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Abstract

Mining at great depths gives rise to geotechnical hazards. Formal geotechnical risk assessment 

can help to forecast and to mitigate these hazards. While conventional probability methods 

provide a good background to carry out risk assessment work with variable and uncertain data, 

the probability of failure calculation becomes difficult as the number of variables increase or the 

available data is scarce. The aim of this paper is to demonstrate the decision making 

capabilities of Bayesian networks for the purpose of risk assessment by combining expert 

judgement and available data.  The general structure of BN and ways to elicit probability of 

uncertain variables for risk assessment are presented. Roof fall frequency forecasting using 

parameter learning is demonstrated using 1,141 roof fall data across 12 coal mines in the USA. 

A hybrid approach of combining multiple probability distribution curves from historical data with 

expert opinion from empirical methods is proposed along with financial quantification of risk 

values. The BN method demonstrates that a proposed normal distribution curve is twice as 

likely to fit the observed data compared to the initial Poisson distribution. It is concluded that 

Bayesian network forms a good real time risk assessment tool by combining expert knowledge 

with available data.

Keywords: geotechnical risk; Bayesian networks; parameter learning; roof fall risk; incident forecasting; 
expert opinion models
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1. Introduction
Geotechnical incidents and accidents are common events resulting in property loss and bodily harm in 

the mining industry. As the demand of raw material increases to keep pace with the supply, mining is 

taking place at increasing depths reaching down to 4km and beyond. Mining at such depth increases 

the probability of geotechnical incidents because of the increase in in situ stresses. Variability of rock 

mass condition compounds the problem as operations can run into prior unknown geological 

structures. Mining at great depth also means that collecting geotechnical information through 

conventional methods such as core drilling is very expensive. Non-intrusive geophysical methods 

pose the limitation of range and accuracy. All the above reasons create the need for a formal 

geotechnical risk assessment methodology for underground mining. Risk assessment can help to 

identify vulnerable areas of the mine so mitigation measures can be planned in advance and 

employees can be made aware of the hazard. Proper risk assessment also helps justify additional 

expenses when compared with the financial cost of the risk. Mishra and Rinne (2015) have proposed 

that mining projects should be evaluated for their geotechnical risk levels through Geotechnical Risk 

Classification (GRC) from as early as pre-feasibility study and these values should be updated as the 

project progresses and more data becomes available. 

The biggest challenge with risk assessment is the lack of suitable data to be used for the probability of 

failure assessment and lack of historical evidence in case of a new project. In such cases, the risk 

assessment often needs to be subjective and qualitative based on expert judgement. While qualitative 

assessment helps to carry out a quick risk assessment in absence of data, it can be very broad and 

vague and can be highly influenced by personal opinion and bias. The aim of this paper is to present 

the use of Bayesian networks (BN) as an alternative to existing risk assessment methods in 

underground mines by combining expert knowledge and available data. This paper discusses the use 

of BN as a hybrid approach to include a qualitative assessment from domain experts combined with 

data when available to build a risk management framework. This can be used not only to calculate the 

probability of failure but also to assist in incident investigation and to carry out scenario analysis for 

decision making.

2. Background
Risk and its definition have been discussed extensively in the past (Paté-Cornell and Dillon, 2006). 

Generally, risk is defined as a product of the likelihood of a hazard and the severity of the 

consequence if the hazard were to be realized. By extension of this definition, geotechnical risk (GR) 

can be defined as per Equation 1 below:
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        [1]𝐺𝑅 = 𝐺𝐿 𝑋 𝐺𝑆                                                                             

Where GL represents the likelihood of a geotechnical hazard while GS represents the severity of the 

geotechnical hazard. Formal risk assessment at work places for accident prevention is becoming 

increasingly common in mining industry owing to increased awareness of accident related costs and 

stringent guidelines set by local legislative bodies regarding injury to people and environment damage. 

The risk assessment tools used in mining, therefore, has been borrowed from similar industries such 

as construction, oil and gas, civil infrastructure. Mishra and Rinne (2014) have discussed that these 

popular risk assessment tools such as Work Place Risk Assessment and Control, Failure Mode and 

Effect analysis, Bow-Tie analysis should be called hazard identification tool as they cover how an 

accident can be broken down to its causes but gives little to no details on how the likelihood of these 

causes should be established. It was therefore proposed that risk assessment should be segregated 

into the following steps: identification of hazards, selection of risk assessment parameters, selection of 

risk assessment approach, consequence assessment, and risk representation. 

Hazard identification involves breaking down a process being evaluated into smaller fragments and 

evaluating ways in which these processes can be affected adversely. Once the hazards have been 

identified, appropriate likelihood values need to be assigned to them. These values can either be 

qualitative ranging from high to low or quantitative with numeric values or probability distribution 

curves. While qualitative values can be assigned based on an expert’s opinion, quantitative values are 

derived from historical occurrences, monitoring of site, lab tests etc. This is a challenge in mining and 

especially in underground excavations because collecting data through drilling prior to project 

commencement is an expensive exercise and extrapolation of sample data always leaves room for 

error. Even if the presence of a challenging geological structure is known, uncertainties regarding its 

design and extent may have an impact on the risk. This becomes more evident when dealing with a 

non-homogenous rock type. These uncertainties can be grouped into spatial variability, measurement 

errors, model uncertainty, and uncertainty due to omissions (Einstein and Baecher, 1983).

