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Abstract: Automating forest machines to optimize the forest value chain requires the ability to map
the surroundings of the machine and to conduct accurate measurements of nearby trees. In the
near-to-medium term, integrating a forest harvester with a mobile laser scanner system may have
multiple applications, including real-time assistance of the harvester operator using laser-scanner-
derived tree measurements and the collection of vast amounts of training data for large-scale airborne
laser scanning-based surveys at the individual tree level. In this work, we present a comprehensive
processing flow for a mobile laser scanning (MLS) system mounted on a forest harvester starting
from the localization of the harvester under the forest canopy followed by accurate and automatic
estimation of tree attributes, such as diameter at breast height (DBH) and stem curve. To evaluate our
processing flow, we recorded and processed MLS data from a commercial thinning operation on three
test strips with a total driven length ranging from 270 to 447 m in a managed Finnish spruce forest
stand containing a total of 658 reference trees within a distance of 15 m from the harvester trajectory.
Localization reference was obtained by a robotic total station, while reference tree attributes were
derived using a high-quality handheld laser scanning system. As some applications of harvester-
based MLS require real-time capabilities while others do not, we investigated the positioning accuracy
both for real-time localization of the harvester and after the optimization of the full trajectory. In
the real-time positioning mode, the absolute localization error was on average 2.44 m, while the
corresponding error after the full optimization was 0.21 m. Applying our automatic stem diameter
estimation algorithm for the constructed point clouds, we measured DBH and stem curve with a
root-mean-square error (RMSE) of 3.2 cm and 3.6 cm, respectively, while detecting approximately 90%
of the reference trees with DBH > 20 cm that were located within 15 m from the harvester trajectory.
To achieve these results, we demonstrated a distance-adjusted bias correction method mitigating
diameter estimation errors caused by the high beam divergence of the laser scanner used.

Keywords: harvester; lidar; IMU; SLAM; forestry; stem curve

1. Introduction

Many forest operations, such as thinning and logging, are carried out by machines,
the operators of which have to continuously make quick decisions with a high impact
on the forest ecosystem and the economy of the operation. Currently, there is a need for
better tools to plan and optimize the forest value chain due to trade-offs between different
ecosystem services provided by forests, such as economic use of timber for structural and
fibre materials, preservation of biodiversity, and the use of the forest as a carbon sink.
Partial or full automation of forest machines, such as forest harvesters and forwarders, may
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provide one solution to enhance forest operations and harvesting quality while reducing
human error and resulting environmental damage [1]. A first step towards smarter and
more efficient forest operations is to equip forest machines with smart perception and
computational aid [2], which has recently become feasible thanks to advancements in laser
scanning sensors and data processing of Mobile Laser Scanning (MLS) systems [3–11].

Automation of forest machines would require accurate real-time localization and infor-
mation retrieval from the surrounding forest scene to support decision making. However,
Kaartinen et al. [12] demonstrated that current Global Navigation Satellite System (GNSS)
is insufficient for sub-1-meter positioning accuracy in a forest environment due to signal
obstruction caused by the forest canopy. The positioning accuracy of a forest machine
can be improved with the integration of a MLS system including an Inertial Measurement
Unit (IMU) and lidar sensors that enable Simultaneous Localization and Mapping (SLAM)
approaches for improved positioning [5,13]. The MLS system can also construct a 3D
model of the surrounding forest scene that enables automatic detection, classification, and
measurement of trees.

Such automatically derived information of the forest surroundings could be used to
support and optimize decision making, e.g., during a thinning or logging process, which
may ultimately enable the preservation of valuable habitats, species, plants, retention trees,
decaying wood, and most vital trees while harvesting the economically most profitable
trees and/or those with stem or canopy defects. Productivity improvements may also be
expected even for partial automation of the decision making since the cutting quality and
productivity of human operators have been shown to improve by prior markings of the
trees to be harvested [14]. Potential other benefits of increased automation include energy
efficiency as a result of more optimized operation of forest machines. These intended appli-
cations would require onboard and real-time processing of the MLS data that often sacrifices
precision and accuracy. On the other hand, some other applications of harvester-based MLS
data would favour accuracy and allow a time-consuming post-processing solution instead
of real-time computation. Examples of such applications include the collection of reference
measurements for large-scale Airborne Laser Scanning (ALS) surveys [15,16], updating
existing forest inventories, and generating reports about the tree logs left on the ground
after a harvesting operation to improve their logistics.

Currently, there are only a few scientific studies or industry reports in which laser
scanners have been mounted on a forest harvester to study the automatic mapping of
forests [7,17–19]. These previous studies have mostly focused on the localization of the
harvester within a forest environment [7] or only proposed concepts without adequate
evaluation of the presented methods in real experiments [17,18]. To date, none of these
previous studies have focused on estimating tree attributes, such as the stem curve, for the
trees surrounding the harvester using an onboard MLS system. Some early studies have
utilized an all-terrain vehicle (ATV) or a mobile robot as a proxy of a forest harvester and
developed methods for positioning the ATV and detecting the surrounding trees [20–23],
but a demonstration of the methods with a real harvester system is lacking.

Beyond the context of forest machines, a multitude of studies have recently focused
on improving lidar-based positioning of mobile platforms. Over the past years, lidar-
based positioning has shifted to general feature-based or featureless approaches [24], often
aided by additional sensors such as an IMU or camera. These methods are primarily
developed in the urban scene for autonomous driving, with little to no experiments in
forest environments. Some of the most popular frameworks include [25–28]. An alternative
approach for positioning MLS systems under the forest canopy relies on using a prior map
of the forest area of interest, to which features detected from the lidar data are matched as
discussed, e.g., in [17,29–32].

During the past decade, efficient estimation of tree attributes has been demonstrated
using various mobile laser scanning systems including, e.g., handheld systems [6,33–35],
backpack-based systems [8], systems based on ground vehicles [5,10,36], under-canopy
flying UAVs [9], and above-canopy flying UAVs [37]. Recent advancements in the process-
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ing of MLS point clouds have enabled accurate measurements of tree attributes, such as
stem curve and volume, with a low RMSE of 5–10% even in the presence of decimeter-level
point cloud distortions [9,38]. Thus, comparable performance may be achieved with an
MLS system onboard a forest harvester if the localization of the harvester and real-time
computation aspects can be solved.

