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On the Generalization of Equivariant Graph Neural Networks

Rafał Karczewski 1 Amauri H. Souza 1 2 Vikas Garg 1 3

Abstract
E(n)-Equivariant Graph Neural Networks (EG-
NNs) are among the most widely used and suc-
cessful models for representation learning on
geometric graphs (e.g., 3D molecules). How-
ever, while the expressivity of EGNNs has been
explored in terms of geometric variants of the
Weisfeiler-Leman isomorphism test, characteriz-
ing their generalization capability remains open.
In this work, we establish the first generalization
bound for EGNNs. Our bound depicts a depen-
dence on the weighted sum of logarithms of the
spectral norms of the weight matrices (EGNN pa-
rameters). In addition, our main result reveals
interesting novel insights: i) the spectral norms
of the initial layers may impact generalization
more than the final ones; ii) ε-normalization is
beneficial to generalization — confirming prior
empirical evidence. We leverage these insights
to introduce a spectral norm regularizer tailored
to EGNNs. Experiments on real-world datasets
substantiate our analysis, demonstrating a high
correlation between theoretical and empirical gen-
eralization gaps and the effectiveness of the pro-
posed regularization scheme.

1. Introduction
Leveraging symmetries of the underlying domains/signals is
a key design principle underlying successful neural network
architectures for structured data (Bronstein et al., 2021; Kipf
& Welling, 2017; Cohen et al., 2018; Gilmer et al., 2017).
Typically, this boils down to identifying relevant symmetries
captured in the form of groups (e.g., groups of translations)
and then building predictive models by composing layers of
equivariant (or invariant) transformations to the actions of
such groups on the inputs. As classic examples, linear layers
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in convolutional neural networks (CNNs) (Fukushima, 1980;
LeCun et al., 1990) implement shift-equivariant functions;
graph neural network (GNN) (Gori et al., 2005; Scarselli
et al., 2009; Gilmer et al., 2017) layers are equivariant to
node permutations. Remarkably, equivariant/invariant archi-
tectures have led to breakthroughs in tasks such as drug dis-
covery (Stokes et al., 2020), weather modeling (Verma et al.,
2024), simulation of physical systems (Sanchez-Gonzalez
et al., 2020), traffic forecasting (Derrow-Pinion et al., 2021),
and recommender systems (Ying et al., 2018).

Recently,E(n)-equivariant graph neural networks (EGNNs)
(Satorras et al., 2021) have emerged as an efficient and pow-
erful approach for learning representations of geometric
graphs — i.e., graphs embedded in Euclidean space. EG-
NNs employ a GNN-like message-passing scheme (Gilmer
et al., 2017), where the embeddings of each node are refined
using messages from its neighbors in the graph at each layer.
Their design ensures that EGNNs inherent the permutation-
equivariance property of regular GNNs while also being
equivariant to actions of the Euclidean group E(n), which
comprise all translations, rotations, and reflections in Rn.
EGNNs have been successfully applied to molecular prop-
erty prediction (Satorras et al., 2021), drug binding structure
prediction (Stärk et al., 2022), generative modeling (Gar-
cia Satorras et al., 2021), structure-based drug design (Fu
et al., 2022) and molecular dynamics (Arts et al., 2023).

Uncovering the strengths and limits of machine learning
models from a theoretical standpoint is imperative to seed-
ing a path to novel principled approaches. For instance, one
of the most important aspects of any learning machine is its
ability to generalize beyond seen data. Outlining general-
ization guarantees for a given model class can profoundly
impact its applicability. Another relevant aspect concerns
the functions a model class can approximate. In this regard,
Joshi et al. (2023) have recently analyzed the expressive
power of EGNNs in terms of a geometric version of the
Weisfeiler-Leman isomorphism test (or 1-WL test) (Weis-
feiler & Lehman, 1968) — which has been extensively used
to study the expressivity of regular GNNs (Maron et al.,
2019; Morris et al., 2019; Sato et al., 2019; Xu et al., 2019).
In contrast, establishing theoretical guarantees for the gen-
eralization capability of EGNNs remains an open problem.

In this paper, we study the generalization of the EGNNs
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from a theoretical perspective and derive a high probability
bound for their generalization error using the PAC-learning
framework (Valiant, 1984; Mohri et al., 2012). Our analysis
reveals three new insights: (i) the generalization gap de-
pends on the weighted sum of logarithms of spectral norm
of weight matrices; (ii) bottom layers have higher weight
(aligning with common knowledge that bottom layers gener-
alize better); and (iii) ε-normalization is essential to obtain
a bound polynomial in depth instead of exponential. We
compare this bound with existing results on Multilayer Per-
ceptrons (Bartlett et al., 2017; Neyshabur et al., 2018).

Furthermore, we validate our results empirically on a real-
world problem of molecular property prediction (Ramakrish-
nan et al., 2014), a task particularly well-suited for EGNNs.
Specifically, we first establish that our theoretical bound
highly correlates with the empirical one across different
model hyperparameters. Second, we support our claims
that ε-normalization reduces the generalization gap when
increasing the depth of the model.

Finally, inspired by our theoretical findings, we propose a
new regularization method. We evaluate it experimentally
and compare it with a commonly used regularization based
on the spectral norm. We find that ours leads to lower
test loss and generalization gap across different tasks and
choices of model hyperparameters (e.g., number of layers).

In summary, our main contributions are: i) we derive the
first generalization bounds for E(n)-Equivariant Graph Neu-
ral Networks; ii) we validate our theoretical analysis with
experiments on real-world data; iii) we show theoretically
and empirically that ε-normalization helps generalization;
iv) we propose a new regularization method tailored to EG-
NNs and assess its performance on twelve regression tasks.

2. Related Work
Expressivity and Generalization of GNNs. Understand-
ing the expressivity and generalization capabilities of Graph
Neural Networks (GNNs) is crucial for their application
across diverse domains. Xu et al. (2019) demonstrated the
potential of GNNs to capture complex graph structures,
setting a benchmark for their expressivity. However, chal-
lenges in expressivity and generalization are highlighted
by Oono & Suzuki (2020) and Loukas (2020), who show
that GNNs can lose expressive power or face limitations
based on their depth and width. Theoretical advances by
Barceló et al. (2020) and Garg et al. (2020) further dissect
the logical expressiveness and representational boundaries
of GNNs, respectively. Recent studies, such as (Tang &
Liu, 2023) and (Yang et al., 2023), offer new insights into
GNNs’ generalization, suggesting inherent advantages of
GNN architectures over MLPs in graph learning tasks.

Expressivity of geometric GNNs. Joshi et al. (2023) de-
velops a geometric Weisfeiler-Leman (GWL) test to eval-
uate the expressivity of geometric GNNs, revealing how
equivariant and invariant layers affect their ability to distin-
guish complex geometric graphs. Meanwhile, Wang et al.
(2024) introduces ViSNet, an efficient model that enhances
molecular structure modeling through geometric informa-
tion, showcasing improved performance on molecular dy-
namics benchmarks.

Equivariant neural networks. Equivariant Neural Net-
works have reshaped model design by embedding data sym-
metries directly into network architectures. Introduced by
Cohen & Welling (2016), these networks ensure equivari-
ance to group actions, a concept expanded in Euclidean
spaces (Weiler & Cesa, 2019; Satorras et al., 2021) and Lie
groups (Finzi et al., 2020). For 3D data, Tensor Field Net-
works (Thomas et al., 2018) and SE(3)-Transformers (Fuchs
et al., 2020) exemplify their utility. The approach is theo-
retically deepened by Lang & Weiler (2021) and adapted
to dynamics with imperfect symmetries (Wang et al., 2022)
and particle physics (Bogatskiy et al., 2020).

Generalization of equivariant GNNs. Recent studies have
advanced our understanding of the generalization capabil-
ities of equivariant GNNs. Petrache & Trivedi (2023) ex-
plore approximation-generalization trade-offs under group
equivariance, while Behboodi et al. (2022) establish a PAC-
Bayesian generalization bound for these networks. Bulusu
et al. (2021) focus on translation-equivariant neural net-
works, and Kondor & Trivedi (2018) consider equivariance
to the action of compact groups. Additionally, Elesedy &
Zaidi (2021) demonstrate a strict generalization benefit for
equivariant models, and Liu et al. (2023) highlight how
physical inductive biases can enhance generalization. San-
nai et al. (2021) further provide improved generalization
bounds through quotient feature spaces.

3. Background
This section overviews E(n)-equivariant graph neural net-
works and provides definitions and results from learning
theory we leverage in our analysis. For readability, we
summarize the notation used in this work in Appendix A.

3.1. E(n)-Equivariant Graph Neural Network

We consider geometric graphs and denote them by G =
(V, E , C,Z), where V is the set of vertices, E ⊆ V2 is the
set of edges, C = {cv}v∈V ⊂ Rdc is an indexed set of
vertex attributes (or colors), and Z = {zv}v∈V ⊂ Rdz is an
indexed set of vertex coordinates. The neighborhood of a
vertex v is given by J (v) = {u : (u, v) ∈ E}.

Let G be a group acting on two sets X and X ′ by the
representations Φ and Ψ, respectively. We say a function
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Figure 1. Visualization of rotation equivariance of the EGNN
model. Colors depict node features.

f : X → X ′ is G-equivariant if it commutes with the
group actions, i.e., for all g ∈ G and x ∈ X , we have that
f(Φ(g)x) = Ψ(g)f(x). Here, we are interested in graph
models that are equivariant to: i) the Euclidean group E(n),
which comprises all translations, rotations, and reflections
of the n-dimensional Euclidean space; ii) the permutation
group Σn. To represent actions of these groups on graphs,
it is convenient to assume (WLOG) that V = {1, 2, . . . , n},
the sets features C, Z are organized as matrices C ∈ Rn×dc ,
Z ∈ Rn×dz , and the graph connectivity is given by the
adjacency matrix A ∈ {0, 1}n×n — in this case, we denote
graphs as G = (A,C,Z). Thus, any g ∈ Σn can be repre-
sented by a corresponding permutation matrix Pg that acts
on G by (PgAP

⊤
g , PgC,PgZ). On the other hand, each

element g ∈ E(n) (or more precisely E(dz) in our case)
is a translation (represented by a vector tg ∈ Rdz×1) fol-
lowed by a linear transformation via an orthogonal matrix
Qg ∈ Rdz×dz that acts on G by (A,C, (Z + 1nt

⊤
g )Qg),

where 1n is a n-dimensional column vector of ones.

E(n)-Equivariant GNNs (EGNNs, Satorras et al., 2021) are
arguably the most popular models for geometric graphs. The
basic idea consists of modifying message-passing GNNs
by incorporating distances between vertices based on the
geometric features into messages and recursively updating
the geometric features in an E(n)-equivariant fashion. This
way, EGNNs maintain the permutation equivariance of GNN
layers while also being equivariant to E(n).

Let h(0)v = cv and z(0)v = zv ∀v ∈ V . Also, assume that
each edge (u, v) ∈ E has an associated feature auv ∈ Rde .
At each layer ℓ = 0, 1, . . . , Legnn − 1, EGNNs compute
the incoming messages to each vertex v from its neighbors
u ∈ J (v) as

µ(ℓ)
u→v = ϕℓµ

(
h(ℓ)u , h(ℓ)v , ∥z(ℓ)u − z(ℓ)v ∥, auv

)
, (1)

where ϕℓµ is commonly parameterized by multilayer percep-
trons (MLPs). Whenever an MLP has multiple inputs, we
assume that they are concatenated into a single vector as in
the original implementation 1.

