly
oscillates around # = 0.5 m/s.

Figure 9(e) shows fundamental diagrams obtained from
the same parameter combination (Q,s) of Fig. 9(d) but from
a different set of random seeds. Similar to the case of the
extended jam phase, a free flow branch appears and then
one can observe scattered data points of (p,J) indicating
that the local speed u near the attraction gradually decreases.
However, after showing such scattered data points, congestion
branches are observed as indicated by the arrow in Fig. 9(e).
Interestingly, the behavior of congestion branches observed
from Figs. 9(e) and 9(b) is different. In Fig. 9(b) the flow
J is decreasing as density p increases, because there are
no outflowing passersby near the attraction while additional
pedestrians arrive behind the stopped passersby. On the other
hand, the congestion branch in Fig. 9(e) indicates that the flow
J is decreasing as density p decreases due to passersby flowing
out from the attraction.

IV. CONCLUSION

This study has numerically investigated jamming transi-
tions in pedestrian flow interacting with an attraction. Our
simulation model is mainly based on the social force model
for pedestrian motion and joining probability reflecting the
social influence from other pedestrians. For different values
of pedestrian influx Q and the social influence parameter
s, we characterized various pedestrian flow patterns for
bidirectional and unidirectional flows. In the bidirectional flow
scenario, we observed a transition from the free flow phase to
the freezing phase in which oppositely walking pedestrians
reach a complete stop and block each other. However, a
different transition behavior appeared in the unidirectional
flow scenario: from the free flow phase to the localized jam
phase and then to the extended jam phase. One can also see that
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the extended jam phase ends up in freezing phenomena with
a certain probability when pedestrian flux is high with strong
social influence. It is noted that these results are qualitatively
the same for values of simulation time step At smaller than
0.05 s, seemingly due to the introduction of an attainable
walking speed in Eq. (2).

The findings of this study can be interpreted in line with the
freezing-by-heating phenomenon observed in particle systems
[24]. Helbing et al. [24] demonstrated that increasing noise
intensity in particle motions leads to the freezing phenomenon,
in which particles tend to block each other in a straight corridor.
We observed the same phenomenon from pedestrian flow
interacting with an attraction. However, it should be noted
that Ref. [24] did not state possible sources of the noise, since
that study presented the noise as an abstract concept. Our study
suggests that existence of an attraction in pedestrian flow can
be a source of such noise.

Our study highlights that attractive interactions between
pedestrians and an attraction can lead to jamming transitions.
From the results of numerical simulations, we observed that
an attendee cluster can trigger jamming transitions not only by
reducing the available walking space but also by increasing the
number of conflicts among pedestrians near the attraction. The
conflicts arose mainly because attracted pedestrians interfered
with passersby who were not interested in the attraction. If the
average number of conflicts per passerby is maintained under
a certain level, the appearance of freezing phenomena can be
prevented. However, when the pedestrian flux is high with
strong social influence, the conflicting pedestrians may not be
able to have enough time to resolve the conflicts. Therefore,
we note that moderating pedestrian flux is important in order to
avoid excessive pedestrian jams in pedestrian facilities when
the social influence is strong.

In order to focus on essential features of jamming transi-
tions, this study has considered simple scenarios of pedestrian
flow in a straight corridor. Further studies need to be carried
out in order to improve the presented models. To mimic
pedestrian stopping behavior, pedestrians are represented as
nonelastic solid disks, indicating that compression among
pedestrians is not modeled. The interpersonal friction effect
[66,67] needs to be included in the equation of motion for
crowd pressure predictions. The joining behavior model (5)
can be further improved and extended by adding additional
behavioral features. For instance, explicit representation of
group behavior [52] and an interest function [68] can be added
to the joining behavior model. A natural progression of this
work is to analyze the numerical simulation results from the
perspective of capacity estimation. Capacity estimation can
be performed to calculate the optimal capacity, balancing
the mobility needs for passersby and the activity needs
for attracted pedestrians. The concept of stochastic capacity
[69—71] can also be studied as an extension of this study. In
this study, for some parameter values, speed breakdown is
observed depending on random seeds, inferring that capacity
might follow a probability distribution. Future studies can be
planned from the perspective of pedestrian flow experiments.
Although the joining behavior presented in this study might
not be controlled in experimental studies, the experiments
can be performed for different levels of pedestrian flux and
joining probability. For various experiment configurations,
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the number of conflicts among pedestrians can be measured
and the influence of the conflicts on pedestrian jams can be
analyzed.
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APPENDIX A: STREAMLINE APPROACH FOR PASSERBY
STEERING BEHAVIOR