Once a decision is made between qualitative and quantitative parameters, the next step is to calculate 

the risk values. This calculation can be grouped into four broad approaches. For comparative 

explanation, a scenario of reinforcement design to prevent a wedge fall is considered here. The first 

approach is a prescriptive or empirical method. Prescriptive methods rely on past case studies to 

establish a correlation between observable mine parameters and hazard being prevented. Barton’s Q 

system (Barton, 1988) and Mathews stope stability graph method (Mathews et al., 1981) are examples 

of prescriptive methods. While these methods prescribe a suitable reinforcement design to prevent 
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roof/wall/stope collapse, they do not assign probability of failure values to the mine area where the 

prescription is used. Another method is Roof Fall Risk Index (RFRI) (Iannacchione et al., 2007a) which 

assigns an index value similar to Q based on observable parameters and converts them into 

qualitative risk ranking from highly likely to very unlikely. Empirical methods are not inherently 

designed to take geotechnical variability into account and therefore are difficult to use when the 

observed parameters have a range of possible values.

The second approach to assigning risk values is called the deterministic or analytical method. In order 

to design a reinforcement design against a wedge collapse, the deterministic method will require that 

the wedge size and weight and the support capacity of the roof bolt are known. The factor of safety 

(FOS) for the roof reinforcement can then be calculated using Equation 2 below:

[2]𝐹𝑂𝑆 =
𝐶

𝑊 × ϒ𝑠 × ϒ𝑔
                                                                                     

Where C is the bolt capacity and W is the block weight while ϒs and ϒg are partial safety factors for 

bolt capacity and block weight respectively. For estimated block weight is 280 KN, measured bolt 

capacity is 220 KN, ϒs and ϒg of 1.1 and 1.35 respectively will result in a FOS of 1.06 if 2 bolts are 

used to support the wedge. For a true deterministic analysis, the FOS will either need to be 

individually calculated for all known wedges or the reinforcement design will have to be carried out for 

the largest possible block size. While the first method requires extensive data collection to evaluate 

every possible block weight, the second method leads to an ultra-conservative reinforcement design 

which is expensive. Additionally, the FOS values do not give the probability of failure (POF) but 

prescribed tables can be used to compare FOS and POF (Frank, 2004).

The third approach to likelihood estimation is the use of probabilistic methods. Probabilistic methods 

give the advantage of using probability distribution curves instead of single values to arrive at a 

probability of failure. This works well, when limited sample data is available and it needs to be 

extended to make decisions for a larger population. Use of classical probabilistic analysis in 

geotechnical engineering has been covered extensively in the past 40 years (Baecher and Christian, 

2005). This method has been used in the past to predict mine subsidence (Stewart and O’Rourke, 

2008), pillar collapse in coal mines (Galvin, Hebblewhite and Salamon, 1999), roof fall in underground 

mines (Duzgun and Einstein, 2004) and several other engineering applications (Paté-Cornell, 2007). 

In case of the above mentioned wedge collapse example, instead of using an individual value for block 

weight and bolt capacity, the probability distribution curve for both the parameters can be defined 

based on collected data. Table 1 shows the calculated probability of failure in three scenarios where 
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the block weight and bolt capacity are assumed to be truncated normal distribution with same lower 

bound, upper bound and mean but different variance. The block is assumed to fail when block weight 

exceeds bolt capacity.

Scenario Parameter
Lower 

Bound

Upper 

Bound
Mean Variance

Probability of Failure 

with 2 Bolts

Block Weight 260 KN 320 KN 280 KN 10
1

Bolt Capacity 210 KN 230 KN 220 KN 1
0.0%

Block Weight 260 KN 320 KN 280 KN 500
2

Bolt Capacity 210 KN 230 KN 220 KN 1
25.4%

Block Weight 260 KN 320 KN 280 KN 1000
3

Bolt Capacity 210 KN 230 KN 220 KN 1
31.7%

Table 1: Impact of variance on probability of failure (POF)

As can be seen from the Table 1, the variability in data as accounted by variance has a large impact 

on the probability of failure for the same mean values and probabilistic methods offer the advantage of 

accommodating this in the risk assessment. Additionally, probabilistic methods directly give the 

probability of failure values. The disadvantage of the conventional probabilistic method is that the 

complexity of the model grows exponentially as the number of uncertain variables grows beyond 2 

(Matarawi and Harrison, 2017). 

The fourth approach to likelihood estimation is the use of graphical models to carry out a probabilistic 

risk assessment. Graphical models offer the advantage of conventional risk assessment along with the 

freedom to have a large number of uncertain variables in the risk assessment model. Graphical 

models can be further subdivided into Artificial Neural Networks (ANN) and Bayesian Networks (BN). 

The key difference between these two models is, that Bayesian networks use pre-defined nodes to 

represent uncertain variables while ANN assigns a variable type to its nodes depending on the data 

set (Yegnanarayana, 2009). This paper focuses on the use of BN to carry out risk assessment as ANN 

requires a large amount of existing data to train the model which is often unavailable in case of 

geotechnical incidents. Bayesian networks (BN) are decision models which combine expert judgement 

and available data with the use of conditional probability tables to arrive at failure probabilities (Fenton 

and Neil, 2012). Bayesian networks have been used in the past in dam risk assessment (Smith, 2006), 

tunnel risk assessment (Sousa and Einstein, 2007, Spackova and Straub, 2011), and modeling 

uncertainties in rock-fall hazards (Straub and Schubert, 2008) This paper focuses on the parameter 
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learning capability of Bayesian Networks to learn  from historical data and forecast future occurrences 

by using roof fall in coal mines as an example. It further combines parameter learning with expert 

judgement in the form of Roof Fall Risk Index (RFRI) to form a hybrid risk assessment model. 

For the wedge collapse example, the factor of safety (FOS) can be expanded to incorporate additional 

variables as shown in Equation 3 below:

 [3]𝐹𝑂𝑆 =
𝑓𝑦𝑘 ×

𝐴𝑏
𝑌𝑠

𝑌𝑔 × (1
3) × 𝑠2 × ℎ × 𝜌 × 𝑔

                                                                     

Where fyk is steel strength, Ab is the area of bolt, Ys is the partial safety factor for steel strength, s and 

h are base length and height of the wedge respectively, ρ is the density of the rock, g is the 

acceleration due to gravity and Yg is the partial safety factor for block weight. Figure 1 shows the 

probability of failure calculation using the Bayesian network with s, h, and fyk as uncertain variables 

and FOS using Equation 3. Table 2 shows the distribution properties of the variables used. The details 

of how to construct a BN and elicit probability values are discussed further in the paper.