Next, the messages to each vertex v are used to recursively
update its coordinates using an auxiliary MLP ϕℓz and a
normalization term γ(z

(ℓ)
u , z

(ℓ)
v , ε) as

z(ℓ+1)
v = z(ℓ)v +

1

|J (v)|
∑

u∈J (v)

z
(ℓ)
v − z

(ℓ)
u

γ(z
(ℓ)
u , z

(ℓ)
v , ε)

ϕℓz(µ
(ℓ)
u→v)

(2)

and then combined using sum aggregation:

µ(ℓ)
v =

∑
u∈J (v)

µ(ℓ)
u→v. (3)

We then recursively update the embedding of vertex v using
a MLP ϕℓh as

h(ℓ+1)
v = ϕℓh(h

(ℓ)
v , µ(ℓ)

v ). (4)

Remark 3.1 (ε-normalization). In their original formulation
(Satorras et al., 2021), EGNNs do not include normalization,
i.e. γ(z(ℓ)u , z

(ℓ)
v , ε) ≡ 1. In our analysis, we consider ε-

normalization, i.e. γ(z
(ℓ)
u , z

(ℓ)
v , ε) = ∥z(ℓ)u − z

(ℓ)
v ∥2 + ε.

This variant is available in the original implementation, but
not discussed in the manuscript. We will see later in Section
5 that ε-normalization plays a crucial role regarding the
generalization of EGNNs.

In graph-level prediction tasks, we often obtain a repre-
sentation for the entire graph by applying a mean readout
function to the output of the last EGNN layer, i.e.,

hG =
1

|V|
∑
v∈V

h
(Legnn)
v . (5)

Finally, we send the graph embedding hG through a final
MLP ϕout to achieve the graph-level prediction

g(G) = ϕout(hG). (6)

Hereafter, we refer to the full mapping g(·) (i.e., EGNN +
final MLP) as the scoring model.

3.2. Generalization bounds via Rademacher Complexity

The first important notion is that of generalization error (or
gap), defined as the difference between the expected (or
true) and empirical risks w.r.t. an arbitrary loss function.

1github.com/vgsatorras/egnn/blob/main/
models/gcl.py, lines 203, 216
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Definition 3.1 (Generalization Error). Let f : X → Y and
L : Y ×Y → R+ be a loss function. Let S = {(xi, yi)}mi=1

be a finite collection of i.i.d. samples from a distribution D
over X × Y . The generalization error of f is defined as the
difference between the expected loss and the sample loss:

RS,L(f) = E(x,y)∼D[L(f(x), y)]−
1

m

m∑
i=1

L(f(xi), yi).

Deriving generalization bounds for a function class often
involves obtaining some measure of its size (or capacity). In
this regard, the Empirical Rademacher Complexity (ERC) is
one of the most popular tools. In particular, ERC measures
how well a function class can fit random noise.

Definition 3.2 (Empirical Rademacher complexity). Let
F ⊂ RX be a class of bounded functions and S =
{xi}mi=1 ⊆ X a fixed set of size m. The empirical
Rademacher complexity of F with respect to S is

R̂S(F) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
, (7)

where σ = [σ1, . . . , σm] is random vector of i.i.d. random
variables such that P(σi = 1) = P(σi = −1) = 0.5.

Notably, a fundamental result in learning theory bounds the
generalization error in terms of the ERC (Theorem 3.1).

Theorem 3.1 (Mohri et al. (2012)). Let L : Y ×Y → [0, 1]
be loss function and F ⊆ YX a class of functions. Then for
any δ > 0, with probability at least 1− δ over choosing a
m-sized sample S ∼ Dm from a distribution D over X ×Y ,
the following holds for any f ∈ F:

RS,L(f) ≤ 2R̂S(FL) + 3

√
log 2

δ

2m
, (8)

where

FL = {(x, y) 7→ L(f(x), y) : f ∈ F}.

From Theorem 3.1, finding a generalization bound reduces
to bounding the ERC. We will use standard tools for bound-
ing ERC, for which we need to introduce a concept of a
covering number.

Definition 3.3 (Covering number). Let Θ be a set and ∥ · ∥
be a norm. We say that Θ is r-covered by a set Θ′, with
respect to ∥ · ∥, if for all θ ∈ Θ there exists θ′ ∈ Θ′ with
∥θ − θ′∥ ≤ r. We define the covering number of Θ as the
cardinality of the smallest Θ′ that r-covers Θ, and denote it
by N (Θ, r, ∥ · ∥).

Importantly, the result in Lemma 3.1 relates the ERC of a
function class with its covering number.

Lemma 3.1 (Bartlett et al. (2017)). Let F ⊆ [−β, β]X be
a class of functions taking values in [−β, β]. Also, assume
that f0 ∈ F , where f0(x) = 0 ∀x ∈ X . Define ∥f∥∞ =
supx∈X ∥f(x)∥2. Then, for any set S = {xi}mi=1 ⊆ X

R̂S(F) ≤ inf
α>0

(
4α√
m

+
12

m

∫ 2β
√
m

α

√
logN (F , r, ∥ · ∥∞)dr

)
.

(9)

We will analyze function classes parametrized by weight
matrices, and the following result regarding the bound of
the covering number of sets of matrices will be useful.

Lemma 3.2 (Chen et al. (2020)). Let W = {W ∈ Rd1×d2 :
∥W∥2 ≤ λ} be a set of matrices with bounded spectral
norm, and r > 0 a constant. The covering number of W
can be bounded in terms of the Frobenius norm ∥ · ∥F as

N (W, r, ∥ · ∥F ) ≤
(
1 + 2

min{
√
d1,

√
d2}λ

r

)d1d2
.

(10)

4. Main results
To derive our generalization bound, we make the following
mild assumptions.

Assumption 4.1 (Inputs are bounded). The elements of the
input graphs are contained in an Euclidean ball with a radius
β. More specifically, there exists a β ≥ 1 such that for all
graphsG = (V, E , C,Z), and all v ∈ V and (v, u) ∈ E with
feature vector avu, we have that

max{∥cv∥2, ∥zv − zu∥2, ∥auv∥2} ≤ β.

Assumption 4.2 (EGNNs are parametrized with MLPs).
For all ℓ = 0, . . . , Legnn, the functions ϕℓz, ϕ

ℓ
h, and ϕℓµ are

MLPs with identical number of layers, denoted by Lϕ. The
scoring model ϕout is also an MLP with Lout layers. In
addition, all activation functions ψ(·) are Kψ-Lipschitz, for
some Kψ ≥ 1, and ψ(0) = 0.

Assumption 4.3 (Weights have bounded spectral norm).
Let Wϕ

i denote the weight matrix of the i-th (linear) layer
of the MLP ϕ. For all layers i of the MLPs ϕ ∈ {ϕℓz}

Legnn

ℓ=0 ∪
{ϕℓh}

Legnn

ℓ=0 ∪ {ϕℓµ}
Legnn

ℓ=0 ∪ {ϕout}, there exists a βi,ϕ ≥ 1 such
that ∥Wϕ

i ∥2 ≤ βi,ϕ.

These assumptions are standard in the generalization litera-
ture (Chen et al., 2020; Bartlett et al., 2017). In particular,
commonly used activation functions are 1-Lipschitz and
vanish at 0 (e.g. ReLU, tanh, LeakyReLU, SiLU, and ELU).

Our derivation of generalization bounds proceeds through
the following steps: (i) Show that the scoring function is
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Figure 2. Overview of our results and their dependencies.

Lipschitz continuous w.r.t model parameters; (ii) Show that
the Cartesian product of coverings of weight matrices de-
fines a covering of function class of scoring models; and
(iii) Use Lemmas 3.2, 3.1 and Theorem 3.1 to establish
the generalization bound. We present a diagram of our
theoretical contributions and their dependencies in Figure 2.

4.1. Lemmata

We begin by proving that the outputs of the EGNN model
remain bounded as long as inputs are bounded:

Lemma 4.1 (Boundedness of EGNN embeddings). Con-
sider an EGNN model as described in Equations (1)-(4).
For any graph G, we have that ∀v ∈ V , and u ∈ J (v):

max{∥h(ℓ)v ∥2, ∥z(ℓ)v −z(ℓ)u ∥2, D∥µ(ℓ)
u→v∥2} ≤ Cβ(ℓ), (11)

where D is the maximum degree in the graph, C = 8Dβ,

and β(ℓ) = (20D)ℓ
(∏ℓ

i=0M
(i)
)2

with

M (ℓ) = max
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∏
i=1

Kψβi,ϕ (12)

where βi,ϕ is the bound of ∥W i
ϕ∥2, and Lϕ, the number of

layers of ϕ, and Kψ the Lipschitz constant of the activation
function.

The proof consists of deriving a recursive relation for the
bound as a function of the number of layers, determining its
growth rate, and an induction argument (Appendix C).

Next, we show that ε-normalization preserves Lipschitz
continuity:

Lemma 4.2 (Lipschitz continuity preserved under
ε-normalization). Let f be a Kf -Lipschitz function and

∥ · ∥ any norm. Then the ε-normalized function

fε(·) :=
f(·)

∥f(·)∥+ ε

is Kfε -Lipschitz with Kfε = 3Kf/ε.

The proof involves a telescoping trick and two forms of
triangle inequality. See Appendix D for the detailed proof.
Now, we move on to the key result that will be used to derive
the generalization bounds for the EGNN model, namely
Lipschitz continuity of the EGNN node embeddings with
respect to model parameters:

Lemma 4.3 (Lipschitz continuity of EGNN wrt params).
Consider EGNNs as defined in Equations (1)-(4). Let
h
(ℓ)
v (W) denote the embedding of node v at layer ℓ produced

by an EGNN with parameters W = (Wϕh
,Wϕz ,Wϕµ),

where Wϕ = {Wϕ
i }

Lϕ

i=1 — recall that Wϕ
i denotes the

weight matrix of the i-th (linear) layer of the MLP ϕ.

For any two EGNNs with parameters W and W̃ , we have

∥h(ℓ)v (W)− h(ℓ)v (W̃)∥2 ≤ CQℓB(ℓ)distℓ(W, W̃), (13)

where

distℓ(W, W̃) =

ℓ∑
ℓ′=1

∑
ϕ∈{ϕℓ′−1

z ,ϕℓ′−1
h ,ϕℓ′

µ }

Lϕ∑
i=1

∥Wϕ
i −W̃ϕ

i ∥2,

D, C, β(ℓ), M (ℓ) are as defined in Lemma 4.1, and

Q = 224D2 max

{
C

ε
, 1

}

B(ℓ) =

(
ℓ∏
i=0

M (i)

)3 ℓ−1∏
i=0

β(i),

(14)

with the convention that an empty product is equal to 1.

The proof is in Appendix E.

Finally, we can show that the scoring model defined in
Equation 6 is also Lipschitz continuous w.r.t. its parameters.

Lemma 4.4 (Lipschitz continuity w.r.t. parameters of the
scoring model). Let W(g) = (W,Wϕout

) denote the pa-
rameters of the scoring model g as defined in Equation (6),
with W as defined in Lemma 4.3, Wϕout = {Wϕout

i }Lout
i=1 and

g(G;W(g)) the output of the scoring model with parame-
ters W(g). Then, g is Lipschitz continuous w.r.t. the model
parameters:

∥g(G;W(g))− g(G; W̃(g))∥ ≤ Kgdist(W(g), W̃(g)),

where

dist(W(g), W̃(g)) = distLegnn(W, W̃)+

Lout∑
i=1

∥Wϕout
i −W̃ϕout

i ∥2

5
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C, Q, B(·) are as defined in Lemma 4.3 and

Kg = 2

(
Lout∏
i=1

Kψβi,ϕout

)
CQLegnnB(Legnn).

The proof can be found in Appendix F. We now proceed to
our main result on the generalization of the scoring model.

4.2. Generalization bounds

We have developed all the necessary machinery to derive the
generalization bound. To simplify notation, we introduce
the stretching factor of a weight matrix:

κ(W ) := max{1, ∥W∥2}, (15)

which we will see plays an important role in the bound.
Proposition 4.1 (Generalization bound of the scoring
model). Let G be the space of geometric graphs as de-
fined in Section 3.1, Y = [0, 1] the space of labels,
g : G → R the scoring model as defined in (6) and
L(ŷ, y) = min

{
(ŷ − y)2, 1

}
the loss function. Then for

any δ > 0, with probability at least 1− δ over choosing a
sample S ∼ Dm from a distribution D over G × Y of size
m, the following holds:

RS,L(g) = O

d√L√
m

√
∆+

√
log 2

δ√
m

 , (16)

where L = 3LϕLegnn + Lout is the total number of weight
matrices, d is the maximum width across all layers, and

∆ =

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

γi,ϕ +

Lout∑
i=1

γi,ϕout

γi,ϕ = wi,ϕ log(Γ · κ(Wϕ
i ))

wi,ϕ =

{
1 for ϕ = ϕout

Legnn − ℓ+ 1 for ϕ ∈ {ϕℓh, ϕℓz, ϕℓµ}

Γ =
dmLDβKψ

ε̂
.