Currently, there are thus no prior studies presenting a full processing flow for harvester-
based MLS demonstrating tree attribute measurements with a sufficient accuracy for
operational applications. Even the post-processing solutions providing high-quality maps
of the harvester surroundings are largely missing to date. In typical MLS data acquisition,
point clouds from plots are covered with a looped square-like figure providing loop closure
detection possibilities for the SLAM algorithm, which results in improved positioning and
modelling of tree stems. With a forest harvester, such looped paths are not typical, which
provides challenges both for positioning and stem detection.

In late 2022, Ponsse, one of the world’s leading manufacturers of cut-to-length forest
machines, launched a technology concept introducing a world-first thinning density assis-
tant based on mobile lidar onboard a harvester [2]. The current system aids the operator to
cut down an optimal number of trees based on a target thinning density and the number of
detected trees in the surroundings of the harvester. However, the system does not estimate
the stem diameter or the volume of the detected trees which could be used to produce a
more detailed estimate of the remaining basal area and biomass.

In this work, we present a full processing flow for an MLS system onboard a forest
harvester starting from the localization and mapping of the harvester followed by accurate,
automatic measurements of the surrounding trees. The methods are evaluated on real
data collected using a forest harvester during a thinning operation on three test strips in
a boreal spruce forest stand located in Finland. We study the positioning accuracy of the
developed localization solution for two different modes, one representing real-time opera-
tion during thinning, and the other optimization of the full trajectory after the harvesting.
The reconstructed 3D point clouds of the surroundings are further tested for algorithmic
tree stem measurements conducted in a post-processing mode to assess the quality of the
obtained point clouds and to estimate the potential of tree attribute measurements with
the current sensors. We provide a detailed evaluation for the accuracy of the estimated
tree attributes and study the dependence of errors on scanner-to-tree distance and tree size.
Furthermore, we demonstrate a distance-adjusted correction for stem diameter bias, caused
mainly by finite laser beam divergence, allowing a significant improvement in the bias and
RMSE of the estimated stem curves and diameters. Importantly, further improvements and
optimization of the algorithms may enable real-time tree attribute estimation in the future.

2. Materials and Methods
2.1. Harvester System

We studied a custom MLS system attached onto a Ponsse Ergo forest harvester (Ponsse,
Finland) equipped with a C44 crane and an H7 harvester head as illustrated in Figure 1a. As
shown in the inset A of Figure 1a, our custom MLS system consisted of an Ouster OS0-128
Rev C (Ouster, San Francisco, CA, USA) lidar sensor with properties detailed in Table 1
and a Lord Microstrain 3DM-GQ7 (Microstrain by HBK, Williston, VT, USA) used as an
IMU. Furthermore, a prism of the Leica Nova TS60 robotic total station (Leica Geosystems,
Heerbrugg, Switzerland) was attached to the harvester cabin for the acquisition of reference
positioning measurements as explained in Section 2.4.1.

The forest harvester was composed of a cabin, a front link, and a crane, all of which
could move with respect to each other, thus necessitating the use of different coordinate
frames for each of the parts as schematically illustrated in Figure 1b. We mostly pay
attention to the two main rigid bodies of the harvester, the first being the front link hosting
the MLS sensor system and the second being the cabin equipped with the total station
prism. These two bodies had different trajectories as they are not rigidly connected. Our
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real-time positioning method was primarily developed to estimate the trajectory of the
MLS system at the front link.

A B

{lidar}
{body}{map}

{global}

{crane}

{cabin}

(a)

(b)

Figure 1. (a) Ponsse Ergo forest harvester with the attached mobile laser scanning system (inset A)
consisting of an Ouster OS0-128 lidar and a Lord Microstrain 3DM-GQ7 GNSS/INS unit. (Inset B)
shows the prism of the Leica Nova TS60 total station. The total station itself is located on the lower
left corner of the image. (b) Schematic illustration of the harvester system and the coordinate frames.
We label the point of reference positioning measurements as cabin frame, the origin of the lidar sensor
on the front link as lidar frame, and the origin of the IMU sensor also on the front link as body frame,
which is the frame whose trajectory is estimated firsthand by our SLAM. Furthermore, map frame
denotes an arbitrary stationary coordinate frame constructed at the start of a measurement according
to an initial fix of the frame, while the global frame is a georeferenced stationary frame.

In addition to the MLS data, our positioning approach relied on the availability of
rotation angle measurements between the harvester crane and the front link, enabling us to
remove the moving crane from the lidar data. The rotation angle measurements could be
provided by an additional built-in angular position sensor in the harvester (e.g., an encoder),
but in this work, we manually derived the angles from the lidar data by annotating the
position of the harvester head, from which the angle was computed. Furthermore, our
system also relied on the angle between the front link and the cabin when observed from
the top view. This angle was automatically computed by registering a point-based model
of the cabin onto the lidar data.
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Table 1. Important properties of the Ouster OS0-128 Rev C lidar sensor as presented in the sensor
datasheet [39]. Here, vertical resolution refers to the number of channels in the vertical direction,
whereas the horizontal resolution denotes the number of fired laser beams for a given channel during
a single rotation. The pulse repetition rate is a product of the vertical and horizontal resolutions and
the rotation rate. The reported beam divergence corresponds to the full width at half maximum.