For passerby traffic moving near an attraction, an attendee
cluster can act like an obstacle. We assume that passersby set
their initial desired walking direction ¢; o along the streamlines.
As reported in a previous study [29], the shape of an attendee
cluster near an attraction can be approximated as a semicircle.
By doing so, we can set the streamline function i for passerby
traffic similar to the case of fluid flow around a circular cylinder
in a two-dimensional space [47,48]:

¥ = vodza sin(@)(l L ) (A1)
d;a

where vy is the comfortable walking speed and d,4 is the
distance between the center of the semicircle A and location
z = (x,y). The angle 6, is measured between y = Omand d, 4.
The attendee cluster size at time ¢ is denoted by r. = r.(¢). To
measure 7., we slice the walking area near the attraction into
thin layers with the width of a pedestrian size (i.e., 2r; = 0.4 m)
in the horizontal direction. From the bottom layer to the top
one, we count the number of layers consecutively occupied by
attendees. The attendee cluster size r. can then be obtained
by multiplying the number of consecutive layers by the layer
width 0.4 m. The initial desired walking direction €; o can be

obtained as
- ad d
Go= (—‘/’, - —‘”) (A2)

Note that passersby pursue their initial destination, thus their
desired walking direction ¢; is identical to €;¢ given in
Eq (AZ), i.e., E,‘ = 2,"0.

APPENDIX B: TIME TO COLLISION T,

In line with Refs. [72,73], we assume that pedestrian i
predicts the time to collision 7, with pedestrian j by extending
current velocities of pedestrians i and j, v; and v;, from their
current positions x; and x;:

— B—VB —ay V;Zz—ay’ (B1)

T.

- — - - - -

where o = [lv; —v;[|7, B =(x; —x;)-(vi —v;), and y =
IX; — %> = (i +r;)*. Note that T, is valid for 7, > 0,
meaning that pedestrians i and j are in a course of collision,

PHYSICAL REVIEW E 96, 022319 (2017)

whereas T, < 0 implies the opposite case. If T, = 0, the disks
of pedestrians i and j are in contact.

APPENDIX C: NUMERICAL INTEGRATION OF EQ. (1)

Based on the first-order Euler method, the numerical
integration of Eq. (1) is discretized as

U;i(t + At) = U;(t) + a; (1) At,

- - - (CD)
X (t + At) = X;(t) + v; (t + At)At.

Here a;(¢) is the acceleration of pedestrian i at time ¢ and the
velocity of pedestrian i at time 7 is given as v;(¢). The position
of pedestrian i at time ¢ is denoted by X;(¢).

APPENDIX D: DISCUSSION OF JAMMING MECHANISMS

In Sec. IIIC we discussed the dynamics of jamming tran-
sitions mainly based on the conflict index [see Eq. (12)]. This
appendix provides further details of jamming mechanisms.