To prove it, we (i) use the fact that g is Lipschitz continuous
w.r.t. weight matrices to show that an appropriately chosen
matrix covering yields the covering of the class of scoring
models (Lemma G.1); (ii) Use Lemma 3.2 to bound the
covering number; (iii) Leverage Lemma 3.1 to bound the
ERC and; (iv) Establish the bound via Theorem 3.1. The
exact bound together with the detailed proof can be found
in Appendix G.

5. Discussion
In this section, we discuss the derived generalization bound
and some of its implications.

Table 1. Comparison with existing generalization bounds. We
compare with bounds for MLPs (Bartlett et al., 2017; Neyshabur
et al., 2018) and Equivariant EGNNs (G-EGNNs) (Behboodi et al.,
2022). All values are given in Big-O notation.

d (width) W (weights) L (depth)

MLPs (2017) log(d)
∏L
i=1 ∥Wi∥2

(∑L
i=1

(
∥Wi∥2,1

∥Wi∥2

)2/3
)3/2

1

MLPs (2018)
√
d log(d)

∏L
i=1 ∥Wi∥2

√∑L
i=1

∥Wi∥2
F

∥Wi∥2
2

L
√

log(L)

G-EGNNs (2022) d
√
log(d)

∏L
i=1 ∥Wi∥2

√∑L
i=1

∥Wi∥2
F

∥Wi∥2
2

L
√

log(L)

EGNNs (ours) d
√
log(d)

∑L
i=1 log(max{1, ∥Wi∥2}) L

√
log(L)

Comparison with existing bounds. In Table 1 we compare
the derived bound with existing bounds for MLPs (Bartlett
et al., 2017; Neyshabur et al., 2018). Most notably, our
bound depends on the sum of logarithms of the spectral
norms of weight matrices as opposed to their product, which
makes it less sensitive to high spectral norms. On the other
hand, since our bound ignores weight matrices with a norm
lower than 1, it cannot get arbitrarily small. We provide
more details on the comparison in Appendix H. Note that
it is difficult to directly compare different bounds as they
make different assumptions (Xu & Wang, 2018).

ε-normalization. In our proofs and experiments we as-
sumed the EGNN layer to be defined by equations (1)-(4)
with γ(z(ℓ)u , z

(ℓ)
v , ε) := ∥z(ℓ)u − z

(ℓ)
v ∥2 + ε. The original

formulation (Satorras et al., 2021) includes this variant in
the implementation, but the manuscript and experiments
consider only the unnormalized model corresponding to
γ(z

(ℓ)
u , z

(ℓ)
v , ε) ≡ 1. In subsequent work (Garcia Satorras

et al., 2021) it has been found empirically that using the
normalized variant with ε = 1 yields more stable results.

Note that ε-normalization does not affect the equivariance
properties nor the expressivity. The former follows since
γ(z

(ℓ)
u , z

(ℓ)
v , ε) isE(n)-invariant while the latter from µ

(ℓ)
u→v

depending on ∥z(ℓ)u − z
(ℓ)
v ∥2. We now argue theoretically

why normalization plays a crucial role in generalization.

Concretely, following the same reasoning as in the proof of
Proposition 4.1, we obtain the bound, which is exponential
in the number of layers as opposed to polynomial in the case
of the normalized model. See Appendix I for more details.
We provide additional empirical evidence in Section 6.

Spectral norm. Proposition 4.1 shows that the general-
ization gap depends on the spectral norm of weight matri-
ces, which is generally well known (Bartlett et al., 2017;
Neyshabur et al., 2018; Behboodi et al., 2022). However,
our derivation of the bound for EGNNs reveals new insights.
First, not all layers contribute equally. From Equation 16 it
can be seen that the bottom layers have a higher weight than
the top layers. This aligns with the intuition that bottom
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layers learn more abstract, high-level information, which
makes them generalize better as opposed to top layers learn-
ing more fine-grained, task-specific information.

Second, the dependence on the spectral norms is logarithmic.
This implies that the bound is less sensitive to outliers than
e.g., the sum of spectral norms. Furthermore, from the
definition of κ (Equation 15), we see that weight matrices
with spectral norms lower than 1 are ignored, implying that
decreasing the norms further yields no additional gains.

Dependence on the training set. We note that the spectral
norms of the weight matrices depend on the (size of the)
training set, and in general, one cannot decouple this de-
pendence for an already trained network, e.g., we cannot
assume the spectral norm would not change as we vary the
number of examples while evaluating the effect of sample
complexity (i.e., size of the training set size) on generaliza-
tion. The dependence of the spectral norm on the training
set, learning algorithm, etc. was not considered in this study.

Spectral regularization. Multiple regularization methods
relying on the spectral norm have been proposed, including
the sum of squared spectral norms (Yoshida & Miyato, 2017)
or explicitly enforcing the spectral norm to be 1 (Miyato
et al., 2018). We propose a new regularization method
that leverages the findings unique to our study, i.e. explicit
minimization of the generalization gap:

R(W) =
∑
i,ϕ

wi,ϕ log(κ(W
ϕ
i )). (17)

Since log is concave, this can intuitively be considered an
example of concave regularization (Zhang & Zhang, 2012),
which generally favors sparse solutions. To see this, note
that the derivative of log is 1

x , and therefore gradient-based
optimization will prioritize decreasing norms of weight
matrices, whose norm is the lowest. However, note that
in our context, instead of log we use log ◦κ, which is
no longer concave in the entire domain. We empirically
evaluate R in Section 6.

Impact of equivariance. Since the EGNN network without
the equivariant update (Equation 2) reduces to a regular
message passing GNN, we can compare our bound to the
Rademacher bound for message passing GNNs (Garg et al.,
2020). To make that comparison possible, we need to make
the following simplifications to our setting: we assume that
(1) each MLP has only a single hidden layer; (2) different
GNN layers share the same weight matrices; and (3) there
is no output MLP ϕout.

We include three variants of the MP-GNN bound: MP-
GNNa, MP-GNNb, and MP-GNNc, because Garg et al.
(2020) report a different dependence on various parameters,
depending on the value of the percolation compexity, which
depends on the Lipschitz constants of non-linearities and
the spectral norm. See Table 2 for the comparison.

We observe that the EGNN bound enjoys a better depen-
dence on the node degree D, the spectral norm of the
weights W , and possibly better (but certainly not worse)
on the node depth d. However, it has a worse dependence
on the depth L. We leave further in-depth analysis of the
impact of E(n)-equivariance for future work.

Table 2. Comparison with message-passing GNNs (MP-GNNs)
(Garg et al., 2020). The a, b, c subscripts denote different model
variants. All values are given in Big-O notation.

d (width) D (node degree) W (weights) L (depth)

MP-GNNa d
√
log d D

√
logD κ(W )3

√
log κ(W )

√
logL

MP-GNNb d
√
log d D

√
logD κ(W )3

√
log κ(W ) L

√
logL

MP-GNNc d
√
d log d D

√
logD κ(W )3

√
log κ(W )

√
L logL

EGNNs (ours) d
√
log d

√
logD

√
log κ(W ) L

√
L logL

6. Experiments
This section substantiates our theoretical analysis with ex-
periments on real-world regression tasks. In particular, we
first consider the generalization behavior of EGNNs as a
function of the model variables (e.g., number of layers). We
demonstrate that our bounds highly correlate with empir-
ical generalization gaps. We also empirically assess the
beneficial impact of the ε-normalization on generalization,
validating our findings. Lastly, we show the efficacy of regu-
larized EGNNs obtained from our analysis, highlighting per-
formance gains compared to another regularization method
and empirical risk minimizers (no regularization). Our code
is available at https://github.com/Aalto-QuML/
GeneralizationEGNNs.

Evaluation setup. We consider four molecular property
prediction tasks from the QM9 dataset (Ramakrishnan et al.,
2014). From the data split available in (Satorras et al., 2021;
Anderson et al., 2019), we select a subset of 2K molecules
for training and use the entire val/test partitions with ap-
proximately 17K and 13K molecules, respectively. We train
all models for 1000 epochs using the Adam optimizer. We
run five independent trials with different seeds. We provide
further implementation details in Appendix J.

Empirical vs. theoretical generalization gaps. To demon-
strate the practical relevance of the bounds extracted from
our analysis, we contrast the empirical and theoretical gen-
eralization gaps in terms of: i) the spectral norms across
epochs; ii) the maximum number of hidden units (hidden
dim, d); and iii) the number of EGNN layers (Legnn). We
also report Pearson correlation coefficients between the gen-
eralization curves. Figure 3 shows the results (mean and
standard deviation) over five runs.

Regarding the spectral norm (top row in Figure 3), we ob-
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Figure 3. Empirical vs. theoretical generalization gaps as a function of the spectral norms over epochs (top), width (middle), and number
of EGNN layers (bottom). Overall, our bounds (black curves) highly correlate with the empirical generalization gap (blue curves). The
variables εHOMO,∆ε, µ, and εLUMO denote molecular properties on the QM9 dataset.
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Figure 4. Impact of ε-normalization in terms of the number of
layers. Using ε-normalization yields smaller generalization gaps
as the depth (Legnn) increases.

serve that our bound can capture the trend of the empirical
gap, which settles down at epochs 500 (εHOMO and µ) or
250 (∆ε and εLUMO). In 3 out of 4 tasks, the average cor-
relation is greater than 0.8. We can observe an even better
correlation when looking at the dependence on hidden di-
mensionality and number of layers — in 7 out of 8 cases, the
correlation is over 0.9. These outcomes support our theory.

To evaluate the impact of the ε-normalization, we run ex-
periments with and without the normalization for Legnn ∈
{1, 3, 5, 7}. Figure 4 reports bar plots for each property. As
our theory suggests, ε-normalization positively affects gen-
eralization, especially as we increase the number of layers.

Spectral norm regularization. To assess the effectiveness
of our bound on the spectral norm as a regularizer
(Equation 17), we compare it against a baseline called
SPECAVG that takes the average of the spectral norm over
all layers as the regularization term. Using the average
(or sum) of spectral norms (or their square) is a common
practice (Yoshida & Miyato, 2017). We also report results
without regularization. Again, we consider regression tasks
from QM9. For both regularizers, we select the optimal
penalization factor λ ∈ {1, 1e-3, 1e-5, 1e-7} using the
validation set. Details are given in Appendix J.

Table 3 shows the results in terms of test error (MSE)
and generalization gap for different numbers of layers and
tasks. Remarkably, our method significantly outperforms
SPECAVG in virtually all cases. Also, our approach was
able to produce both smaller test errors and generalization
gaps than the baselines. Overall, SPECAVG achieves better
results than models without regularization.

Additional results. In Appendix K, we provide additional
visualizations and experiments. More specifically, we show
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Table 3. Test mean squared error (MSE) and generalization gap on QM9 for different regularization methods. ‘None’ denotes EGNNs
without regularization. We denote the best-performing methods in bold. In almost all cases, employing the method derived from our
theoretical analysis leads to the smallest test errors and generalization gaps. Results are multiplied by 100 for better visualization.