Parameter Distribution Lower Bound Upper Bound Interval Mean Variance

Steel Strength (fyk) Normal 490 MPa 550 MPa 10 MPa 530 MPa 100

Wedge base length (s) Uniform 3.1 m 4 m 0.1 m

Wedge Height (h) Uniform 2.6 m 3 m 0.1 m
Table 2: Probability distribution parameters used for factors affecting wedge collapse
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Figure 1: Bayesian Network model to forecast wedge failure using Equation 3

This BN can be expanded to include other variables such as rock density and bolt diameter to carry 

out a ‘what if’ scenario analysis. BN can also learn probability distributions using parameter learning 

from available sample data to carry out fully automated risk assessments (Fenton and Neil, 2012). 

Where numerical data is unavailable, subjective opinion of experts can be incorporated as nodes in 

the network. The advantage of a BN based risk assessment is that it can evolve from qualitative 

assessment to quantitative assessment as more data becomes available and can, therefore, provide a 

framework for a mine wide risk assessment from pre–feasibility stage to operations stage. Unlike 

probabilistic methods, the probability distribution parameters don’t need to be defined but the network 

can learn them from available data and improve over time (Fenton and Neil, 2012). Due to the 

flexibility of BNs to work with varying extent of data, modeling uncertainties in the data and mapping 

failure processes, it provides a platform for geotechnical risk assessment in deep mines where data 

acquisition through invasive methods such as core drilling is difficult and expensive. 



7

Based on the above comparison of likelihood estimation, the suitability of each method can be 

grouped based on the extent of current data and historical data available. While current data 

represents knowledge available at present such as values for roof convergence, information about 

geological structures, rock strength etc. historical data represents the information regarding correlation 

between geotechnical parameters and geotechnical risk obtained through case studies and incident 

investigations in the past. This comparison has been shown in Figure 2. The capability of BN to 

incorporate expert makes it suitable for use when limited current and historical data is available. 

However, its capability to learn from data and update prior assumptions make it useful as the extent of 

data available increases. BN can, therefore, be used for risk assessments for the entire spectrum of 

current and historical data availability.

Figure 2: Comparison of likelihood estimation methods with respect to data availability

3. Risk modeling using Bayesian networks
This section describes the process of drawing a Bayesian network for geotechnical risk assessment, 

eliciting node probabilities and using the risk model to carry out incident investigation and arrive at the 

most likely cause. Bayesian Networks (BN) or Bayesian belief networks are based on Bayes theorem 
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as developed by Thomas Bayes (Bayes, Price and Canton, 1763). It describes the conditional 

relationship between 2 or more variables using probability as defined in Equation 4

                                                     [4]𝑃(𝐴│𝐵) = [𝑃(𝐵│𝐴) × 𝑃(𝐴)] 𝑃(𝐵)

Where P(A) and P(B) are the probability of event A and B occurring while P(A|B) and P(B|A) are 

conditional probabilities of A occurring given B has already happened and B occurring when A has 

already happened respectively. A different version of the above theorem can be expressed in terms of 

hypothesis and evidence as shown in Equation 5.

                                          [5]𝑃(𝐻𝑖│𝐸) = [𝑃(𝐸│𝐻𝑖) × 𝑃(𝐻𝑖)] [ ∑𝑖𝑃(𝐸│𝐻𝑖) × 𝑃(𝐻𝑖) ]

Where P(Hi|E) is called the posterior probability which is the probability of a hypothesis (H) being true 

and i representing the different states for the Hypothesis possible given a particular evidence (E). 

P(E|Hi) is called the likelihood which is the probability of observing an evidence (E) if the hypothesis 

were true. P(Hi) is called the priori which is the prior belief in the hypothesis. A prior belief can be an 

expert opinion such as the probability of strain burst given the rock type and local stress. Prior belief 

can also be a statistical summary such as average roof fall per year given the historical roof fall 

frequencies. P(E) is called the marginal likelihood which represents the prevalence of the evidence in 

the base population expressed through product rule as P(E│Hi)×P(Hi). This process of updating our 

prior belief in a hypothesis in light of new evidence is known as Bayesian inference. Bayesian 

inference, therefore, relies on both data and subjective assessment to make decisions and this makes 

it a better fit for mining related assessments given the limited amount of real time data that is available 

and the complex failure mechanisms behind geotechnical incidents. 

3.1. Structure of a Bayesian Network
A Bayesian network (BN) is an explicit description of the direct dependencies between a set of 

variables. This description is in the form of a directed acyclic graph (DAG) and a set of node 

probability tables (Fenton and Neil, 2012). Bayesian networks consist of a set of nodes which 

represent variables incorporated in the model. These variables are connected with arcs which 

generally indicate the direction of cause to effect. This direction of the arc depends on what the risk 

analyst is trying to model. Figure 3 shows a decision making model using a Bayesian network which 
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has been modified from the work done by Smith (2006). For the rock burst example, it is assumed that 

the two primary causes are rock type and local stress. The directions of the arrows indicate that rock 

type and local stress cause rock burst making them the parent node and rock burst the child node. 

The relationship between the parent and child nodes is defined by conditional probability tables which 

have been discussed later in the paper. Before the BN is solved, prior belief or knowledge is used to 

update the parent nodes. In case of the parent nodes rock type and local stress, this can be current 

best understanding of the rock type and local stress distribution. This network can now be used to 

forecast rock burst probability with current prior knowledge. The parent and child nodes along with 

their relationship arcs form the causal model. The use of prior knowledge and conditional probability 

tables to carry out risk assessment forms the risk assessment Bayesian network. The completed BN 

can now be updated with actual evidence from the mine. For example, if a rock burst happens and the 

rock type is known, the model can back calculate the likely local stress which may have caused the 

incident in light of the new evidence available. Use of evidence to update existing knowledge forms 

the decision making model. 