Property Value for Ouster OS0-128 Rev C

Range 45 m for >90% detection probability
50 m for >50% detection probability

Range accuracy ±3 cm for lambertian targets
±10 cm for retroreflectors

Field of view (vertical) 90% (−45° to +45°)
Field of view (horizontal) 360°
Vertical resolution 128
Horizontal resolution 1024
Rotation rate 10 Hz
Pulse repetition rate 1.31 MHz
Laser wavelength 865 nm
Beam diameter exiting sensor 5 mm
Beam divergence 6.1 mrad (0.35°)

2.2. Test Site

The experiments with the harvester MLS system were conducted in March, 2022 on
a managed Finnish forest stand located in Tuusniemi, Eastern Finland (62.7°N, 28.5°E);
see Figure 2a. In the experiments, the harvester conducted the last commercial thinning
operation before the final felling planned to take place in a few decades, and simultaneously
data were collected with the MLS system. The 1.7 ha forest test site had two stands, one on
each side of a gravel road going through the area. The thinning operation with the data
collection was performed on six (6) test strips harvested individually as shown in Figure 2b.
On the day of the experiments, the weather was clear and sunny with the temperature
ranging from −10 °C to slightly over zero Celsius. In the forest, there was about 80 cm of
snow on the ground.

(b)(a) (c)

Figure 2. (a) The test site is located in Tuusniemi, Finland. (b) Six test strips on the site. The test
strips 1 (red), 2 (green), and 5 (blue) were used to study the harvester localization and stem attribute
estimation. (c) Harvester working on the test site (photo by Ville Kankare).

In this work, the test strips 1, 2, and 5 were used to evaluate the accuracy of our
positioning approach and the automatic stem attribute measurements since these test strips
were fully located in the forest with sufficient distance from the gravel road. As can be seen
from Figures 1a and 2c, Norway spruce (Picea abies (L.) H.Karst.) was the dominant tree
species on the test site. Descriptive statistics of the trees on the test strips are provided in
Table 2.
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Table 2. Descriptive statistics of the test strips and reference trees located within a distance of 15 m
from the harvester trajectory. The statistics of reference trees were obtained using a ZEB Horizon laser
scanner (see Section 2.4.2). The test strip length refers to the shortest distance between the starting
location of the measurement and the location, at which the harvester turned back. For DBH, tree
height and stem volume, we report the standard deviation within the parentheses.

Test
Strip

Length of
Strip (m)

Number
of Trees

Stem Density
(1/ha)

Mean DBH
(cm)

Mean Tree
Height (m)

Mean Stem
Volume (m3)

1 93 252 630 22.3 (±7.6) 18.3 (±4.2) 0.47 (±0.36)
2 76 190 540 27.0 (±7.9) 21.4 (±3.9) 0.75 (±0.45)
5 139 216 490 27.9 (±5.7) 22.7 (±2.4) 0.79 (±0.34)

2.3. Data Acquisition with the Harvester System

In our tests, the harvester was driven into the forest starting from the edge of the
forest, following an approximately straight line from west to east direction. The cutting was
planned to be as similar as possible to a standard commercial thinning operation but still
allowing good reference measurements. On its way, the harvester was cutting trees, and
it was driven as long as the reference position could be measured using the total station
(see Section 2.4). Once reaching too far, the operator was called to turn back, after which
trees were no longer cut and the machine was driven straight back in reverse to the starting
point. Typically, the data collection on each test strip took 25–40 min, of which only the
last few minutes corresponded to the reverse direction. When a tree was cut, primarily the
crane was moving and the rest of the machine remained stationary; however, at those times
the sensors were subjected to large vibrations due to the falling trees.

We recorded the data into rosbag files, using a Jetson Xavier AGX unit (NVIDIA,
Santa Clara, CA, USA) running the ROS drivers provided by the manufacturers of the
sensors. The sensors were synchronized on hardware level using a pulse-per-second (PPS)
signal and NMEA messages. The point clouds obtained as a result of the data acquisition
after subsequent positioning correction (see Section 3.1) had an average point density of
approximately 2 × 104 pt/m2 within 15 m from the harvester trajectory, as discussed in
more detail in Section 4.2.

2.4. Reference Data
2.4.1. Reference for Harvester Positioning

Reference position measurements were collected using a Leica Nova TS60 robotic total
station with a distance accuracy of 3 mm + 1.5 ppm according to the manufacturer [40],
sampled at 3 Hz on average. The reference position was measured using a prism located at
the top of the harvester cabin as shown in Figure 1a. As the position was measured on each
of the test strips until the total station was no longer capable of measuring the location of
the cabin, there was a short missing segment with no reference position measurement at the
eastern end of each strip, which is ignored for the evaluation of the positioning accuracy.

2.4.2. Reference for Tree Attributes

A handheld ZEB Horizon scanner (GeoSLAM, Nottingham, UK) was utilized to
collect high-quality point cloud data across the studied forest area to conduct reference
measurements of stem attributes. The ZEB Horizon system includes a rotating Velodyne
VLP-16 scanner and an integrated SLAM system that enable accurate mapping of the forest.
Several previous studies have shown that the ZEB Horizon system and its predecessors
enable measurements of the stem diameter with a low RMSE on the order of 1–2 cm, thus
rendering it as an efficient alternative for collecting reference data for stem attributes, such
as DBH or stem curve [3,6,33,34,38,41–43].

Data collection with the ZEB Horizon system was conducted in two parts to avoid
excessively large files in SLAM processing. As the test site was naturally divided to the
northern and southern part by the road running through the test site (see Figure 2), these
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parts were scanned separately. To minimize the drift in SLAM processing, the data were
collected such that there were crossings in the traversed path and the data collection was
finished at the start location to produce a closed loop. GeoSLAM Hub (version 6.0.0)
software was used to process the collected raw data to point clouds in laz-format.

We analyzed the point clouds using the automatic algorithm described in Hyyppä
et al. [38] to obtain reference values for the locations, DBHs, stem curves, tree heights,
and stem volumes of the trees on the test strips. Here, the algorithm for the automatic
detection of the reference stems consists of the same steps as that used for the analysis of
the harvester-derived lidar data (see Section 3.2.2), but the algorithm for DBH and stem
curve estimation differs from Sections 3.2.3 and 3.2.4. In our previous study using the ZEB
Horizon system and a similar algorithm [38], the resulting RMSE of DBH estimation was
0.9–1.3 cm while detecting 77–93% of trees in comparable boreal forest conditions. For the
stem curve estimation, the reported RMSE increased from 3–4% at the breast height to 7–8%
at the height of 6 m above ground. Based on these previous results with a similar algorithm
in comparable forest conditions, we regard the DBHs and stem curves acquired with the
ZEB Horizon system as accurate enough to be used as a reference for the current study
while noting that the expected error of the reference diameters is on the order of 1 cm.