Test MSE Generalization gap

Task Legnn None SPECAVG Ours None SPECAVG Ours

εHOMO

3 5.72 ± 0.48 5.43 ± 0.37 5.76 ± 0.51 3.61 ± 0.50 3.33 ± 0.49 3.71 ± 0.48
5 9.66 ± 1.32 8.45 ± 1.28 6.71 ± 0.48 8.77 ± 1.40 7.29 ± 1.42 3.71 ± 1.56
7 11.13 ± 0.73 9.25 ± 0.70 7.90 ± 0.50 10.45 ± 0.90 8.33 ± 1.02 4.43 ± 1.12

∆ε
3 12.40 ± 1.34 12.36 ± 1.34 11.61 ± 1.09 8.02 ± 1.52 7.94 ± 1.46 6.00 ± 1.90
5 25.42 ± 7.53 25.38 ± 7.77 17.39 ± 1.37 22.92 ± 6.87 22.91 ± 7.04 10.22 ± 5.17
7 28.49 ± 4.35 26.28 ± 5.00 23.93 ± 2.73 27.46 ± 3.83 25.14 ± 4.34 18.16 ± 7.39

µ
3 30.56 ± 1.18 30.03 ± 0.98 29.56 ± 0.47 8.11 ± 1.96 7.78 ± 1.47 5.76 ± 1.76
5 30.94 ± 1.95 30.48 ± 2.26 28.43 ± 0.26 12.91 ± 2.27 11.80 ± 1.38 8.47 ± 2.85
7 31.73 ± 2.46 31.35 ± 2.59 28.86 ± 0.73 18.42 ± 1.71 17.40 ± 1.66 9.79 ± 4.45

εLUMO

3 5.68 ± 0.45 5.68 ± 0.45 5.11 ± 0.36 3.07 ± 0.53 3.07 ± 0.53 2.46 ± 0.41
5 7.51 ± 1.76 6.74 ± 1.07 5.85 ± 0.56 6.01 ± 1.68 5.17 ± 0.90 3.75 ± 1.07
7 7.87 ± 1.03 7.45 ± 0.73 7.16 ± 0.90 7.03 ± 1.17 6.71 ± 0.88 5.58 ± 2.29

the behavior of generalization gaps over training to illustrate
that gaps from our method decrease with the values of λ, as
expected. In contrast, SPECAVG has little effect in reducing
the gap compared to non-regularized models for most
penalization values. We also compare our regularizer with
SPECAVG on other eight QM9 regression tasks. Overall,
our method achieves smaller generalization gaps and com-
petitive MSE values. Lastly, we report the average time per
epoch of our regularizer for different tasks to show its com-
putational overhead. For the largest model, the regularized
vs. non-regularized time ratio is approximately 1.5.

7. Conclusion
In this work, we analyzed the generalization capabilities of
E(n)-Equivariant Graph Neural Networks (EGNNs) from
a theoretical perspective. We provided high probability
bounds of the generalization error and discussed in detail
its implications. Specifically, its logarithmic dependence on
the spectral norm of weight matrices, the uneven impact of
different layers, and the importance of ε-normalization. We
performed extensive experiments to validate our theory.

Additionally, we proposed a novel regularization method
inspired by our theoretical results. We show experimentally
that it helps reduce both the test loss and the generalization
gap and performs better than the commonly used sum of
spectral norms of weight matrices.
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A. Notation

Table 4: Summary of notation and abbreviations.

Notation Description

L loss function

G = (V, E , C,Z) Geometric graph

V Set of nodes in the graph

E ⊆ V2 Neighbourhood structure

C Set of node features

Z Set of node coordinates

f ∈ F f is a function from the function class F
S, m S is a training set consisting of m input-output samples, i.e., S = {(xi, yi)}mi=1

∥W∥2 spectral norm of a matrix W ∈ Rd1×d2

∥x∥2 Euclidean norm of a vector x ∈ Rd

D Maximal degree in the graph G

ϕ Multilayer Perceptron (MLP)

ψ Activation function

Kψ ≥ 1 Lipschitz constant of ψ

Wϕ
i weight matrix of i-th layer of ϕ

βi,ϕ ≥ 1 bound of the spectral norm of Wϕ
i , i.e., ∥Wϕ

i ∥2 ≤ βi,ϕ

Lϕ, Lout, Legnn Number of layers of ϕ, # layers of the scoring MLP ϕout, # layers of the EGNN

ϕℓ−1
h , ϕℓ−1

z , ϕℓµ MLPs in the ℓ-th EGNN layer

h
(ℓ)
v , z

(ℓ)
v , µ

(ℓ)
v , µ

(ℓ)
u→v EGNN embeddings and messages after ℓ layers (Equations (1-4))

β ≥ 1 Bound of the input - Assumption 4.1

B. Lipschitz Continuity of Multilayer Perceptrons
In this section, we show that multilayer perceptrons (MLPs) are Lipschitz continuous, both with respect to their inputs as
well as their parameter matrices. We begin with defining the MLP.

Definition B.1 (MLP). A Multi-layer perceptron ϕ with Lϕ layers and activation function ψ is given by

ϕ = fWϕ
Lϕ

◦ · · · ◦ fWϕ
1
,

where Wϕ
i is the i-th weight matrix and f is given by:

fW (x) = ψ(Wx),

where ψ is the activation function. Additionally, we will write

ϕk = fWϕ
k
◦ · · · ◦ fWϕ

1

to denote the output of the k-th layer (ϕ ≡ ϕLϕ
) and

ϕ(x) = ϕ(x;Wϕ)

for Wϕ = {Wϕ
i }

Lϕ

i=1 whenever we want to emphasize which weight matrices were used.
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Consider now a function given by
f(W,b)(x) = ψ(Wx+ b).

One can augment the input space by appending a constant 1 to x to obtain x̃ and redefining the weight matrix as W̃ =
concat(W, b). Thus the function can be expressed as

f(W,b)(x) = fW̃ (x̃).

Given this representation, we can assume WLOG that b = 0.

Lemma B.1 (Boundedness of MLP). Consider an MLP ϕ with Lϕ layers, where ψ is the activation function, Wϕ
i is the

i-the weight matrix. Suppose that ψ is Kψ-Lipschitz and satisfying ψ(0) = 0. Then for all x:

∥ϕ(x)∥2 ≤

Lϕ∏
i=1

Kψ∥Wϕ
i ∥2

 ∥x∥2.

Proof.

∥ϕ(x)∥2 = ∥ϕLϕ
(x)∥2 = ∥ψ(Wϕ

Lϕ
ϕLϕ−1(x))∥2 = ∥ψ(Wϕ

Lϕ
ϕLϕ−1(x))− ψ(0)∥2 ≤ Kψ∥Wϕ

Lϕ
ϕLϕ−1(x)∥2

≤ Kψ∥Wϕ
Lϕ

∥2∥ϕLϕ−1(x)∥2 ≤ · · · ≤ ∥x∥2
Lϕ∏
i=1

Kψ∥Wϕ
i ∥2.

Lemma B.2 (Lipschitz continuity of MLP w.r.t. model parameters). Consider two Lϕ-layer MLPs given by two sets of
parameters: Wϕ and W̃ϕ sharing the same activation function ψ with Lipschitz constant Kψ and ψ(0) = 0. Assume further
that all weight matrices have bounded norm, i.e. for all i, max{∥Wϕ

i ∥2, ∥W̃ϕ
i ∥2} ≤ βi,ϕ for some βi,ϕ ≥ 1. Then for all

x,Wϕ, W̃ϕ:

∥ϕ(x;Wϕ)− ϕ(x; W̃ϕ)∥2 ≤ ∥x∥2

Lϕ∏
i=1

Kψβi,ϕ

 dist(Wϕ, W̃ϕ), (18)

where

dist(Wϕ, W̃ϕ) :=

Lϕ∑
i=1

∥Wϕ
i − W̃ϕ

i ∥2.

Proof. For presentation clarity, we assume throughout this proof ∥∥ ≡ ∥∥2 - spectral norm for matrices and Euclidean norm
for vectors.

∥ϕ(x;Wϕ)− ϕ(x; W̃ϕ)∥ = ∥ψ(Wϕ
Lϕ
ϕLϕ−1(x;Wϕ))− ψ(W̃ϕ

Lϕ
ϕLϕ−1(x; W̃ϕ))∥

≤ Kψ∥Wϕ
Lϕ
ϕLϕ−1(x;Wϕ)− W̃ϕ

Lϕ
ϕLϕ−1(x; W̃ϕ)∥.

Now using the telescoping technique:

∥Wϕ
Lϕ
ϕLϕ−1(x;Wϕ)− W̃ϕ

Lϕ
ϕLϕ−1(x; W̃ϕ)∥

≤ ∥Wϕ
Lϕ
ϕLϕ−1(x;Wϕ)−Wϕ

Lϕ
ϕLϕ−1(x; W̃ϕ)∥+ ∥Wϕ

Lϕ
ϕLϕ−1(x; W̃ϕ)− W̃ϕ

Lϕ
ϕLϕ−1(x; W̃ϕ)∥

≤ ∥Wϕ
Lϕ

∥ · ∥ϕLϕ−1(x;Wϕ)− ϕLϕ−1(x; W̃ϕ)∥+ ∥ϕLϕ−1(x; W̃ϕ)∥ · ∥Wϕ
Lϕ

− W̃ϕ
Lϕ

∥

≤ ∥Wϕ
Lϕ

∥ · ∥ϕLϕ−1(x;Wϕ)− ϕLϕ−1(x; W̃ϕ)∥+ ∥x∥

Lϕ−1∏
i=1

Kψ∥W̃ϕ
i ∥

 ∥Wϕ
Lϕ

− W̃ϕ
Lϕ

∥.
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Therefore

∥ϕ(x;Wϕ)− ϕ(x; W̃ϕ)∥ ≤ ∥x∥KLϕ

ψ

Lϕ−1∏
i=1

∥W̃ϕ
i ∥

 ∥Wϕ
Lϕ

− W̃ϕ
Lϕ

∥+Kψ∥Wϕ
Lϕ

∥ · ∥ϕLϕ−1(x;Wϕ)− ϕLϕ−1(x; W̃ϕ)∥

and by induction we get

∥ϕ(x;Wϕ)− ϕ(x; W̃ϕ)∥ ≤ ∥x∥KLϕ

ψ

Lϕ∑
i=1

ai∥Wϕ
i − W̃ϕ

i ∥,

where

ai =

i−1∏
j=1

∥W̃ϕ
j ∥

 Lϕ∏
j′=i+1

∥Wϕ
j′∥

 ≤
Lϕ∏
j=1

βj,ϕ.

Lemma B.3 (Lipschitz continuity of MLP w.r.t. model input). Let ϕ be a Lϕ-layer MLP with a Kψ-Lipschitz activation
function ψ. Then ϕ is Lipschitz continuous with respect to the input:

∥ϕ(x)− ϕ(y)∥2 ≤

Lϕ∏
i=1

Kψ∥Wϕ
i ∥2

 ∥x− y∥2.

Proof. Below we assume ∥ · ∥ ≡ ∥ · ∥2.

∥ϕ(x)− ϕ(y)∥ = ∥ϕLϕ
(x)− ϕLϕ

(y)∥ ≤ Kψ∥Wϕ
Lϕ

∥ · ∥ϕLϕ−1(x)− ϕLϕ−1(y)∥

≤ · · · ≤

Lϕ∏
i=1

Kψ∥Wϕ
i ∥

 ∥x− y∥.

Lemma B.4 (Multiple inputs MLP). Suppose ϕ, a Lϕ-layer MLP takes multiple inputs x1, . . . , xK by concatenating them
into a single vector x = CONCAT([x1, . . . , xK ]). Then the output is bounded:

∥ϕ(x1, . . . , xK)∥2 ≤
√
K

Lϕ∏
i=1

Kψ∥Wϕ
i ∥2

 K∑
i=1

∥xi∥2.

Proof. Claim follows from Lemma B.1 and the inequality:

∥x∥2 =
√
∥x1∥22 + · · ·+ ∥xK∥22 ≤

√
Kmax

i
∥xi∥2 ≤

√
K

K∑
i=1

∥xi∥2.

C. Proof of Lemma 4.1
In this section, we prove Lemma 4.1. We recall it for completeness:

Lemma 4.1 (Boundedness of EGNN embeddings). Consider an EGNN model as described in Equations (1)-(4). For any
graph G, we have that ∀v ∈ V , and u ∈ J (v):

max{∥h(ℓ)v ∥2, ∥z(ℓ)v − z(ℓ)u ∥2, D∥µ(ℓ)
u→v∥2} ≤ Cβ(ℓ), (11)
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where D is the maximum degree in the graph, C = 8Dβ, and β(ℓ) = (20D)ℓ
(∏ℓ

i=0M
(i)
)2

with

M (ℓ) = max
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∏
i=1

Kψβi,ϕ (12)

where βi,ϕ is the bound of ∥W i
ϕ∥2, and Lϕ, the number of layers of ϕ, and Kψ the Lipschitz constant of the activation

function.