Figure 3: Decision making model using the Bayesian network. Modified from Smith (2006)
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3.2. Eliciting node probability
Once the Bayesian network is constructed by mapping the connected variable, the next step is to de-

fine the probabilistic relationship between the parent and the child nodes. This is done by the means 

of node probability tables (NPT). Node probability tables depend on the various states in which a node 

can exist. The decision to choose the appropriate number of states for the nodes depends on the 

granularity of the model, the extent of data available and whether the node in question is the final 

decision node or not. The node states for parent nodes can be qualitative such as ‘brittle’ and ‘not 

brittle’ in case of the ‘Rock Type’ node in Figure 3. BN can also use numeric nodes in the form of 

probability density and probability mass functions when sufficient data is available to construct the 

appropriate statistical distribution. For the parent nodes ‘Rock Type’ and ‘Local Stress’ in Figure 3, the 

assumed qualitative node states and node state prior probabilities are shown in Table 3:

Rock Type (R) Prior Probability

Brittle 10%

Not Brittle 90%

 

Local Stress (S) Prior Probability

< 90 MPa 20%

90 - 120 MPa 60%

> 120 MPa 20%

Table 3: Example of a node probability table and a labelled node showing rock type and local stress state probabilities

For child nodes with one or more parents, the relationship between child and parent node states is 

defined using a conditional probability table. Conditional probability table needs to consider all 

possible state combinations of parent and child nodes. In order to define the relationship between 

nodes ‘Rock Burst’, ‘Rock Type’ and ‘Local Stress’, some prior understanding of the relationship is 

required. Rock burst is a failure mode, where deformation energy is stored in the rock and then 

released rapidly resulting in local damage. The ability to store energy is reflected by how much 

induced stresses the rock is able to sustain. After the capacity is exceeded, the post-critical behavior 

can be categorized to class I ductile rock or class II brittle rock (Wawersik and Fairhurst, 1970). Rock 

bursting does not occur in ductile rock mass or fractured rock mass. Field observations of rock 

bursting should be used if available. If no suitable data is available, then an expert opinion can be 

used (Figure 4). 
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Figure 4: The spalling probability as a function of failure mode and induced rock stress. Modified from Diederichs (2007)

If a qualitative Boolean state for node ‘Rock Burst’ is assumed, the conditional probability of ‘Rock 

Burst’ is shown in Table 4.

Local Stress < 60 MPa 60 - 120 MPa > 120 MPa

Rock Type Brittle Not Brittle Brittle Not Brittle Brittle Not Brittle

TRUE 5% 0% 30% 5% 60% 30%

Rock Burst 

Prior 

probability
FALSE 95% 100% 70% 95% 40% 70%

Table 4: Prior belief of rock burst probability conditional on rock type and local stress

Each cell in the table defines a proposed conditional probability. It assumes that when rock type is 

brittle and the local stresses exceed 120 MPa then there is a 60% chance that there will be a rock 

burst event for a unit time interval. This time interval can range from weeks to years depending on the 

extent of risk assessment. Defining a node probability table manually as shown in Table 4 can become 

challenging as the number of parents for a child node grows and the number of possible states for all 

the nodes grow. Complex causal processes can often have more than three parent nodes causing the 

event, in which case the number of cells in the NPT grows. When using a BN processing software, 

these problems can be dealt with by using comparative expressions as shown in Equation 6. The 

actual syntax used for comparative equations will differ for each software (Murphy, 2017).
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𝐼𝑓 "Rock type" = "Brittle" 𝑎𝑛𝑑 "Local Stress" > 100 𝑀𝑃𝑎 𝑡ℎ𝑒𝑛 "Rock Burst" = "True" 𝑒𝑙𝑠𝑒 
                                                                                                                                                    "Rock Burst = False"

[6]

3.3. Solving Bayesian network and inferencing
A completed Bayesian network is solved using Bayes law as per Equation 3. For BN in Figure 3 with 

variable Rock Burst (RB), Local Stress (S) and Rock Type (R), the prior probability of a rock burst 

occurring is solved through the process or marginalization using Equation 7.

                              [7]𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒) =  ∑𝑅,𝑆𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒|𝑅,𝑆) × 𝑃(𝑅) × 𝑃(𝑆)

The expanded version of Equation 5 for solving the marginal probability is shown in Equation 8

𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒) = 𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒│𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒",  𝑆 = " < 90 𝑀𝑃𝑎") × 𝑃(𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒") × 𝑃(𝑆 = " < 90 𝑀𝑃𝑎")
+  𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒│𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒",  𝑆 = "90 ‒ 120 𝑀𝑃𝑎") × 𝑃(𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒") × 𝑃(𝑆 = "90 ‒ 120 𝑀𝑃𝑎") +  𝑃

(𝑅𝐵 = 𝑇𝑟𝑢𝑒│𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒",  𝑆 = " > 120 𝑀𝑃𝑎") × 𝑃(𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒") × 𝑃(𝑆 = " > 120 𝑀𝑃𝑎") +
(𝑅𝐵 = 𝑇𝑟𝑢𝑒│𝑅 = "𝑁𝑜𝑡 𝐵𝑟𝑖𝑡𝑡𝑙𝑒",  𝑆 = " < 90 𝑀𝑃𝑎") × 𝑃(𝑅 = "𝑁𝑜𝑡 𝐵𝑟𝑖𝑡𝑡𝑙𝑒") × 𝑃(𝑆 = " < 90 𝑀𝑃𝑎") +  𝑃
(𝑅𝐵 = 𝑇𝑟𝑢𝑒│𝑅 = "𝑁𝑜𝑡 𝐵𝑟𝑖𝑡𝑡𝑙𝑒",  𝑆 = "90 ‒ 120 𝑀𝑃𝑎") × 𝑃(𝑅 = "𝑁𝑜𝑡 𝐵𝑟𝑖𝑡𝑡𝑙𝑒") × 𝑃(𝑆 = "90 ‒ 120 𝑀𝑃𝑎")