In both bidirectional and unidirectional flows, attracted
pedestrians often trigger conflicts among pedestrians. When
the attracted pedestrians are walking towards the attraction,
sometimes they cross the paths of passersby and hinder their
walking. Furthermore, such crossing behavior of attracted
pedestrians makes others change their walking directions
due to the interpersonal repulsion, possibly giving rise to
conflicts among the others. Once a couple of pedestrians
hinder each other, they need some time and space to resolve
the conflict by adjusting their walking directions. If there is
not enough space for the movement, the conflict situation
cannot be resolved and turns into a blockage in pedestrian
flow. Higher pedestrian flux Q can be interpreted as the
conflicting pedestrians likely have less time for resolving
the conflict, in that additional pedestrians arrive behind the
blockage. Once the arriving pedestrians stand behind the
blockage, the number of conflicts among pedestrians is rapidly
increasing as indicated in Figs. 8(a) and 8(d). In the case
of bidirectional flow, this freezing phenomenon is similar to
the freezing-by-heating phenomenon [24]. We note, however,
that the freezing phenomenon in our simulations is caused by
attracted pedestrians without noise terms in the equation of
motion.

The onset of freezing phenomena in bidirectional flow
can be further understood by looking at streamwise velocity
profiles. Figure 10 visualizes streamwise velocity profiles of
passerby traffic in the corridor at x = 30 m where the attraction
is placed. In the beginning (i.e., r = 120 s), one can observe
that the velocity vectors of two passerby streams show distinct
spatial separation, indicating that passerby lane formation
appears to be well maintained. We notice that the velocity
magnitude near the bottom of the corridor is virtually zero
when the attendee cluster becomes active. In the course of
time, the velocity distribution curves shrink while the curves
are gradually shifting upward. This implies that two passerby
streams moving in opposite directions confront each other,
leading to a freezing phenomenon.

Furthermore, the attendee cluster also contributes to jam-
ming transitions by reducing the available space in the corridor.
To understand the influence of attendee cluster size on jamming
transitions, we perform numerical simulations with a static
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FIG. 10. Streamwise velocity profiles of passerby traffic in the
corridor at x = 30 m with Q = 4 P/s and s = 1 in bidirectional flow.
Based on Eq. (F3), the velocity vectors are presented for eastbound
and westbound passerby traffic in the right and left parts of each
panel, respectively. In the course time, the velocity profile curves are
gradually shifting upward while their magnitude decreases.

bottleneck instead of an attraction, in which all the pedestrians
are passersby. In doing so, we can exclude the interactions
among passersby and attendees, thereby focusing on the
influence of reduced available space. For the comparison,
we use a stationary state average of cluster size (r.) because
the attendee cluster size changes in the course of time but the
size of the static bottleneck is constant. In the case of a static
bottleneck, we also use the notation of (r.) for convenience. A
semicircle with radius (r.) is placed at the center of the lower
corridor boundary, acting as a static bottleneck. By changing
(rc), we observe the behavior of various measures including
Py, E,, and Ey, (see Fig. 11).

It is obvious that larger (r.) leads to higher freezing
probability Py for bidirectional flow, as shown in Fig. 11(a).
However, P, of the attendee cluster case is higher than that
of a static bottleneck for a given value of (r.). While the E,
and E,, curves obtained from the static bottleneck case show
a clear dependence on (r.), those from the attendee cluster do
not show clear tendency when (r.) > 1.5 m [see Figs. 11(b)
and 11(c)]. Although increasing (r.) evidently leads to a local-
ized jam transition, it can be suggested that conflicts among
pedestrians play an important role in jamming transitions if
(rc) is large enough.