Proof. In the proof we assume ∥ · ∥ ≡ ∥ · ∥2. First note that (11) implies that for all v and ℓ: ∥µ(ℓ)
v ∥ ≤ Cβ(ℓ) due to the

definition of µ(ℓ)
v as a sum aggregation of µ(ℓ)

u→v. We will show the result by induction. Note that, from Lemmas B.3 and
B.4:

∥µ(0)
u→v∥ = ∥ϕ0µ

(
h(0)u , h(0)v , ∥z(0)u − z(0)v ∥, auv

)
∥ ≤ 2(2β + β + β)M (0) ≤ 1

D
CK(0)

and thus establishing the base case of ℓ = 0. Now assume that (11) holds for ℓ′ < ℓ.

From Lemmas B.3, B.4 and the inductive hypothesis:

∥h(ℓ)v ∥ ≤
√
2M (ℓ)(∥h(ℓ−1)

v ∥+ ∥µ(ℓ−1)
v ∥) ≤ 2

√
2M (ℓ)Cβ(ℓ−1) ≤ Cβ(ℓ),

where the last inequality holds because 2
√
2 ≤ 20D and M (ℓ) ≤

(
M (ℓ)

)2
. Similarly for z:

z(ℓ)u − z(ℓ)v = z(ℓ−1)
u − z(ℓ−1)

v

+
1

|J (u)|
∑

u′∈J (u)

z
(ℓ−1)
u − z

(ℓ−1)
u′

∥z(ℓ−1)
u − z

(ℓ−1)
u′ ∥+ ε

ϕℓ−1
z (µ

(ℓ−1)
u′→u)

− 1

|J (v)|
∑

v′∈J (v)

z
(ℓ−1)
v − z

(ℓ−1)
v′

∥z(ℓ−1)
v − z

(ℓ−1)
v′ ∥+ ε

ϕℓ−1
z (µ

(ℓ−1)
v′→v )

(19)

and therefore:
∥z(ℓ)u − z(ℓ)v ∥ ≤ Cβ(ℓ−1) + 2M (ℓ)Cβ(ℓ−1) ≤ 3M (ℓ)Cβ(ℓ−1) ≤ Cβ(ℓ),

because 3 ≤ 20D. Finally for µ:

∥µ(ℓ)
u→v∥ ≤ 2M (ℓ)

(
∥h(ℓ)v ∥+ ∥h(ℓ)u ∥+ ∥z(ℓ)v − z(ℓ)u ∥+ ∥auv∥

)
≤ 2M (ℓ)

(
4
√
2M (ℓ) + 1 + 2M (ℓ) + 1

)
Cβ(ℓ−1)

≤ 20
(
M (ℓ)

)2
Cβ(ℓ−1) =

1

D
Cβ(ℓ),

where the last inequality holds because 4 + 4
√
2 ≤ 10.

D. Proof of Lemma 4.2
In this section we prove Lemma 4.2. We recall it for completeness:

Lemma 4.2 (Lipschitz continuity preserved under ε-normalization). Let f be a Kf -Lipschitz function and ∥ · ∥ any norm.
Then the ε-normalized function

fε(·) :=
f(·)

∥f(·)∥+ ε

is Kfε -Lipschitz with Kfε = 3Kf/ε.
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Proof.

∥fε(x)− fε(y)∥ =

∥∥∥∥ f(x)

∥f(x)∥+ ε
− f(y)

∥f(y)∥+ ε

∥∥∥∥ =

∥∥∥∥ (∥f(y)∥+ ε)f(x)− (∥f(x)∥+ ε)f(y)

(∥f(x)∥+ ε)(∥f(y)∥+ ε)

∥∥∥∥
≤ ε

(∥f(x)∥+ ε)(∥f(y)∥+ ε)
∥f(x)− f(y)∥+

∥∥∥∥∥f(y)∥f(x)− ∥f(x)∥f(y)
(∥f(x)∥+ ε)(∥f(y)∥+ ε)

∥∥∥∥
≤ Lf

ε
∥x− y∥+

∥∥∥∥∥f(y)∥f(x)− ∥f(x)∥f(y)
(∥f(x)∥+ ε)(∥f(y)∥+ ε)

∥∥∥∥ .
Focusing on the numerator of the last term:

∥∥f(y)∥f(x)− ∥f(x)∥f(y)∥ = ∥∥f(y)∥f(x)− ∥f(x)∥f(x) + ∥f(x)∥f(x)− ∥f(x)∥f(y)∥
≤ |∥f(y)∥ − ∥f(x)∥| · ∥f(x)∥+ ∥f(x)∥ · ∥f(x)− f(y)∥
≤ ∥f(x)∥ (Lf∥x− y∥+ |∥f(x)∥ − ∥f(y)∥|)
≤ 2∥f(x)∥Lf∥x− y∥,

where in the last step we used the fact that |∥a∥ − ∥b∥| ≤ ∥a− b∥. Therefore:∥∥∥∥∥f(y)∥f(x)− ∥f(x)∥f(y)
(∥f(x)∥+ ε)(∥f(y)∥+ ε)

∥∥∥∥ ≤ 2∥f(x)∥Lf∥x− y∥
(∥f(x)∥+ ε)(∥f(y)∥+ ε)

≤ 2Lf
ε

∥x− y∥

and

∥fε(x)− fε(y)∥ ≤ 3Lf
ε

∥x− y∥.

E. Proof of Lemma 4.3
In this section we prove Lemma 4.3. We recall it for completeness:

Lemma 4.3 (Lipschitz continuity of EGNN wrt params). Consider EGNNs as defined in Equations (1)-(4). Let h(ℓ)v (W)
denote the embedding of node v at layer ℓ produced by an EGNN with parameters W = (Wϕh

,Wϕz
,Wϕµ

), where
Wϕ = {Wϕ

i }
Lϕ

i=1 — recall that Wϕ
i denotes the weight matrix of the i-th (linear) layer of the MLP ϕ.

For any two EGNNs with parameters W and W̃ , we have

∥h(ℓ)v (W)− h(ℓ)v (W̃)∥2 ≤ CQℓB(ℓ)distℓ(W, W̃), (13)

where

distℓ(W, W̃) =

ℓ∑
ℓ′=1

∑
ϕ∈{ϕℓ′−1

z ,ϕℓ′−1
h ,ϕℓ′

µ }

Lϕ∑
i=1

∥Wϕ
i − W̃ϕ

i ∥2,

D, C, β(ℓ), M (ℓ) are as defined in Lemma 4.1, and

Q = 224D2 max

{
C

ε
, 1

}

B(ℓ) =

(
ℓ∏
i=0

M (i)

)3 ℓ−1∏
i=0

β(i),

(14)

with the convention that an empty product is equal to 1.

Proof. Throughout the proof we assume ∥ · ∥ ≡ ∥ · ∥2. We will show the result by induction. We will show a stronger
statement, namely that all h(ℓ)v , z

(ℓ)
v and µ(ℓ)

u→v are Lipschitz continuous. The base case obviously holds for h(0)v and z(0)v as
they do not depend on model parameters.
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We see from Lemma B.2 and our assumption that inputs are bounded:

∥µ(0)
u→v(W)− µ(0)

u→v(W̃)∥ ≤M (0)8βdist(Wϕ0
µ
, W̃ϕ0

µ
) ≤ 1

D
CM (0)dist(Wϕ0

µ
, W̃ϕ0

µ
) ≤ 1

D
CM (0)dist0(W, W̃) (20)

and thus establishing the base case for induction. Assume now that for all ℓ′ < ℓ there exist K(ℓ′)
h ,K

(ℓ′)
z ,K

(ℓ′)
µ such that for

all u, v and all W, W̃:

∥h(ℓ′)v (W)− h(ℓ
′)

v (W̃)∥ ≤ K
(ℓ′)
h distℓ′(W, W̃)

∥z(ℓ′)v (W)− z(ℓ
′)

v (W̃)∥ ≤ K(ℓ′)
z distℓ′(W, W̃)

∥µ(ℓ′)
u→v(W)− µ(ℓ′)

u→v(W̃)∥ ≤ 1

D
K(ℓ′)
µ distℓ′(W, W̃).

(21)

Note that (21) implies that ∥µ(ℓ′)
v (W)− µ

(ℓ′)
v (W̃)∥ ≤ K

(ℓ′)
µ distℓ′(W, W̃). We start with h and proceed with a telescoping

argument:

∥h(ℓ)v (W)− h(ℓ)v (W̃)∥
=
∥∥∥ϕℓ−1

h (h(ℓ−1)
v (W), µ(ℓ−1)

v (W);Wϕℓ−1
h

)− ϕℓ−1
h (h(ℓ−1)

v (W̃), µ(ℓ−1)
v (W̃); W̃ϕℓ−1

h
)
∥∥∥

≤
∥∥∥ϕℓ−1

h (h(ℓ−1)
v (W), µ(ℓ−1)

v (W);Wϕℓ−1
h

)− ϕℓ−1
h (h(ℓ−1)

v (W), µ(ℓ−1)
v (W); W̃ϕℓ−1

h
)
∥∥∥

+
∥∥∥ϕℓ−1

h (h(ℓ−1)
v (W), µ(ℓ−1)

v (W); W̃ϕℓ−1
h

)− ϕℓ−1
h (h(ℓ−1)

v (W̃), µ(ℓ−1)
v (W̃); W̃ϕℓ−1

h
)
∥∥∥

Now we use Lemmas B.2, B.4 and 4.1 to bound the first term and Lemma B.3 to bound the second

∥h(ℓ)v (W)− h(ℓ)v (W̃)∥
≤

√
2M (ℓ)(∥h(ℓ−1)

v (W)∥+ ∥µ(ℓ−1)
v (W)∥)dist(Wϕℓ−1

h
, W̃ϕℓ−1

h
)

+
√
2M (ℓ)

(
∥h(ℓ−1)

v (W)− h(ℓ−1)
v (W̃)∥+ ∥µ(ℓ−1)

v (W)− µ(ℓ−1)
v (W̃)∥

)
≤ 2

√
2M (ℓ)Cβ(ℓ−1)dist(Wϕℓ−1

h
, W̃ϕℓ−1

h
) +

√
2M (ℓ)(K

(ℓ−1)
h +K(ℓ−1)

µ )distℓ−1(W, W̃)

≤
√
2M (ℓ)(2Cβ(ℓ−1) +K

(ℓ−1)
h +K(ℓ−1)

µ )distℓ(W, W̃).