                                                                                       +  𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒│𝑅 = "𝑁𝑜𝑡 𝐵𝑟𝑖𝑡𝑡𝑙𝑒",  𝑆 = " > 120 𝑀𝑃𝑎") × 𝑃(𝑅 = "𝑁𝑜𝑡 𝐵𝑟𝑖𝑡𝑡𝑙𝑒") × 𝑃(𝑆 = " > 120 𝑀𝑃𝑎") 

[8]

Solving Equation 6 with values from Table 4 gives the probability of rock burst at 10%. The interval of 

this rock burst is the same as the unit time interval assumed when defining the conditional probability. 

This BN can now be used for decision making by updating it with observed data. If for a given region 

of the mine it is confirmed that the rock type is brittle then the equation is solved using Equation 9 to 

give revised probability of failure at 31 %. 

            [9]𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒|𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒") =  ∑𝑅,𝑆𝑃(𝑅𝐵 = 𝑇𝑟𝑢𝑒|𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒",𝑆) × 𝑃(𝑅 = "𝐵𝑟𝑖𝑡𝑡𝑙𝑒") × 𝑃(𝑆)

As is evident from Equation 8, manual calculation of probabilities of BN nodes becomes complex and 

time consuming with more nodes. To counter this problem and to take advantage of better computing 

power, complex Bayesian networks can be solved using software available both under commercial 

and open source license. This paper uses AgenaRisk - Version 7 software to construct, calculate and 

carry out inference using Bayesian networks (Agena, 2017). The above mentioned BN is a simplified 
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example of how a complete BN can be used to do quick risk assessments and draw inference for 

decision making as more data is presented to the model. The next section discusses how complex 

geotechnical risk in the mining industry can be modeled using Bayesian networks.

4. Roof fall risk forecasting using Bayesian Networks
This section will consider an example of roof fall risk estimation using real data as collected by MSHA 

in United Stated for roof fall risk in coal mines. The data collected is between a period of 1979 to 1997 

across 12 anonymized underground mines in the Appalachian region (Anon, 2000). This data has 

been analyzed in the past using curve fitting the accident frequency to an appropriate probabilistic 

distribution to forecast failure (Duzgun and Einstein, 2004, Einstein, 1997). Table 5 shows the number 

of annual incidents in Mine ID 4601816. 

Roof fall in Mine ID 4601816

Year

Number 

of Roof 

Fall 

events

Year

Number 

of Roof 

Fall events

1 7 11 3

2 3 12 10

3 7 13 6

4 1 14 5

5 8 15 8

6 10 16 3

7 6 17 5

8 7 18 3

9 1 19 3

10 12   

Table 5: History of annual roof fall in Mine ID 4601816 (Anon, 2000)

Duzgun and Einstein (2004) used exponential distribution for the time between failures and Poisson 

distribution for the annual roof fall frequency (NOF) to fit the roof fall data for roof fall prediction. 

Poisson distribution is a one parameter probability distribution as shown in Equation 10 for annual roof 

fall frequency. 
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                                                 [10]𝑃(𝑁𝑂𝐹) =  𝑒 ‒ 𝜆 × (𝜆𝑁𝑂𝐹/ 𝑁𝑂𝐹!)

Where λ is the average roof fall per year and NOF is the annual roof fall frequency whose probability 

of occurrence is being evaluated. The Poisson parameter λ for the roof fall frequency for the above 

mentioned mine was 5.68 using data from Table 5. The classical approach to risk assessment is to 

use one value of λ to plot the probability distribution. Any probability distribution curve drawn using a 

single value for a statistical parameter is referred as the classical approach in this paper. The 

probability distribution of roof fall frequency using Equation 10 is shown in Figure 5 with annual roof 

fall frequency (NOF) in the x-axis and probability density (PD) in the y-axis. The probability of n 

number of roof falls can then be read from this distribution.

Figure 5: Annual roof fall frequency (NOF) of Mine ID 4601816 shown as a Poisson distribution with λ = 5.68

The Bayesian approach to solving this problem is by considering the λ parameter of the Poisson 

distribution as a variable itself. Parameter learning capabilities of BN can then be used to learn the 

lambda parameters from the population. In this BN, the parent node is λ, which was assigned a prior 

uniform probability of occurring between 0 and 20 as shown by the lambda node in Figure 6. 

Assuming a uniform probability for lambda implies that any value between 0 and 20 roof falls per year 

is equally likely for the Mine ID 4601816. The child nodes to this parent are the number of roof failures 

occurring in different years with annual roof fall frequency in the x-axis and probability distribution (PD) 

in the y-axis. The conditional probability between lambda and roof fall node is defined by the Poisson 

equation as shown in Equation 10 Without entering any existing evidence of past roof falls, the roof fall 

forecast for n number of roof falls will be the same for different years as shown in Figure 6 for roof fall 

in year 1 (Y1) and year 8 (Y8).
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Figure 6: Bayesian network showing relationship between Poisson parameter lambda and roof fall frequency

Figure 7 shows a complete parameter learning BN. The BN was drawn by first creating a parent node 

lambda which has a uniform prior probability between 0 and 20. 19 child nodes were added to the 

parent node representing the roof fall in each of the 19 years in mine ID 4601816. The relationship 

between child node roof fall and parent node lambda was defined based on Equation 10 where λ is 

obtained from the parent node. An additional roof fall node was created named ‘Predicted Roof Fall 

Frequency’. The roof fall observed in each of the 19 years was entered as evidence in each of the 19 

nodes shown as ‘Scenario’ in Figure 7. The BN was then run to revise the λ distribution from the prior 

uniform distribution to a new distribution which best fits the entered evidence. The revised λ 

distribution was then used to obtain the distribution in ‘Predicted Roof Fall Frequency Node’ as shown 

in Figure 7. As the evidence for year 20 becomes available, it can then be added as an additional child 

node which will then revise both the λ and predicted roof fall frequency distribution in light of additional 

evidence. 