3. Algorithms for Real-Time Localization and Offline Tree Attribute Estimation

In this section, we present our algorithms utilizing the harvester MLS data for real-
time positioning of the harvester (see Section 3.1) and automatic measurements of the
surrounding trees (see Section 3.2). We study two modes for the positioning, one targeted
for real-time onboard operation named as online trajectory with initial fix, and the second
based on the final state of the trajectory with offline-computed georeferencing, named as
final trajectory with optimized fix. For the tree attribute measurements, we also investigate two
parameter modes named as tree map and accurate attributes, the first of which enables a high
detection rate of trees, while the latter favours accuracy of the estimated stem attributes.
See also Section 5.3 for discussion on the connection between potential applications of
harvester-based MLS and the studied modes of positioning and tree attribute estimation.

3.1. Algorithms for Real-Time Localization and Mapping from MLS Data

Our SLAM algorithm takes the lidar and inertial measurements from the sensor drivers
as inputs and maintains estimates of position, orientation, velocity, and IMU biases while
correcting lidar observations. Lidar measurements are first expressed in the lidar coordinate
frame, which we denote using the symbol L. Furthermore, we use the term scan for points
accumulated throughout one whole revolution of the scanner. The k-th incoming scan
can therefore be formulated as a set of 3D points and their corresponding timestamps
as follows:

LSk := {(pi, ti)|pi ∈ R3, ti ∈ R+}i=1,...,Nscan , (1)

where Nscan is the number of points in one scan. We further denote the body frame using
the symbol X that is chosen to coincide with the IMU sensor frame. Similarly to the set
of 3D points, we also group together IMU measurements collected during the kth scan,
which we denote as X Ik. We further use the symbol C to denote the cabin coordinate
frame that coincides with the total station prism attached on the forest harvester. During
the initialization of the SLAM algorithm, we align the map frame to the body frame
and use it as a local map frame for positioning and mapping purposes. Finally, we also
utilize a georeferenced global frame, mainly to interpret the reference data used during the
performance analysis.

Our SLAM solution has been briefly presented previously in a conference paper by
Faitli et al. [44]. Here we provide a more comprehensive description, extended with new
elements considering the forest harvester as a special platform carrying the MLS system.
Additional differences arise in the analysis of the positioning performance, presented in
Section 3.1.3.
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3.1.1. Scan Pre-Processing

Each incoming scan first goes through a pre-processing step. In this step, we compen-
sate for the motion of the lidar during the scan, filter out points collected from the forest
harvester itself, transform the scan into the body frame, and downsample the scan. In
order to remove the motion distortion, we first estimate the trajectory during the scan by
integrating the available IMU measurements as described in [45]. The measurement rate of
the IMU is lower than that of the laser scanner, and hence, we compute a pose Xti ∈ SE(3)
for each point within the scan by interpolating between the closest trajectory elements
(Xm−1, tm−1) and (Xm, tm) in time as

Xti = Xm−1 ⊕
[

ti − tm−1

tm − tm−1
(Xm ⊖Xm−1)

]
, (2)

where operations ⊕ and ⊖ are used as defined in [46], and they are essentially plus and
minus operators defined on the elements of Special Euclidean Group (SE(3)) with the help
of their Lie Algebra. Finally, we compute the pose difference between Xti and the pose
at the beginning of the scan to transform the point accordingly. Repeating this for each
point in the scan, we obtain a new reconstructed scan, which is represented with a unified
coordinate frame. In practice, it was enough to compute a pose for each vertical column of
points as they were all assigned the same timestamp on the hardware level.

Due to the kinematics of the forest harvester and the scanner position, there were
numerous lidar points recorded from the moving harvester itself. These points are not part
of the static environment, and mapping them would result in a lot of noise. We filter them
out by observing the scan from the top view and align rectangles surrounding the cabin,
front link, and crane as illustrated in Figure 3. Then, we remove all points that are bounded
by any of the rectangles. For this, we utilize the angle α between the front link and the crane,
and the angle β between the front link and the cabin. The sides of the rectangles were set
by manually measuring the dimensions of the machine components from the scans, with
an additional safety margin. As the crane can expand during operation in order to grab the
trees, the ideal bounding rectangle size varies a lot from scan to scan. However, given we
only know the angle α, we always set its bounding rectangle assuming it expanded as far
as possible.

α

β

(a) (b)

Figure 3. Top view of a single lidar scan illustrating the removal of points corresponding to the forest
harvester. The black, blue, and magenta rectangles show bounding boxes for the harvester crane, the
front link, and the cabin, respectively, all of which are filtered out from the scan. (a) We align the
black rectangle to bound the points obtained from the crane with the help of the angle α between the
crane and the front link. (b) We fit a static blue rectangle around the front link (as it does not move
with respect to the lidar) and a magenta rectangle around the cabin with the help of the angle β.

In addition to removing the harvester points, we also remove all points that are closer
than 1 m to the scanner origin or further away than 50 m. The remaining reconstructed
scan is then transformed into the body frame by using a fixed calibration transformation,
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which in our case was obtained by measuring the distance and orientation between the
lidar and IMU sensors with hand tools. Finally, the scan is downsampled using a voxel
filter, where the points within a voxel are approximated with their centroid to reduce
computational time.