(22)

Moving on to z:

∥z(ℓ)v (W)− z(ℓ)v (W̃)∥
= ∥z(ℓ−1)

v (W)− z(ℓ−1)
v (W̃)∥

+
1

|J (v)|
∑

u∈J (v)

∥∥∥∥∥ z
(ℓ−1)
v (W)− z

(ℓ−1)
u (W)

∥z(ℓ−1)
v (W)− z

(ℓ−1)
u (W)∥+ ε

ϕℓ−1
z (µ(ℓ−1)

u→v (W);Wϕℓ−1
z

)

− z
(ℓ−1)
v (W̃)− z

(ℓ−1)
u (W̃)

∥z(ℓ−1)
v (W̃)− z

(ℓ−1)
u (W̃)∥+ ε

ϕℓ−1
z (µ(ℓ−1)

u→v (W̃); W̃ϕℓ−1
z

)

∥∥∥∥∥
≤ K(ℓ−1)

z distℓ−1(W, W̃)

+
1

|J (v)|
∑

u∈J (v)

∥∥∥∥∥ z
(ℓ−1)
v (W)− z

(ℓ−1)
u (W)

∥z(ℓ−1)
v (W)− z

(ℓ−1)
u (W)∥+ ε

∥∥∥∥∥ ∥ϕℓ−1
z (µ(ℓ−1)

u→v (W);Wϕℓ−1
z

)− ϕℓ−1
z (µ(ℓ−1)

u→v (W̃); W̃ϕℓ−1
z

)∥

+
1

|J (v)|
∑

u∈J (v)

∥ϕℓ−1
z (µ(ℓ−1)

u→v (W̃); W̃ϕℓ−1
z

)∥
∥∥∥∥∥ z

(ℓ−1)
v (W)− z

(ℓ−1)
u (W)

∥z(ℓ−1)
v (W)− z

(ℓ−1)
u (W)∥+ ε

− z
(ℓ−1)
v (W̃)− z

(ℓ−1)
u (W̃)

∥z(ℓ−1)
v (W̃)− z

(ℓ−1)
u (W̃)∥+ ε

∥∥∥∥∥ .
Now, since (from the inductive assumption) z(ℓ−1)

v , z
(ℓ−1)
u are both Lipschitz continuous with a constant K(ℓ−1)

z , it
follows that z(ℓ−1)

v − z
(ℓ−1)
u is Lipschitz continuous with a constant 2K(ℓ−1)

z . Therefore, using Lemma 4.2, we know that

18
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z(ℓ−1)
v −z(ℓ−1)

u

∥z(ℓ−1)
v −z(ℓ−1)

u ∥+ε
is Lipschitz continuous with a constant 6K(ℓ−1)

z

ε and we can bound:

∥∥∥∥∥ z
(ℓ−1)
v (W)− z

(ℓ−1)
u (W)

∥z(ℓ−1)
v (W)− z

(ℓ−1)
u (W)∥+ ε

− z
(ℓ−1)
v (W̃)− z

(ℓ−1)
u (W̃)

∥z(ℓ−1)
v (W̃)− z

(ℓ−1)
u (W̃)∥+ ε

∥∥∥∥∥ ≤ 6K
(ℓ−1)
z

ε
distℓ−1(W, W̃).

and consequently:

∥z(ℓ)v (W)− z(ℓ)v (W̃)∥ ≤
(
K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
M (ℓ)∥µ(ℓ−1)

u→v (W̃)∥
)
distℓ−1(W, W̃)

+
1

|J (v)|
∑

u∈J (v)

∥ϕℓ−1
z (µ(ℓ−1)

u→v (W);Wϕℓ−1
z

)− ϕℓ−1
z (µ(ℓ−1)

u→v (W̃); W̃ϕℓ−1
z

)∥.
(23)

To bound the last term we perform additional telescoping step:

∥ϕℓ−1
z (µ(ℓ−1)

u→v (W);Wϕℓ−1
z

)− ϕℓ−1
z (µ(ℓ−1)

u→v (W̃); W̃ϕℓ−1
z

)∥
≤ ∥ϕℓ−1

z (µ(ℓ−1)
u→v (W);Wϕℓ−1

z
)− ϕℓ−1

z (µ(ℓ−1)
u→v (W); W̃ϕℓ−1

z
)∥

+ ∥ϕℓ−1
z (µ(ℓ−1)

u→v (W); W̃ϕℓ−1
z

)− ϕℓ−1
z (µ(ℓ−1)

u→v (W̃); W̃ϕℓ−1
z

)∥
≤M (ℓ)∥µ(ℓ−1)

u→v (W)∥dist(Wϕℓ−1
z
, W̃ϕℓ−1

z
) +M (ℓ)∥µ(ℓ−1)

u→v (W)− µ(ℓ−1)
u→v (W̃)∥.

(24)

Now from Lemma 4.1 we have ∥µ(ℓ−1)
u→v (W)∥ ≤ Cβ(ℓ−1) and by applying (24) to (23), we obtain:

∥z(ℓ)v (W)− z(ℓ)v (W̃)∥ ≤
(
K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
M (ℓ)Cβ(ℓ−1) +M (ℓ)Cβ(ℓ−1) +M (ℓ)K(ℓ−1)

µ

)
distℓ(W, W̃)

≤M (ℓ)

(
Cβ(ℓ−1) +K(ℓ−1)

µ +K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
Cβ(ℓ−1)

)
distℓ(W, W̃)

Finally, for µ we will simplifiy notation with ω(ℓ)
uv (W) := (h

(ℓ)
u (W), h

(ℓ)
v (W), ∥z(ℓ)u (W)− z

(ℓ)
v (W)∥, auv):

∥∥∥µ(ℓ)
u→v(W)− µ(ℓ)

u→v(W̃)
∥∥∥ =

∥∥∥ϕℓµ (ω(ℓ)
uv (W);Wϕℓ

µ

)
− ϕℓµ

(
ω(ℓ)
uv (W̃); W̃ϕℓ

µ

)∥∥∥
=
∥∥∥ϕℓµ (ω(ℓ)

uv (W);Wϕℓ
µ

)
− ϕℓµ

(
ω(ℓ)
uv (W); W̃ϕℓ

µ

)
+ ϕℓµ

(
ω(ℓ)
uv (W); W̃ϕℓ

µ

)
− ϕℓµ

(
ω(ℓ)
uv (W̃); W̃ϕℓ

µ

)∥∥∥
≤
∥∥∥ϕℓµ (ω(ℓ)

uv (W);Wϕℓ
µ

)
− ϕℓµ

(
ω(ℓ)
uv (W); W̃ϕℓ

µ

)∥∥∥+ ∥∥∥ϕℓµ (ω(ℓ)
uv (W); W̃ϕℓ

µ

)
− ϕℓµ

(
ω(ℓ)
uv (W̃); W̃ϕℓ

µ

)∥∥∥
≤M (ℓ)∥ω(ℓ)

uv (W)∥dist(Wϕℓ
µ
, W̃ϕℓ

µ
) +M (ℓ)∥ω(ℓ)

uv (W)− ω(ℓ)
uv (W̃)∥.

We will now determine bounds for ∥ω(ℓ)
uv (W)∥ and ∥ω(ℓ)

uv (W)− ω
(ℓ)
uv (W̃)∥. Starting with the first:

∥ω(ℓ)
uv (W)∥ ≤ 2

(
∥h(ℓ)u (W)∥+ ∥h(ℓ)v (W)∥+ ∥z(ℓ)u (W)− z(ℓ)v (W)∥+ ∥auv∥

)
≤ 8Cβ(ℓ) = 160D

(
M (ℓ)

)2
Cβ(ℓ−1)

(25)
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and the second:

∥ω(ℓ)
uv (W)− ω(ℓ)

uv (W̃)∥
≤ 2

(
∥h(ℓ)u (W)− h(ℓ)u (W̃)∥+ ∥h(ℓ)v (W)− h(ℓ)v (W̃)∥

)
+ 2

(∣∣∣∥z(ℓ)u (W)− z(ℓ)v (W)∥ − ∥z(ℓ)u (W̃)− z(ℓ)v (W̃)∥∥
∣∣∣)

≤ 2
(
∥h(ℓ)u (W)− h(ℓ)u (W̃)∥+ ∥h(ℓ)v (W)− h(ℓ)v (W̃)∥+ ∥z(ℓ)u (W)− z(ℓ)u (W̃)∥+ ∥z(ℓ)v (W)− z(ℓ)v (W̃)∥

)
≤ 4

√
2M (ℓ)(2Cβ(ℓ−1) +K

(ℓ−1)
h +K(ℓ−1)

µ )distℓ(W, W̃)

+ 4M (ℓ)

(
Cβ(ℓ−1) +K(ℓ−1)

µ +K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
Cβ(ℓ−1)

)
distℓ(W, W̃)

≤ 4M (ℓ)

(
4Cβ(ℓ−1) + 2K

(ℓ−1)
h + 3K(ℓ−1)

µ +K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
Cβ(ℓ−1)

)
distℓ(W, W̃)

and therefore:

∥∥∥µ(ℓ)
u→v(W)− µ(ℓ)

u→v(W̃)
∥∥∥ ≤ 160D

(
M (ℓ)

)3
Cβ(ℓ−1)distℓ(W, W̃)

+4
(
M (ℓ)

)2(
4Cβ(ℓ−1) + 2K

(ℓ−1)
h + 3K(ℓ−1)

µ +K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
Cβ(ℓ−1)

)
distℓ(W, W̃).

(26)

In summary, we have the following recursive relationships:

K
(ℓ)
h =

√
2M (ℓ)(2Cβ(ℓ−1) +K

(ℓ−1)
h +K(ℓ−1)

µ )

K(ℓ)
z =M (ℓ)

(
Cβ(ℓ−1) +K(ℓ−1)

µ +K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
Cβ(ℓ−1)

)
1

D
K(ℓ)
µ = 160D

(
M (ℓ)

)3
Cβ(ℓ−1)

+ 4
(
M (ℓ)

)2(
4Cβ(ℓ−1) + 2K

(ℓ−1)
h + 3K(ℓ−1)

µ +K(ℓ−1)
z +

6K
(ℓ−1)
z

ε
Cβ(ℓ−1)

)
(27)

We now determine the growth rates of the constants. Specifically, we will now show by induction that

K
(ℓ)
h ≤ CQℓB(ℓ)

K(ℓ)
µ ≤ CQℓB(ℓ)

K(ℓ)
z ≤ CQℓB(ℓ),

(28)

where Q = 224D2 max{Cε , 1} and B(ℓ) =
(∏ℓ

i=0M
(i)
)3∏ℓ−1

i=0 β
(i) with the convention that empty product is equal to 1.

To show the base case, we recall that K(0)
h = K

(0)
z = 0 and K(0)

µ = CM (0). Now, assuming that (28) holds for all ℓ′ < ℓ,
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we will show that it also holds for ℓ. Using the fact that M (ℓ) ≥ 1, β(ℓ) ≥ 1 and B(ℓ) ≥ 1 for all ℓ, we obtain:

K
(ℓ)
h ≤

√
2M (l)

(
2Cβ(ℓ−1) + 2CQℓ−1B(ℓ−1)

)
≤ 4

√
2CQℓ−1

(
M (ℓ)

)3
β(ℓ−1)B(ℓ−1)

≤ 4
√
2max

{
C

ε
, 1

}
CQℓ−1B(ℓ) ≤ CQℓB(ℓ)

K(ℓ)
z ≤M (ℓ)

(
Cβ(ℓ−1) + 2CQℓ−1B(ℓ−1) +

6

ε
CQℓ−1B(ℓ−1)Cβ(ℓ−1)

)
≤
(
1 + 2 +

6C

ε

)
CQℓ−1

(
M (ℓ)

)3
β(ℓ−1)B(ℓ−1) ≤ 9max

{
C

ε
, 1

}
CQℓ−1B(ℓ) ≤ CQℓB(ℓ)

K(ℓ)
µ ≤ 160D2

(
M (ℓ)

)3
Cβ(ℓ−1) + 4D

(
M (ℓ)

)2(
4Cβ(ℓ−1) + 6CQℓ−1B(ℓ−1) +

6

ε
Cβ(ℓ−1)CQℓ−1B(ℓ−1)

)
≤
(
160D2 + 16D + 24D +

24DC

ε

)
CQℓ−1

(
M (ℓ)

)3
β(ℓ−1)B(ℓ−1)

≤
(
160D2 + 64D

)
max

{
C

ε
, 1

}
CQℓ−1B(ℓ) ≤ CQℓB(ℓ)

(29)

F. Proof of Lemma 4.4
In this section, we prove Lemma 4.4. We recall it for completeness:

Lemma 4.4 (Lipschitz continuity w.r.t. parameters of the scoring model). Let W(g) = (W,Wϕout) denote the parameters
of the scoring model g as defined in Equation (6), with W as defined in Lemma 4.3, Wϕout = {Wϕout

i }Lout
i=1 and g(G;W(g))

the output of the scoring model with parameters W(g). Then, g is Lipschitz continuous w.r.t. the model parameters:

∥g(G;W(g))− g(G; W̃(g))∥ ≤ Kgdist(W(g), W̃(g)),

where

dist(W(g), W̃(g)) = distLegnn(W, W̃) +

Lout∑
i=1

∥Wϕout
i − W̃ϕout

i ∥2

C, Q, B(·) are as defined in Lemma 4.3 and

Kg = 2

(
Lout∏
i=1

Kψβi,ϕout

)
CQLegnnB(Legnn).