16

Figure 7: Parameter learning BN to learn lambda from observed roof falls

When comparing the Bayesian distribution with the classical method, the Bayesian prediction is nearly 

identical. The difference, however, becomes more evident when data from multiple mine sites is used 

to evaluate the roof fall frequency for a particular region as proposed in the classical method. The BN 

used for mine ID 4601816 was rerun by using mine data from 8 of the 12 mines which were located in 

Kentucky. The resulting Bayesian vs. classical comparison is shown in Figure 8 along with the relative 

frequency of the observed data.

Figure 8: Classical Poisson vs. Bayesian Poisson comparison for annual roof fall (NOF) probability for all Kentucky Mines

Visual comparison of the Bayesian and classical Poisson distribution in Figure 8 indicates that the 

Bayesian distribution shown in dotted lines is closer to the observed data for NOFs 2, 3, 4 and 5 
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compared to the classical distribution and classical distribution is better for NOF 7. Overall, the 

Baysesian distribution is a better fit. A mathematical comparison of goodness of fit of competing 

distributions is discussed later in the paper. Although the Bayesian curve is a better fit compared to 

the classical method, when looked individually, both of them are a poor fit to the observed data when 

assuming a Poisson distribution. The data for Mine ID 460186 was then assumed to follow a normal 

distribution with mean and variance replacing λ as the parent node. The mean and variance 

parameters for the normal distribution were learned using parameter learning from the observed data 

for 19 years similar to the one carried out in Figure 7. The resulting Bayesian network is shown in 

Figure 9 while the comparison of classical Poisson distribution, Bayesian Normal distribution and the 

actual observed data is shown in Figure 10. 

Figure 9: Parameter learning BN to learn normal distribution parameters from observed roof falls

Figure 10: Classical Poisson vs. Bayesian normal comparison for roof fall probability in Mine ID 4601816
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The error in the forecasted data compared to the actual observation was carried out using Equation 11 

for both Poisson and Normal distribution.

          [11]𝐸 =
(𝑃𝑛 ‒ 𝑅𝐹𝑛)2

𝑅𝐹𝑛
                                                                    

Where E is the error in the forecasted data, Pn is the forecasted probability of n roof fall and RFn is the 

relative frequency of n roof fall. Using Equation 9 the average error in forecast using classical Poisson 

distribution was 55%, which was reduced to 37% when using the Bayesian Normal distribution. There 

are mathematical tests such as the Chi-square goodness of fit test that can be carried out to evaluate 

how well a proposed distribution fits the data (Ang and Tang, 1984). These tests use statistical 

parameter such as mean which is not directly observed in the population but is inferred from a sample 

population. An alternative method using BN is to evaluate the likelihood of historical data (Evidence) 

given a probability distribution (Hypothesis). This can be modeled using a BN where competing 

probability distributions form the node states for a parent node. This BN is shown in Figure 11 where 

the parent node ‘Competing Distribution’ has two possible labelled nodes namely ‘Truncated Normal’ 

and ‘Poisson’. 

Figure 11: Goodness of fit test for competing distributions using BN

The child nodes are values observed in each of the 19 years for Mine ID 4601816. The prior 

probability of the parent node is considered 50% for each representing that both the distributions are 
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equally likely to be correct. The NPT for the child node is conditional on the parent nodes as shown in 

Table 6. 

Competing 

Distribution
Truncated Normal Poisson

Y1
TNormal (5.75, 16.4, 

0, 20)
Poisson(5.68)

Table 6: Node probability table showing relation between competing distributions and roof fall frequency

The values in parenthesis for TNormal represent mean, variance, lower bound and upper bound 

respectively for the truncated Normal Distribution, which has been obtained earlier from solving the 

Bayesian network in Figure 8. This BN is solved by entering roof fall values from year 1 to 19 resulting 

in a posterior probability of 70% for the Bayesian Normal distribution and 30% for the classical 

Poisson distribution. This implies that we have a 70% probability of observing the given data under the 

Bayesian Normal distribution compared to 30% under the classical Poisson distribution. In other 

words, the observed data is more than twice as likely under the Bayesian normal distribution as 

compared to the Poisson distribution and is, therefore, a better model for forecasting roof fall 

frequency in Mine ID 4601816. This goodness of fit test using the actual observed parameters was 

carried out for all the 12 mines and Bayesian normal distribution was found to be a better fit compared 

to Classical Poisson distribution in 7 of the 12 mines. Results of this analysis are shown in Table 7. 

These results indicate that it is unlikely to have one distribution that is the best fit for roof fall data 

across different mines. One possible cause for this is that, failures across different mines can be 

triggered due to different geotechnical reasons even if the extent of human and design errors are 

discounted. Bayesian networks can overcome this problem by creating a hybrid distribution curve 

weighted on the goodness of fit test results and as discussed in the next section. The percentage 

probability values indicate which of the 2 distributions are more likely to fit the data better when 

compared with each other.