3.1.2. Smoothing and Mapping Framework

The block diagram of our SLAM solution is presented in Figure 4. The processing
is triggered by receiving a new scan from the lidar. The raw lidar measurements first go
through a scan preprocessing step as detailed previously. Then, in blocks scan registration and
IMU preintegration, we are computing observations from the reconstructed scan and raw
IMU data about the current state. We define the updated state estimate at the k-th incoming
scan as

xk :=
[

mapX k, mapvk, X bk

]
, (3)

where Xk is the pose, vk is the velocity of the body frame, and the IMU biases are denoted
by bk. Furthermore, we define the map as a set of selected historical trajectory elements
X = {Xl}l=0,...,L and a set of corresponding pre-processed scans S = {X S̄ l}l=0,...,L. Within
the core of the algorithm, two factor graphs are maintained in parallel. The first one (in
block graph optimization) is responsible for maintaining the online estimate xk. It is built
by lidar and IMU factors and has a more rigid structure due to the lidar factors acting
as anchors on each node individually. Meanwhile, the second graph (in block map graph
optimization) is responsible for the mapping, and it only has constraints that connect two
nodes together, providing a much more flexible structure for long term corrections after
loop closures. This structure is essential for the real-time computation, with the intention
of executing the second (more expensive) graph as few times as possible. To decide when
to execute the mapping graph, we implement a keyframe selection strategy. At times when
a new node is added to the mapping graph, we first check for a loop closure observation in
the block loop closure check, and we then optimize the map graph using the lidar and loop
closure factors and finally recompute the local map with the current best estimates in block
local map update.

Keyframe selection: The keyframe selection strategy decides whether to execute the
mapping graph within a given update or not. We apply a strategy based on travelled
distance from the last node added to the graph. Both positional and angular movements
contribute to this travelled distance, while their contribution was tuned such that 10 degrees
of rotation is equivalent to 1 m lateral distance. Finally, when a preset threshold distance is
surpassed (0.2 m in our case), a new node is added to the mapping graph.

Node selection for local map: The local map is reconstructed every time a new keyframe
is added to the mapping graph. It samples historical scans with their corresponding pose
estimates and concatenates them in the map coordinate frame. The sampling is performed
by considering the last N (N = 16 in our experiments) nodes. We first apply a voxel filter on
the position component of these N nodes, followed by selecting the closest original node to
each of the voxel center points.

Lidar factor: Constraints are generated for the factor graphs by registering the scan to
the local map. The registration is performed using the Normal Distributions Transform
(NDT) algorithm with point-to-distribution error terms. The constraints are modelled
as Gaussians where the mean is in the SE(3) and the uncertainties are expressed on its
corresponding tangent space. The mean observation for the first graph is obtained from
the registration as it is. Meanwhile, the mean observation for the map graph is computed
as the difference between the latest pose in the map graph and the registration result. The
noise models are computed by scaling a preset diagonal vector using the fitness score of
the registration, where the fitness score is evaluated using the default implementation of
the PCL library.

IMU factor: We generate additional constraints for the first factor graph by preintegrat-
ing the time corresponding IMU observations as proposed by Dellaert and Kaess [47].



Remote Sens. 2024, 16, 3292 10 of 34

Bias factor: In order to constrain the bias values in the first factor graph, we model
the change of bias values between two consecutive scans. We assume it does not change;
however, we leave some room for correction and model it as a zero-mean Gaussian noise
model with preset parameters.

Loop closure factor: We check the availability of a loop closure when a new node is
introduced to the mapping graph, before optimizing the graph or rebuilding the local map.
First, we identify a single candidate node which is the closest to the one currently being
added to the map. We exclude the 30 most recently mapped nodes from this search, and in
case the closest node is further away than 5.0 m, loop closure is skipped within the ongoing
update. In case a candidate has been found, its corresponding scan is registered to the
current local map to compute a corrected pose. Finally, a new constraint to the map graph
is added also modelled as a Gaussian distribution with a mean in SE(3), which is computed
as the transform between the registration result of the candidate node and the current scan
pose. In order to keep the computations in real time, we restrict the loop closure evaluation
to maximum one time per 4 s.
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scan

preprocessing

map graph 
optimization

local map 
update

loop closure 
check

graph

optimization

scan

registration

imu 
preintegration

new 
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current 
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Figure 4. Block diagram of the proposed SLAM solution [44].

3.1.3. Analysis of Positioning Estimation

In this section, we present our evaluation method of the positioning accuracy. During
our evaluation, we differentiate between the online and final trajectories resulting from
the SLAM processing. The online one captures the ongoing best positioning estimate as it
would happen onboard the machine in real time. Since the SLAM is updated after each
incoming scan, its internal state, including its estimation of the trajectory, is different after
each update. The final trajectory encapsulates the state of the SLAM after the last update
within a test strip and represents the optimization of the entire trajectory.

To compare the estimated sensor trajectory represented in a local map frame to the
reference cabin trajectory in a global frame, we first estimate the relative transformation
between the sensor and the cabin frames in each scan in order to obtain a direct estimation
of the cabin trajectory. This transformation is estimated by registering a pre-built 3D point-
based model of the cabin to each scan using the NDT algorithm. Additionally, we apply an
Extended Kalman Filter (EKF) to avoid inconsistent registration results due to visibility
issues of the cabin in some scans. In the EKF, we use a prediction model assuming no
motion with high noise values, and a measurement model constructed from the registration
result the same way as of the lidar factor described previously. The initial guess for the
registration was also fed by the EKF’s prediction, while the very first initial guess was
given manually for each measurement.
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After obtaining the estimated cabin trajectory, we map it to the same coordinate frame
as the reference measurements to compute the error between them. To obtain this map
gTm ∈ SE(3), we first resample the cabin trajectory to the same timestamps as the reference
one by interpolating on manifold between the original SE(3) trajectory elements weighted
by their respective timestamps (similarly as in Equation (2)). Then, we minimize the sum
of the distances between the time-corresponding transformed and reference trajectory
elements, described as:

gT∗
m = argmin

gTm
∑
k

∥∥∥pref,k −
(

gTm
mTlk

lk Tc 1T
)∥∥∥ , (4)

where pref,k ∈ R4 is the k-th reference cabin position in homogeneous form, mTlk ∈ SE3 is
the k-th lidar pose in local map frame, while lk Tc ∈ SE3 is the corresponding cabin pose in
lidar sensor frame. The vector 1T ∈ R4 is a column vector containing ones that helps us
obtain only the translational part from the estimated pose (in homogeneous form), as we
only have reference positions available and no orientations.