Proof. In the proof we assume ∥ · ∥ ≡ ∥ · ∥2. From Equation 5: hG = 1
|V|
∑
v∈V h

(Legnn)
v and therefore hG retain Lipschitz

continuity of each individual h(Legnn)
v with the same constant. It holds that:

∥g(G;W(g))− g(G; W̃(g))∥ = ∥ϕout(hG(W);Wϕout)− ϕout(hG(W̃); W̃ϕout)∥
≤ ∥ϕout(hG(W);Wϕout)− ϕout(hG(W); W̃ϕout)∥+ ∥ϕout(hG(W); W̃ϕout)− ϕout(hG(W̃); W̃ϕout)∥

≤
(
Lout∏
i=1

Kψβi,ϕout

)
∥hG(W)∥dist(Wϕout , W̃ϕout) +

(
Lout∏
i=1

Kψβi,ϕout

)
∥hG(W)− hG(W̃)∥

≤
(
Lout∏
i=1

Kψβi,ϕout

)
C(β(Legnn) +QLegnnB(Legnn))dist(W(g), W̃(g))

≤ 2

(
Lout∏
i=1

Kψβi,ϕout

)
CQLegnnB(Legnn)dist(W(g), W̃(g)).
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G. Proof of Proposition 4.1
In this section, we prove our main result, i.e. Proposition 4.1. We begin with a useful lemma:

Lemma G.1 (Weight matrices’ coverings yield a function class covering). Let F = {fW1,...,Wn
:Wi ∈ Wi} be a class of

functions parametrized with n weight matrices. Suppose further that for all Wi, W̃i:

∥fW1,...,Wn − fW̃1,...,W̃n
∥ = sup

x∈X
∥fW1,...,Wn(x)− fW̃1,...,W̃n

(x)∥ ≤ K
(
∥W1 − W̃1∥F + · · ·+ ≤ ∥Wn − W̃n∥F

)
.

Then

N (F , ε, ∥ · ∥∞) ≤
n∏
i=1

N
(
Wi,

ε

nK
, ∥ · ∥F

)
.

Proof. Let Ci be an
(
ε
nK

)
-covering of Wi such that |Ci| = N

(
Wi,

ε
nK , ∥ · ∥F

)
and define

C = {fW1,...,Wn
:Wi ∈ Ci} .

Let fW1,...,Wn
∈ F . For all i we can choose Ŵi ∈ Ci such that ∥Wi − Ŵi∥F ≤ ε

nK . Therefore

∥fW1,...,Wn
− fŴ1,...,Ŵn

∥∞ ≤ K
(
∥W1 − Ŵ1∥F + · · ·+ ∥Wn − Ŵn∥F

)
≤ ε

and fŴ1,...,Ŵn
∈ C. Hence, C is an ε-covering of F w.r.t. ∥ · ∥∞ and

N (F , ε, ∥ · ∥∞) ≤ |C| =
n∏
i=1

|Ci| =
n∏
i=1

N
(
Wi,

ε

nK
, ∥ · ∥F

)
.

We now move on to proving Proposition 4.1:

Proposition 4.1 (Generalization bound of the scoring model). Let G be the space of geometric graphs as defined in Section
3.1, Y = [0, 1] the space of labels, g : G → R the scoring model as defined in (6) and L(ŷ, y) = min

{
(ŷ − y)2, 1

}
the loss

function. Then for any δ > 0, with probability at least 1− δ over choosing a sample S ∼ Dm from a distribution D over
G × Y of size m, the following holds:

RS,L(g) = O

d√L√
m

√
∆+

√
log 2

δ√
m

 , (16)

where L = 3LϕLegnn + Lout is the total number of weight matrices, d is the maximum width across all layers, and

∆ =

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

γi,ϕ +

Lout∑
i=1

γi,ϕout

γi,ϕ = wi,ϕ log(Γ · κ(Wϕ
i ))

wi,ϕ =

{
1 for ϕ = ϕout

Legnn − ℓ+ 1 for ϕ ∈ {ϕℓh, ϕℓz, ϕℓµ}

Γ =
dmLDβKψ

ε̂
.

Proof. From Theorem 3.1 we can see that in order to bound RS,L it suffices to find a bound for R̂S(FL), where

FL = {(x, y) 7→ L(f(x), y) : f ∈ F}
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and
F = {g(·,W(g)) : ∀ℓ ∀ϕ ∈ {ϕℓh, ϕℓz, ϕℓµ, ϕout} ∀i ∥Wϕ

i ∥ ≤ βi,ϕ}

is the family of scoring models with bounded spectral norm of weight matrices. The primary tool that we will use for
bounding R̂S(FL) is Lemma 3.1. However, to use it directly, the assumption f0 ∈ FL would need to be satisfied, which is
very restrictive as it assumes the existence of a perfect classifier in the model class. Instead, we observe that

FL = {(x, y) 7→ 1− f̂(x, y) : f̂ ∈ F̂L}, (30)

where
F̂L = {(x, y) 7→ 1− L(f(x), y) : f ∈ F}.

It may seem tautological, but now there exists f̂0 ∈ F̂L, because we can take f0 ≡ −1 and since y ∈ [0, 1], it holds that
∀(x, y) f̂0(x, y) := 1− L(f0(x), y) = 0. We can thus use Lemma 3.1 for F̂L and obtain

R̂S(F̂L) ≤ inf
α>0

(
4α√
m

+
12

m

∫ 2
√
m

α

√
logN (F̂L, r, ∥ · ∥∞)dr

)
.

Now since (x, y) 7→ 1− L(x, y) is 2-Lipschitz in its first argument, an r/2 covering of F yields an r covering of F̂L and
therefore

logN (F̂L, r, ∥ · ∥) ≤ logN (F , r
2
, ∥ · ∥∞).

Furthermore, from Equation (30), one can easily check that R̂S(FL) = R̂S(F̂L) and in summary it holds that

R̂S(FL) ≤ inf
α>0

(
4α√
m

+
12

m

∫ 2
√
m

α

√
logN (F , r

2
, ∥ · ∥∞)dr

)
.

However, since N (F , r, ∥ · ∥∞) is a decreasing function of r we see that∫ 2
√
m

α

√
logN

(
F , r

2
, ∥ · ∥∞

)
dr ≤

∫ 2
√
m

α

√
logN

(
F , α

2
, ∥ · ∥∞

)
dr ≤

∫ 2
√
m

0

√
logN

(
F , α

2
, ∥ · ∥∞

)
dr

= 2
√
m

√
logN

(
F , α

2
, ∥ · ∥∞

)
.

By choosing α = 1√
m

, we obtain a simplified bound

R̂S(FL) ≤
4

m
+

24√
m

√
logN

(
F , 1

2
√
m
, ∥ · ∥∞

)
. (31)

We now move on to finding a bound for logN
(
F , 1

2
√
m
, ∥ · ∥∞

)
. From Lemma 4.4:

∥g(·;W(g))− g(·; W̃(g))∥∞ = sup
G

∥g(G;W(g))− g(G; W̃(g))∥2

≤ Kgdist(W(g), W̃(g))

= Kg

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

∥Wϕ
i − W̃ϕ

i ∥2 +
Lout∑
i=1

∥Wϕout
i − W̃ϕout

i ∥2


≤ Kg

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

∥Wϕ
i − W̃ϕ

i ∥F +

Lout∑
i=1

∥Wϕout
i − W̃ϕout

i ∥F

 ,
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where Kg = 2
(∏Lout

i=1Kψβi,ϕout

)
CQLegnnB(Legnn) and the last inequality comes from the relationship between the spectral

and Frobenius norms. Thus, for L = 3LegnnLϕ + Lout (total number of weight matrices), we can use Lemma G.1, i.e. that it

suffices to find an
(

r
LKg

)
-covering for each weight matrix Wϕ

i and their cartesian product yields an r-covering of F :

logN (F , r, ∥ · ∥∞) ≤
Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

logN
(
Wϕ
i ,

r

LKg
, ∥ · ∥F

)
+

Lout∑
i=1

logN
(
Wϕout
i ,

r

LKg
, ∥ · ∥F

)
.

Now, since the spectral norm of weight matrices is bounded, we can use Lemma 3.2 and obtain

logN
(
Wϕ
i ,

r

LKg
, ∥ · ∥F

)
≤ d2 log

(
1 + 2

√
dLKgβi,ϕ

r

)
,

where d = max
Legnn

ℓ=0 maxϕ∈{ϕℓ−1
h ,ϕℓ−1

z ,ϕℓ
µ,ϕout} max

Lϕ

i=1 dim(Wϕ
i ) is the width of the scoring model and dim(W ) =

max(d1, d2) for W ∈ Rd1×d2 . Choosing r = 1
2
√
m

yields

logN
(
F , 1

2
√
m
, ∥ · ∥∞

)
≤ d2

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

log
(
1 + 4

√
dmLKgβi,ϕ

)

+ d2
Lout∑
i=1

log
(
1 + 4

√
dmLKgβi,ϕout

)

≤ d2

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

log
(
5
√
dmLKgβi,ϕ

)
+

Lout∑
i=1

log
(
5
√
dmLKgβi,ϕout

)
(32)

and plugging into (31) gives

R̂S(FL) ≤
4

m
+

24d√
m

√√√√√√√
Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

log
(
5
√
dmLKgβi,ϕ

)
+

Lout∑
i=1

log
(
5
√
dmLKgβi,ϕout

)
︸ ︷︷ ︸

=:Σ

. (33)

We now proceed to simplify the bound. Note that

Σ = L log(5
√
dmL) + L log(Kg) +

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

log (βi,ϕ) +

Lout∑
i=1

log (βi,ϕout)

and

log(Kg) = log(2) +

Lout∑
i=1

log(Kψβi,ϕout) + log(C) + Legnn log(Q) + log(B(Legnn))

= log(16) + log(Dβ) +

Lout∑
i=1

log(Kψβi,ϕout)

+ Legnn log

(
224D2 max

{
8Dβ

ε
, 1

})

+ 3

Legnn∑
ℓ=0

log(M (ℓ)) +

Legnn−1∑
ℓ=0

log

(20D)ℓ

(
ℓ∏
i=0

M (i)

)2


≤ C1 log

(
Dβ

ε̂

)
Legnn(Legnn − 1)

2
+

Lout∑
i=1

log(Kψβi,ϕout) + 3

Legnn∑
ℓ=0

ℓ∑
i=0

log(M (i)),
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where C1 does not depend on the parameters of the model and ε̂ = min{1, ε}.
Since M (ℓ) = maxϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}
∏Lϕ

i=1Kψβi,ϕ, we have

log(M (i)) ≤
∑

ϕ∈{ϕi−1
h ,ϕi−1

z ,ϕi
µ}

Lϕ∑
j=1

log(Kψβj,ϕ)

and

log(Kg) ≤ C2 log

(
Dβ

ε̂

)
Legnn(Legnn − 1)

2
+

Lout∑
i=1

log(Kψβi,ϕout)

+ 3

Legnn∑
ℓ=0

(Legnn − ℓ+ 1)
∑

ϕ∈{ϕℓ−1
h ,ϕℓ−1

z ,ϕℓ
µ}

Lϕ∑
i=1

log(Kψβi,ϕ).

In summary:

Σ ≤ C3L

Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

wi,ϕ log (Γβi,ϕ) +

Lout∑
i=1

wi,ϕout log (Γβi,ϕout)

 ,

where

wi,ϕ =

{
1 for ϕ = ϕout

Legnn − ℓ+ 1 for ϕ ∈ {ϕℓh, ϕℓz, ϕℓµ}

Γ =
dmLDβKψ

ε̂
.