APPENDIX E: SENSITIVITY ANALYSIS

Since the presented results are sensitive to the numerical
simulation setup, we briefly discuss the influence of different
simulation parameters especially for the average length of stay
t; and the corridor width W. As can be seen from Figs. 12(a),
12(c), and 12(e), the freezing probably reaches Py = 1 quicker
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FIG. 11. Dependence of various measures on the stationary state
average of cluster size (r.) for pedestrian influx Q =5 P/s. The
results of the static bottleneck and attendee cluster are denoted by
o and x, respectively. Arrows indicate the direction of increasing s
for the results of the attendee cluster. (a) Freezing probability P for
bidirectional flow indicating the appearance of the freezing phase,
(b) local efficiency near the attraction E, for unidirectional flow
reflecting the onset of the localized jam phase, and (c) local efficiency
upstream E;, for unidirectional flow, which is relevant to the extended
jam phase.

and local efficiency measures E, and E,, tend to decrease
faster as f; grows. One can infer that larger ¢, likely leads
to having more attendees near attractions, resulting in higher
freezing probably and smaller local efficiency measures.
Therefore, it can be suggested that increasing t; activates
jamming transitions for lower values of s.

In Figs. 12(b), 12(d), and 12(f), increasing W apparently
changes the behavior of Py in bidirectional flow in that con-
flicting pedestrians seem to have enough space for resolving
the conflicts. Although increasing the corridor width from
W =4 m to W = 6 m produces notable differences in the
E, and E;, curves, increasing W further does not seem to
yield any significant changes. It is reasonable to suppose that
the impact of increasing W becomes less notable for large
W, in that increased W allows conflicting pedestrians to have
more space for resolving the conflicts but also the attendee
cluster to grow larger.

APPENDIX F: PEDESTRIAN FLOW QUANTITIES

We evaluated pedestrian flow quantities such as local
density, local speed, and local flow. Following the idea of
the particle-in-cell method [74-77], we convert the discrete
number of pedestrians into continuous density field values by
using a bilinear weight function w;, for each neighboring grid

022319-11



KWAK, JO, LUTTINEN, AND KOSONEN

(@) (b)

1

1

0.8 0.8
_ 0.6 _06
o o
0.4r- 0.4
02 0.2
Om—é =
0

tg=15 O ]

W=4 -0 o
0.2[14=80 —&— x5, ° 0.2 W=6 —o— E
tg=45 - & - R W=8 -4 -
0 | | | 0 | 1 |
0 05 1 15 2 0 05 1 15 2
S s

FIG. 12. Dependence of various measures on social influence
parameter s for t; (left column) and W (right column) with
pedestrian influx Q =5 P/s. (a) and (b) Freezing probability Py
for bidirectional flow, (c) and (d) local efficiency near the attraction
E, for unidirectional flow, and (e) and (f) local efficiency upstream
E,, for unidirectional flow. Note that 7, = 30 s and W = 4 m are the
simulation parameter values that we are mainly using in this study.

point z € {A,B,C,D},

wia =1 — Ax)1 — AY)/I?,  wip = Ax( — Ay)/ 1%,
(F1)

wic = AxAy/I*, wip = (1 — Ax)Ay/I%,

PHYSICAL REVIEW E 96, 022319 (2017)

D C

Ay

AAx B

FIG. 13. Schematic representation of the grid structure. Points A,
B, C, and D indicate the neighboring grid points of pedestrian i. The
location of pedestrian i is denoted by x. The relative coordinates
of pedestrian i with respect to point A in the horizontal and vertical
directions are indicated by Ax and Ay, respectively.

where Ax and Ay indicate the relative coordinates from
the left bottom cell center A to the location of pedestrian
i (see Fig. 13). Although the use of a Gaussian function
is a well-established approach in quantifying the local flow
characteristics [28,66,72], it tends to overestimate the local
quantities. This is because it takes into account distant
pedestrians. Notice that Y w;, = 1, indicating that the weight
function w;, reflects the density contribution from pedestrian
i. We choose grid spacing [ = 2r; on the order of pedestrian
size. With the weight function w;,, the local density p(Z,t) is
defined as

PG =) = (F2)

1

Likewise, the local speed u(Z,t) is given as
> i flwi;
2 Wiz

We can calculate the local pedestrian flow J(Z,t) as a product
of local density and local speed

u(z,r) = (F3)

J(Z,t) = p(Z,Hu(z,1). (F4)
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