Poisson 

Parameter

Bayesian Normal 

Parameter

Probability of 

Observed Data
Mine ID

λ Mean Variance
Classical 

Poisson

Bayesian 

Normal
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4601816 5.68 5.75 16.40 30% 70%

1502709 3.26 3.42 5.06 62% 38%

1503178 3.00 6.19 20.83 10% 90%

0100758 5.36 5.39 5.84 58% 42%

1502132 1.89 2.35 4.20 68% 32%

1502502 3.80 3.85 5.31 27% 73%

1504020 1.81 2.51 5.25 81% 19%

1512941 2.43 3.10 7.12 52% 48%

1513920 4.75 5.97 20.71 18% 82%

1514492 7.15 8.21 30.41 1% 99%

3600958 3.53 4.02 10.00 19% 81%

4605978 2.70 2.25 4.21 29% 71%

Table 7: Goodness of fit test results for classical Poisson and Bayesian Normal distribution for roof fall frequency

4.1. Combining models and use of expert judgement
Table 7 reveals that five of the mines are better suited to use the Poisson distribution while the other 

seven provide a better forecast with Bayesian normal distribution. Bayesian networks provide the 

flexibility of combining multiple models to create a weighted prediction where the weights to the 

distribution are provided by the likelihood of observing data for a given distribution. Results from the 

goodness of fit test as shown in Figure 11 can, therefore, be extended to forecast roof fall frequency in 

the coming years. Ideally, any probabilistic decision making and underlying distributions should evolve 

as more observations become available. These observations can be added to the BN to update the 

prior weights of multiple models, which in this case is a Poisson and Normal distribution, to do an 

improved forecast in the coming years. When making incident forecast using empirical data alone, one 

of the basic assumptions is that the prevailing conditions when the failure happened over the years 

are same. If not, they would become part of different populations and hence cannot be modeled under 

one distribution curve. This may be true when the failures are primarily induced by geological features 

which are uniform across the mine and all other factors that can contribute to the failure remain 

constant. This, however, may not be true across all the incidents in a single mine as roof falls can be 

triggered by other factors such as over mining of pillars, seismicity, blasting, poor reinforcement etc. In 

the case of the 12 mines considered here, even though 1,141 roof falls incident may seem like a large 

data set, it only comes out to 0.4 incident data per mine per month. Therefore if the extent of the 

forecast for a given mine is limited to a monthly period, the available data is very small to make a 
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statistical prediction. This reduces even further if this needs to be evaluated for different parts of a 

mine, such as between an access drift and a working face.

Owing to the role of multiple factors which could trigger a collapse, and limited data on actual 

incidents, a hybrid BN model where expert opinion is combined with empirical data is better suited for 

incident forecasting. National Institute of Occupational Safety and Health, USA (NIOSH) developed an 

empirical roof fall risk assessment method using various observable parameters of the mine to do an 

incident forecast under Roof Fall Risk Index (RFRI) (Iannacchione et al., 2007a). These RFRI 

parameters can be combined to the existing BN to update an incident forecast. In order to account for 

the consequences of an incident as per Equation 1, each roof fall incident can be assigned a financial 

loss value. These values can differ from mine to mine depending on legislation, the extent of work 

stoppage, tangible and intangible losses etc. (Blumenstein et al., 2011). In case of these 12 mines, an 

average cost per incident can be obtained from historical data. For representation, it is assumed that 

the average roof fall incident costs €100,000 per event in Mine ID 4601816. 

Expert assessment of roof fall probability under RFRI based on mining parameters has been divided 

into 6 categories which have been further sub divided in to subcategories (Iannacchione et al., 2007b). 

To keep the complexity of the BN low, the 6 categories considered are geologic factors, mining 

induced failure, roof profile, moisture factor, microseismic clustering, and roof deformation. In order to 

maintain uniformity between data driven and expert model, the RFRI values ranging from 0 to 146 

have been instead converted to percentage values from 0 to 100 while incorporating the prescribed 

weights for each parameter as per RFRI guidelines. The inspection based parameters have ranked 

nodes on a three level scale from low to high. In monitoring parameters, microseismic clustering is 

evaluated as a Boolean node of either being present or absent while roof deformation is a labelled 

node with node states “No Deformation”, “Constant Deformation” and “Accelerated deformation”. RFRI 

method assumes that lack of deformation and microseismic clustering skews probability of roof 

collapse slightly to the lower side but their presence heavily skews the probability of failures to the 

higher side. This was incorporated in the BN using a comparative expression. A combined model of 

this nature can be designed as a ‘Multiobject Bayesian Network Model’ where elements of the model 

can be grouped into smaller components for better management (Fenton and Neil, 2012). In this case, 

the BN can be divided into roof fall frequency forecasted from data and roof fall frequency forecasted 

from expert judgement. These 2 models can then be combined to do a hybrid forecast. Data driven 

forecast can be further modeled individually for Bayesian and classical approaches. While data driven 
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model uses actual incident data from Mine ID 4601816, the node values in the expert model have 

been assumed. Figure 12 shows the hybrid model along with their marginal prior probabilities. 

Figure 12: Hybrid BN combining observed data and RFRI method to forecast roof fall probability

This model can now be used by the mine to update as more data becomes available to revise the 

annual roof fall frequency of the mine. If the marginal probabilities values (Prob.) are multiplied with 

their corresponding roof fall frequency (NOF) and the average cost per roof fall of €100,000, the 

resulting value represents current level of financial risk in the mine. These values are shown in Table 

8. The expected cost of roof failures is €518,000. It can be used as a reference cost to whether this 

can be afforded by plotting the quantified risk on an F-N diagram (Mishra et al., 2017). This value also 

helps justify expenses towards mitigating roof fall risks.