We solve Equation (4) with two different ranges of k elements to evaluate our position-
ing. In the case initial fix, we only compute the error for elements from the beginning of
the measurement until the first element that is further away than 10 m from the starting
point. This imitates an absolute evaluation approach, where we assume our system has an
ideal global fix during initialization and see how much it drifts as it progresses. In the other
case, named optimized fix, we evaluate Equation (4) for the whole trajectory, computing
an ideal global fix, to understand how much error can be accounted to trajectory errors
within the tree measurements. Furthermore, it is important to note that we only evaluate
the solution map gTm using the final trajectory, and we use that to transform both the online
and final trajectories, as it has better quality and they are both represented in the same local
map frame.

Once we obtain the resampled and re-mapped estimated trajectory as detailed above,
it is then comparable to the reference one. We compute the translational root-mean-square
errors along each axis between corresponding reference (pj,ref,k) and estimated positions
(pj,k) on the trajectory, evaluated as

RMSEj =

√√√√Ntraj

∑
k=1

(pj,k − pj,ref,k)2

Ntraj
, (5)

where j ∈ {x, y, z} represents the axis along which we define the error, k is the element index,
and Ntraj is the number of trajectory elements in the given measurement. Furthermore, we
compute a combined norm error by computing the distance using the Euclidean-norm ∥.∥
between the reference and estimated positions and compute its root-mean-square error,
defined as

RMSEnorm =

√√√√Ntraj

∑
k=1

∥pk − pref,k∥2

Ntraj
. (6)

3.2. Algorithms for Tree Stem Measurements from the SLAM-Corrected Point Cloud

We use the SLAM-corrected point clouds obtained as a result of Section 3.1 to con-
duct automatic measurements of trees near the harvester. In this work, we focus on the
detection of tree stems and the estimation of DBH and stem curve. As explained in the
following subsections, we use and extend the algorithms developed in [8,9] that have pre-
viously provided state-of-the-art accuracy for automatic measurements of stem diameter
(RMSE = 3–10%) and stem volume (RMSE = 10–15%) of individual trees from MLS data
collected in boreal forests with multiple different mobile platforms [38]. The key idea of the
algorithms is to analyze the data in temporal order to detect arc-shaped point clusters that
can be used to estimate the stem diameter accurately even in the presence of decimeter-level
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drifts in the SLAM-corrected trajectory. Importantly, we extend the algorithms developed
in [9] to mitigate the bias of the stem diameter estimates caused by the finite laser beam
width using a linear model that relates the bias to the measurement distance.

We perform the stem attribute estimation using two parameter modes designed
for different applications: the first parameter mode, named as tree map, is designed to
observe tree stems with a high detection rate while providing stem attribute estimates,
such as DBH, with a reasonable accuracy (RMSE = 3–4 cm). This parameter mode is
closely related to the concept of thinning density assistant by Ponsse [2] with the difference
that we derive the stem attributes with a reasonable accuracy in addition to the tree
locations. The second parameter mode, named as accurate attributes, is designed for accurate
stem diameter measurements (RMSE = 2 cm) at the cost of a lower detection rate. This
scenario is more forward-looking as we expect that such accurate estimates combined
with other observations, such as tree species, may enable a more thorough optimization
of the harvesting process. The goal of the optimization may be, for example, to preserve
valuable habitat or to leave sufficient amount of wood in the forest based on the remaining
basal area while felling the economically most valuable trees. Such accurate estimates
may also serve as training data for large-scale lidar-based forest inventories at the level of
individual trees. See also Section 5.3 for further discussion on the applications related to
each parameter mode.

Note also that we perform the stem attribute estimation using the final result of the
SLAM computation. Real-time estimation and update of stem attributes is left as a subject
of future work, though our methods analyze the data in temporal order and may therefore
be extended to real-time analysis, as discussed in Section 5.

3.2.1. Digital Terrain Model

Before the generation of the digital terrain model (DTM), we automatically remove
potential noise points from the SLAM-corrected point cloud by dividing the data into cubic
voxels with sides of 0.5 m and filtering out points from voxels with less than 3 points.
Subsequently, we determine the DTM using a voxel-based approach based on [8]. Here,
we divide the point cloud into voxels with a side length of 1.5 m in the z direction and a
side length of 1.0 m in the x and y directions. For each pixel in the xy plane, the ground
elevation is estimated by first finding the lowest voxel with a point count exceeding 0.5%
of the overall point count within the pixel and then computing the mean z coordinate
of points within the found voxel. Finally, the DTM is smoothed with a Gaussian kernel.
After computing the DTM, the z coordinate of each point is normalized by subtracting the
ground elevation.

3.2.2. Detection of Tree Stems

The detection of tree stems is achieved through two main steps. In the first step, we
go through the point cloud data in temporal order to search for arc-shaped structures
potentially corresponding to tree stems. In the second step, the detected stem arcs are
grouped into trees using a clustering approach. For both of the steps, we utilize the
algorithms proposed by Hyyppä et al. [9] since the algorithms are robust against drifts
of the SLAM-corrected trajectory. The parameter values of the algorithms have been
chosen based on prior studies, heuristics, and a test of a dozen different parameter value
combinations on the test strip 1. Below, we provide the numerical parameter values without
parentheses if the same value was used for both studied parameter modes. In the case of
different values for tree map and accurate attributes, the value for tree map is reported first as
a normal text and then the value for accurate attributes (in parentheses).