We can now use Equation 33 and Theorem 3.1 to obtain the bound for the generalization error of the scoring model g with
probability at least 1− δ:

RS,L(g) ≤
8

m
+

48d√
m

√
Σ+ 3

√
log 2

δ

2m

Furthermore, for a given g(·;W), we observe that the stretching factor as defined in Equation 15 can serve as the bound, i.e.
we can set βi,ϕ = κ(Wϕ

i ) and get

RS,L(g) ≤
8

m
+ C3

48d
√
L√

m

√√√√√Legnn∑
ℓ=0

∑
ϕ∈{ϕℓ−1

h ,ϕℓ−1
z ,ϕℓ

µ}

Lϕ∑
i=1

γi,ϕ +

Lout∑
i=1

γi,ϕout + 3

√
log 2

δ

2m

where

L = 3LϕLegnn + Lout

γi,ϕ = wi,ϕ log(Γκ(W
ϕ
i ))

Γ =
dmLDβKψ

ε̂

wi,ϕ =

{
1 for ϕ = ϕout

Legnn − ℓ+ 1 for ϕ ∈ {ϕℓh, ϕℓz, ϕℓµ}
κ(Wϕ

i ) = max{1, ∥Wϕ
i ∥2}

d = max
i,ϕ

dim(Wϕ
i )

dim(W ) = max(d1, d2) for W ∈ Rd1×d2
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H. Logarithmic dependence on spectral norms
In section 5 we discuss how our bound differs from existing ones, specifically the logarithmic dependence on the norm of
weight matrices. Here we provide more details on where this difference stems from. The logarithmic dependence comes
from Lemma 3.2 (Lemma 8 in (Chen et al., 2020)), which states:

logN
({
A ∈ Rd1×d2 : ∥A∥2 ≤ λ

}
, ε, ∥ · ∥F

)
≤ d1d2 log

(
1 + 2

min{d1, d2}λ
ε

)
.

This is in contrast with perhaps a more commonly used result (Lemma 10 in (Chen et al., 2020), special case of Lemma 3.2
in (Bartlett et al., 2017)), which states:

logN
({
A ∈ Rd1×d2 : ∥A∥2,1 ≤ λ

}
, ε, ∥ · ∥2

)
≤ λ2

ε2
log(2d1d2).

The former yields a logarithmic dependence on the norm, while the latter produces a multiplicative one. However, these
are not directly comparable. Firstly, there is a tradeoff between the dependence on the norm and the width of the network
d = max{d1, d2}. The log of the covering norm in the former yields logarithmic dependence on the norm but quadratic on
the width, and it is the other way around in the latter. In particular, for large values of λ and low values of d, the former may
be preferred, whereas the latter would be better for low values of λ and high values of d.

Furthermore, these two lemmas provide bounds on the covering numbers of sets of matrices. Still, the former one assumes
that the spectral norm is bounded and gives a bound w.r.t. Frobenius norm, while the latter assumes that ∥ · ∥2,1 norm is
bounded and gives a bound w.r.t. spectral norm, which makes the comparison difficult.

I. Impact of ε-normalization
In section 5 we argue that ε-normalization plays an important role in the derivation of the generalization bound. Here,
we provide more details to support this claim. Specifically, suppose we follow the same reasoning as we did in Lemmas
4.1-4.4, for the unnormalized EGNN model, i.e. γ(z(ℓ)v , z

(ℓ)
u , ε) ≡ 1 in Equation (2). Assume further that ∀i, ϕ, it holds that

∥Mi,ϕ∥2 ≤ βϕ.

Consider the bound of the ℓ-layer EGNN embeddings β(ℓ), i.e. ∥h(l)v ∥2 ≤ β(ℓ). From Lemma 4.1, we know that for
β(ℓ) = O(Cℓ1) for some C1 > 1 in the ε−normalized EGNN model. However, from Equation (19), we can see that β(ℓ)

would satisfy the following recursive relationship:

β(ℓ) = 20D(M (ℓ)β(ℓ−1))2,

which implies
β(ℓ) = O(C2ℓ

2 )

for some C2 > 1. The super-exponential growth of β(ℓ) leads to a super-exponential Lipshitz constant of the unnormalized
EGNN and therefore an exponential dependence of the generalization gap on the number of EGNN layers.

J. Implementation details
The QM9 dataset (Ramakrishnan et al. (2014)) comprises small molecules with a maximum of 29 atoms in 3D space. Each
atom is defined by a 3D position and a five-dimensional one-hot node embedding that represents the atom type, indicated as
(H,C,N,O,F). The dataset has several different chemical properties (outputs), from which we arbitrarily chose 4 to assess
the generalization of EGNNs. We report the results for the remaining properties in Appendix K.

We implement all models using the PyTorch (Paszke et al., 2017) and train them for 1000 epochs using the Adam optimizer
and MSE loss function. We use batch size equal to 96 and cosine decay for the learning rate starting at 10−3 except for the
Mu (µ) property, where the initial value was set to 5× 10−4. We run five independent trials with different seeds.

For the experiments in Figure 3, we use width d = 64 (for all layers) and Legnn = 5 for the experiments regarding the
spectral norm, Legnn = 3 for the one regarding the width, and width d = 16 for assessing the generalization gap in terms
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of the number of layers. We apply ε-normalization with ε = 1. All internal MLPs (ϕh, ϕz, ϕµ, ϕout) have two layers with
SiLU activation function. Following the original repo, we use the identity activation function at the last layer of ϕz . For the
experiments on the impact ε-normalization, we use ε = 1 and d = 128 (width).

We note that in their original, Satorras et al. (2021) do not update the positional features z over the layers on the experiments
using QM9. In our experiments, we consider full EGNN models.

For the experiments in Table 3, we use width d = 16, ε-normalization (ε = 1), and internal MLPs with two layers (i.e.,
Lϕ = Lout = 2) with SiLU activation functions. We consider 2K samples for training, and full validation and test sets. The
statistics are obtained from three independent runs, with different seeds. We perform model selection for the regularization
factor λ ∈ {1, 1e-3, 1e-5, 1e-7} using the validation set.

K. Additional visualizations and experiments
Figure 5 and Figure 6 show the learning curves (for a single run) obtained using our spectral regularizer and SPECAVG,
respectively. Here, we use Legnn = 5. Notably, our regularizer produces generalization gaps that decrease with the
regularization factor λ. In contrast, SPECAVG shows a hard-threshold behavior: for λ ̸= 1, it has little effect; for λ = 1, it
produces a very small generalization gap but high test error.
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Figure 5. Generalization gap over training epochs for the regularization method proposed in this work. Circles at the end of training
denote the final test MSE error.
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Figure 6. Generalization gap over training epochs for SPECAVG. Circles at the end of training denote the final test MSE error.

Time comparison. We note that regularization does not affect inference time as it only applies during training. The impact
of the proposed method on training is reported in the Table 5. For the largest model (7 layers), the regularized version incurs
a computational overhead of approximately 50% — i.e., the regularized vs. non-regularized time ratio is around 1.5.

Additional QM9 properties. Table 6 reports results (from three independent runs) for the remaining eight QM9 tasks.
For these experiments, we used width d = 32, cosine decay with an initial learning rate of 10−3, batch size of 96, and 2000
epochs. Overall, we observe that SpecAvg and our regularizer achieve similar Test MSE values, while our method obtains
smaller generalization gaps.
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Table 5. Time per epoch (in seconds).

Task Legnn None Our Regularizer

3 1.37 ± 0.04 1.76 ± 0.29
alpha 5 1.52 ± 0.04 2.08 ± 0.21

7 1.64 ± 0.04 2.42 ± 0.06

3 1.38 ± 0.04 1.75 ± 0.32
Cv 5 1.44 ± 0.04 2.08 ± 0.11

7 1.58 ± 0.05 2.44 ± 0.08

3 1.37 ± 0.29 1.73 ± 0.05
G 5 1.46 ± 0.05 2.07 ± 0.10

7 1.57 ± 0.13 2.38 ± 0.10

3 1.32 ± 0.05 3.54 ± 0.09
H 5 1.44 ± 0.04 2.07 ± 0.04

7 1.59 ± 0.27 2.36 ± 0.05

Table 6. Test mean squared error (MSE) and generalization gap on additional QM9 tasks for different regularization methods. We denote
the best-performing methods in bold. Results are multiplied by 100 for better visualization.

Test MSE Generalization gap

Task Legnn None SPECAVG Ours None SPECAVG Ours

α
3 42.87 ± 0.99 42.72 ± 0.88 41.76 ± 1.11 29.29 ± 17.10 29.05 ± 16.87 16.46 ± 5.65
5 41.47 ± 0.92 41.31 ± 0.40 41.24 ± 1.30 34.79 ± 10.96 34.34 ± 11.37 34.41 ± 11.19
7 44.11 ± 1.97 43.10 ± 0.93 41.91 ± 2.27 38.98 ± 5.76 28.67 ± 14.88 18.78 ± 22.20

Cv
3 7.59 ± 1.38 7.10 ± 1.71 7.09 ± 1.63 7.04 ± 1.64 6.32 ± 2.36 6.49 ± 1.91
5 12.11 ± 1.00 11.32 ± 1.03 11.28 ± 1.21 12.09 ± 1.01 11.30 ± 1.02 10.03 ± 1.57
7 10.10 ± 2.28 10.24 ± 2.45 9.08 ± 0.51 10.08 ± 2.28 10.23 ± 2.45 9.04 ± 0.48

G
3 16.60 ± 7.35 15.71 ± 6.62 16.00 ± 6.08 15.17 ± 6.91 13.91 ± 5.81 10.74 ± 3.43
5 21.88 ± 9.19 20.63 ± 7.84 21.55 ± 5.24 21.57 ± 9.00 19.93 ± 7.18 17.26 ± 4.95
7 28.92 ± 1.89 26.89 ± 3.39 26.11 ± 4.67 28.83 ± 1.94 26.29 ± 4.01 22.84 ± 9.23

H
3 15.49 ± 8.10 14.91 ± 6.92 15.19 ± 4.33 13.23 ± 7.48 12.36 ± 5.74 12.97 ± 3.85
5 22.60 ± 8.35 22.39 ± 7.58 23.00 ± 4.53 22.20 ± 8.11 21.95 ± 7.28 11.67 ± 5.77
7 25.75 ± 0.59 26.81 ± 2.47 26.91 ± 5.16 25.64 ± 0.60 26.67 ± 2.61 14.67 ± 9.72

r2
3 56.63 ± 4.99 56.62 ± 4.99 56.65 ± 4.94 3.80 ± 2.29 3.81 ± 2.31 3.79 ± 2.31
5 55.31 ± 1.07 55.22 ± 1.24 55.53 ± 1.17 5.03 ± 1.45 5.02 ± 1.45 4.95 ± 1.63
7 58.28 ± 3.76 58.25 ± 3.78 57.61 ± 2.50 6.86 ± 3.36 7.20 ± 3.02 5.22 ± 0.54

U
3 15.80 ± 7.34 15.46 ± 6.59 16.44 ± 3.67 13.59 ± 6.58 12.82 ± 5.15 14.03 ± 2.68
5 22.22 ± 6.94 19.66 ± 7.46 23.34 ± 4.77 21.84 ± 6.68 19.39 ± 7.16 17.75 ± 7.28
7 27.43 ± 1.49 25.63 ± 0.90 26.18 ± 2.99 27.31 ± 1.52 25.09 ± 1.77 22.98 ± 8.18

U0
3 15.70 ± 7.18 15.10 ± 5.99 15.87 ± 6.51 13.62 ± 6.32 12.98 ± 5.08 13.80 ± 5.80
5 22.03 ± 8.80 21.66 ± 8.44 22.79 ± 4.57 21.74 ± 8.63 21.30 ± 8.22 12.67 ± 5.19
7 26.81 ± 3.12 21.71 ± 9.39 21.33 ± 9.74 26.71 ± 3.20 21.64 ± 9.46 21.13 ± 9.86

zpve
3 94.14 ± 0.26 94.25 ± 0.29 94.21 ± 0.45 2.17 ± 0.81 2.13 ± 0.92 1.81 ± 1.06
5 95.29 ± 0.41 94.82 ± 0.25 95.23 ± 0.29 7.18 ± 2.95 1.67 ± 0.50 3.82 ± 2.67
7 95.74 ± 0.32 95.03 ± 0.29 95.14 ± 0.22 19.62 ± 13.81 4.95 ± 3.97 2.03 ± 0.97

28