NOF Prob. Cost NOF Prob. Cost

0 12% € 0 10 4% € 41,407

1 7% € 7,448 11 3% € 33,607

2 9% € 17,363 12 2% € 26,231

3 9% € 28,381 13 2% € 19,715

4 10% € 39,402 14 2% € 23,506
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5 10% € 49,014 16 0% € 5,597

6 9% € 55,377 17 1% € 10,467

7 8% € 57,210 18 0% € 0

8 7% € 54,615 19 0% € 0

9 5% € 48,829 20 0% € 0

Total Risk Cost € 518,169

Table 7: Financial risk quantification using roof fall probabilities

4.2. Bayesian networks for real time risk management
Bayesian networks can work with varying amount of data which makes it a good tool to carry out real 

time risk assessment in mine sites. Bayesian networks can either be integrated with the existing 

information management system on sites or strategic instrumentations and monitoring can be 

implemented once the Bayesian model has been defined. The process of incorporating real time risk 

management using BNs is shown in Figure 13. The first step, define a causal model, is to define the 

best understanding of the failure mechanism. The nodes are then divided into numeric and non-

numeric nodes. For all the non-numeric nodes, appropriate numbers of node states are selected and a 

prior probability is assigned to them. For the numeric nodes, the extent and interval of data acquisition 

are evaluated. If a numeric node takes intermittent data, its prior probability can either be assumed to 

fit one of the probability distributions with pre-defined parameters or the parameters can be learnt 

using induction idiom from observed variables. For example, if Barton’s Q value (Barton, 1988) is used 

as a node to represent rock mass competency, it would be an intermittent data node with a probability 

distribution. A continuous data node deals with parameters which change in shorter and unexpected 

intervals and may therefore warrant a continuous measurement for risk management. Roof 

convergence measurement is one such node when dealing with roof collapse. If the mine site has 

installed extensometers, readings from it can be directly fed into the roof convergence node as 

evidence to update the overall roof collapse risk. If the data is not available in real time, subsequent 

cost benefit analysis needs to be carried out for type and extent of instrumentation. It is followed by 

defining conditional probabilities between child and parent nodes and marginal probabilities to 

estimate current risk levels.
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Figure 13: Real time risk management process flow using BN

Once the causal model is constructed with real time connections established to suitable nodes, it can 

be used to estimate and update risk levels in real time in sensitive areas. The completed model can be 

connected to a traffic light system of risk representation with green, orange and red showing low, 

moderate and high risk levels respectively. When evidence becomes available in the form of a realized 

event, backward inferencing can be used to update the probabilities of parent nodes. Hypothesis 

testing can then be carried out by comparing forecasted probabilities with actual evidence. Results 

from the hypothesis testing may point at missing causal factors which can then be investigated and 

included in the revised causal model. If the causal model is complete, prior probabilities can be 

updated in real time to improve the accuracy of the model.

4.3. Compatibility with the Observational Method
The Observational Method (Peck, 1969) in a modified form is one of the four allowed design methods 

in the Eurocode 7 for Geotechnical design. Variations of the observational method are used thorough 

the geotechnical field and mining (Moritz and Schubert, 2009, Miranda1a et al., 2015). Spross et al. 

(2014, 2016) have pointed out that the method lacks a society acceptable way of defining the 
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probability of failure. Showing that the actual behavior will most likely be within the acceptable limits is 

difficult in most practical use cases. The Bayesian networks have the capability of addressing both 

these needs and they can function as the reliability framework for the observational method. Bayesian 

decision framework for the observational method is suggested by Spross and Johansson (2017), who 

used decision tree analyses. In actual use, cases with multiple influencing factors, such trees can 

become overly complicated. In this paper, we have presented alternative approach using Bayesian 

networks, which can handle complicated cases. One benefit is the use of continuous variables instead 

of fixed outcomes and explicit probabilities. This allows for a range of outcomes and associated 

probabilities, which can be integrated to obtain the expected risk level. In conclusions, the Bayesian 

network approach is compatible with the observational method and it is suggested to be used in a real 

case to gain experience of the real-life performance. Combining the Observational Method and 

reliability-based methods is also possible (Bjureland et al., 2017) to fulfill the requirement to analyze 

expected behavior.

5. Conclusions
Roof fall frequency forecasting using parameter learning was demonstrated using 1,141 roof fall data 

across 12 coal mines during a time interval of 19 years in the USA. A hybrid approach of combining 

multiple probability distribution curves from historical data with expert opinion from empirical methods 

is proposed along with financial quantification of risk values. The Bayesian Network (BN) approach 

demonstrated that the proposed normal distribution curve was twice as likely to fit the observed data 

compared to the initial Poisson distribution for the studied population of roof falls. The BN provides a 

flexible framework to carry out a risk assessment from none to scarce to abundant amount of 

measured data available.

A hybrid approach to include a qualitative assessment from domain experts combined with 

measured/observed data when available to build a robust risk management framework was 

demonstrated. The biggest challenge with risk assessment is the lack of suitable data to be used for 

the probability of failure assessment and lack of historical evidence in case of a new project. In such 

cases, the risk assessment often needs to be subjective and qualitative based on expert judgement. 

Subjective opinion of experts can be incorporated as nodes in the network and a prior belief can be an 

expert opinion such as the probability of strain burst given the rock type and local stress. The 

approach is iterative and the emphasis of expert assessment will decrease as more measured data 
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becomes available. It can be concluded that Bayesian network forms a good real time risk assessment 

tool by combining expert knowledge with available data.

The parameter learning capability of Bayesian Networks was successfully applied for evaluating 

geohazards in a mining environment. The mean and variance parameters for the normal distribution 

were learned using parameter learning from the observed data for 19 years. When comparing the 

Bayesian distribution with the classical method, the Bayesian prediction is nearly identical for the 

studied mines. The difference, however, becomes more evident when data from multiple mine sites is 

used to evaluate the roof fall frequency for a particular region. The results for the studied case indicate 

that it is difficult to have a single distribution that is the best fit for roof fall data across different mines. 

One possible cause for this is that, failures across different mines can be triggered due to different 

geotechnical reasons even if the extent of human and design errors are discounted. Bayesian 

networks can overcome this problem by creating a hybrid distribution curve weighted on the goodness 

of fit test results.
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