To provide more details of the stem-arc detection step, we first divide the points into
disjoint sets based on their time stamps and the z coordinates using time intervals of 2.0 s
(0.8 s) and height intervals of 0.3 m between z = 0.5 m and z = 7.5 m. For each disjoint
set of points, we subsequently detect connected point groups potentially corresponding to
stem arcs by applying density-based clustering for applications with noise (DBSCAN) [48].
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We use a search radius of 7.5 cm and a minimum point number threshold of four (5) points.
To discard DBSCAN clusters with a non-circular shape, we apply circle fitting based on
the random sample consensus (RANSAC) framework [49] and retain only such clusters,
for which more than 75% of the points are located within 3.5 cm from the circular fit. We
further filter out noise points separated by more than 20◦ (15◦) from their neighboring point
using an arc division algorithm [9]. For the accepted clusters, we evaluate the goodness of
the circular fit based on heuristically chosen quality criteria, including a minimum radius of
5.0 cm, maximum radius of 50.0 cm, minimum point count threshold of 14 (20), maximum
allowed standard deviation of radial residuals of 1.75 cm (1.3 cm), and a minimum central
angle of 108◦. The clusters fulfilling the quality criteria are regarded as stem arcs and saved
for further processing.

Having detected point groups qualifying as stem arcs, we apply DBSCAN clustering
for the xy center coordinates of the arcs to detect tree stems. To this end, we use a point
number threshold of 3 and a DBSCAN search radius of 30 cm corresponding to the typical
DBH of trees. As a result, a tree stem must be associated with at least three arcs to be
detected. Furthermore, we require that the stem arcs of each tree must span a height range
exceeding 1.0 m in the z direction. Subsequently, each of the accepted DBSCAN clusters is
regarded as a tree stem, the growth direction of which is further estimated with principal
component analysis according to Hyyppä et al. [8]. This enables us to re-fit a circle to each
of the stem arcs in a plane perpendicular to the growth direction, which corrects diameter
estimation errors caused by the inclination of a tree.

3.2.3. Calibration and Correction of Stem Diameter Bias

In this section, we describe our approach for correcting the bias of stem diameter
estimates caused by the large beam width of the Ouster laser scanner schematically illus-
trated in Figure 5a. This bias correction step mostly follows our recent work in [50] and
represents an extension to the algorithmic workflow presented in [8,9]. In these previous
works, the bias was small due to the small beam divergence of the laser scanners used. It
is a well-known issue that a large beam width of a laser scanner can result in diameter
overestimation for cylindrical structures [51]; see Figure 5b. The beam width increases
with distance for a given beam divergence, and hence the diameter bias is high for large
distances or for scanner with a large beam divergence. In previous experiments, a nearly
linear relation between the bias and distance has been observed [52,53]. Simulations by
Forsman et al. [51] demonstrated a near quadratic distance–bias relation. However, the
deviation from the linear model is minimal and significantly smaller than the measure-
ment noise for divergences of modern scanners and typical measurement distance ranges
(6.1 mrad and 1–20 m, respectively, in this study).

Previously, Ringdahl et al. [52] proposed that the bias of a circular fit can be reduced
by moving the points within a stem arc towards the center of the arc according to a beam-
width-dependent correction angle. Here, we instead model the diameter bias Dbias of an
individual stem arc as a linear function of the scanner-to-arc distance as

Dbias(d) = a + bd, (7)

where d denotes the distance between the scanner and the center of the stem arc, and a and
b are parameters to be calibrated. The linear model is motivated by its robustness against
over-fitting in the presence of noise points and supported by experimental observations in
the previous works and our study.

We calibrate the parameters of the linear model in Equation (7) using data on the test
strip 1. For each arc, we compute the distance to the scanner at the time of observing the
arc and evaluate the diameter estimation error compared to the reference diameter at the
given height. Subsequently, we fit a linear model in Equation (7) to the diameter errors as a
function distance to calibrate the parameters.
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10 m

6 cm

5 mm

Figure 5. (a) Schematic illustration of the distance-dependent laser beam width of the Ouster scanner.
At the output, the beam width is approximately 5 mm, and it increases to roughly 6 cm at a distance
of 10 m due to a beam divergence of 6.1 mrad [39]. (b) Schematic illustration of the diameter
overestimation resulting from a finite laser beam width. Here, the red dots represent the assumed
locations of tree stem hits resulting from a laser beam with a non-zero width.

As the bias parameters mostly depend on the properties of the scanner, we generalize
the obtained parameters for all of the test strips. For each of the detected stem arcs, the
diameter estimate is corrected as

Dbias−corr = DPCA−corr − Dbias(darc), (8)

where Dbias−corr is the bias-corrected diameter, DPCA−corr is the growth-direction-corrected
diameter estimate (see Section 3.2.2), and darc denotes the scanner-to-arc distance for the
given arc. The parameters of the bias model have been calibrated separately for the two
parameter modes.

3.2.4. Estimation of Stem Curve and DBH

Following the bias correction, we compute estimates for the DBH and stem curve
of the detected tree stems using an approach slightly adapted from Hyyppä et al. [8]. To
estimate the stem diameter at various heights for each stem, we compute the median of
the bias-corrected diameter estimates within each height interval containing at least one
stem arc. We use the median instead of the arc matching algorithm proposed in [8] since
the arc matching algorithm cannot account for the bias caused by the large beam width.
Subsequently, clearly outlying diameter estimates are filtered out using an automatic outlier
filtering step presented in [8]. For each of the tree stems, the final estimate for the stem
curve is obtained by fitting a cubic smoothing spline to the remaining diameter estimates.

Using the estimated stem curves, we then evaluate the DBH for each of the detected
stems either by interpolating the smoothing spline fit at the height of z = 1.3 m or by
extrapolating the smoothing spline fit to the height of z = 1.3 m if the lowest diameter
estimate at zmin is above z = 1.3 m. If the stem curve has been successfully estimated across
a height range exceeding 3 m, we evaluate the smoothing spline at 100 points between zmin
and zmin + 3 m to fit a linear model that is used to extrapolate the DBH at z = 1.3 m. If the
height range for stem curve estimation is less than 3 m, we prefer to fit a square root model
D(z) = D(0)

√
1 − z/h to the diameter estimates constituting the stem curve to extrapolate

the DBH at the height of z = 1.3 m in a more robust manner. In the square root model, D(0)
is the only free parameter, whereas h denotes an estimate for the tree height.

In this study, we do not analyze in detail the estimation of height and stem volume of
individual trees since the used Ouster scanner does not properly capture the canopy layer
due to a limited field of view. In Section 5.3, we briefly discuss the results for the estimation
of tree height and stem volume based on methods from [9].
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3.2.5. Statistical Analysis of Stem Detection and Stem Attribute Estimation

In this section, we present the methods used for the statistical analysis of tree detection
and stem attribute estimation. For the statistical analysis, we first determine matching pairs
between the detected and reference stems. Since the locations of the reference trees are in a
local coordinate frame, we apply the 2d coarse registration algorithm presented in [54] that
fits a Euclidean transformation between the coordinate frames of the detected and reference
stems using the stem locations as input. After applying the Euclidean transformation
to the reference stem locations, we refine the registration by further fitting a 2D affine
transformation x2 = Ax1 + t using the matching tree pairs obtained in the previous step,
for which the root-mean-square error of the estimated stem curve is less than 4 cm. After
applying the affine transformation, the matching tree pairs are determined by finding the
closest detected stem for each of the reference stems if any within a distance of 0.75 m.

Using the matching tree pairs, we evaluate the completeness (i.e., recall) and correct-
ness (i.e., precision) for the stem detection as

Completeness =
Nmatched

Nref
, (9)

Correctness =
Nmatched
Ndetected

, (10)

where Nmatched denotes the number of detected stems with a matching reference pair within
the region of interest, Nref is the number of all reference stems within the corresponding
region, and Ndetected is the number of all detected stems within the corresponding region.
We also study the completeness and correctness as a function of the distance from the har-
vester trajectory using disjoint regions between di,start = (i − 1)× 3 m and di,end = i × 3 m
from the trajectory, with i ∈ {1, 2, . . . , 7}. To mitigate small positioning errors between
the detected and reference stems, the location of each reference stem with a matching
detected tree is set to the location of the matching detected tree. Furthermore, we analyze
the completeness of stem detection as a function of the tree size by dividing the reference
trees into four disjoint categories based on their DBH: DBH ∈ [0, 20) cm, DBH ∈ [20, 28)
cm, DBH ∈ [28, 36) cm, and DBH ∈ [36, ∞) cm.

To evaluate the accuracy of the estimated stem attributes, such as DBH, we compute
the bias, root-mean-square error (RMSE), and median absolute error (MAE)

bias =
Nmatched

∑
i=1

xi − xref,i

Nmatched
, (11)

RMSE =

√√√√Nmatched

∑
i=1

(xi − xref,i)2

Nmatched
, (12)

MAE = median({|xi − xref,i|}
Nmatched
i=1 ), (13)

where xi denotes the estimated value of the stem attribute for the ith detected stem, and
xref,i is the corresponding reference value. The relative bias, RMSE, and MAE are obtained
by normalizing the absolute measure with the mean reference estimate. We report MAE
since it provides an error metric robust to outliers. Thus, the comparison of MAE and
RMSE may reveal whether the RMSE error is dominated by a few outliers. Normally
distributed errors satisfy RMSE = 1.4826 × MAE, whereas outliers lead to an inequality
RMSE ≫ 1.4826 × MAE.

To assess the accuracy of the estimated stem curves, we modify Equations (11)–(13)
to account for the fact that the comparison against the reference stem curve occurs at
multiple heights
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bias =
1

Nmatched

Nmatched

∑
i=1

Ni

∑
j=1

Di(zj)− Dref,i(zj)

Ni
, (14)

RMSE =

√√√√ 1
Nmatched

Nmatched

∑
i=1

Ni

∑
j=1

(Di(zj)− Dref,i(zj))2

Ni
, (15)

MAE = median({median({|Di(zj)− Dref,i(zj)|}
Ni
j=1)}

Nmatched
i=1 ), (16)

where Di(zj) denotes the estimated stem curve of the detected tree i at the height of zj,
Dref,i(zj) is the corresponding reference value, and Ni denotes the number of heights
at which the estimated stem curve can be compared against reference diameter values,
typically spaced every 20 cm along the vertical direction. Hence, the value of Ni may vary
from tree to tree depending on the height range of stem curve estimates.

For all of the above statistical metrics, we compute both overall results considering all
of the three strips, as well as individual results obtained for each of the test strips separately.
When computing the overall results, it is possible that a small number of trees between two
neighboring test strips are detected on both test strips, and hence, a small number of trees
may contribute twice to the overall results.

4. Results
4.1. Results for Harvester Localization Using SLAM

First, we present the results related to our SLAM solution, focusing on the positioning
capabilities of our system. As discussed in Section 3.1.3, we study two positioning modes
with two different goals. On one hand, we present the online trajectory using the initial
fix alignment, which represents expected onboard performance with a fix that could be
obtained before entering the forest. On the other hand, we show the final trajectory using the
optimized fix alignment that showcases our best achievable result obtained after finalizing
the harvester mission. Importantly, this final trajectory simply shows the state after the last
update of the SLAM, and it is still computed in real time in the local map frame. The only
required post-processing step is to compute the optimized fix that allows us to transform
the obtained final trajectory to the global frame using the reference trajectory.

In Figure 6, we show a top view of the trajectories on the studied test strips for both
positioning modes and for the reference measurements. We provide a more quantitative
presentation in Figure 7, including the positioning error along each axis and the norm
of the error as a function of time. In case of the online trajectories, the drift gradually
increases until the harvester starts driving backwards. Meanwhile, for the final trajectories
using the optimized fix, the errors are low and at most few decimeters throughout the
entire experiment.

We summarize our results for the positioning accuracy in Table 3, including also results
for the two other combinations, online trajectory with optimized fix and final trajectory with
the initial fix alignment. With the online trajectory, the overall error on the test strips was on
the scale of a few metres regardless of the alignment method. For the online trajectory with
the initial fix alignment, the total positioning error was 2.44 m when averaged across the test
strips. Importantly, this error represents the offset of the position throughout the operation,
but the map is approximately locally consistent at each point in time. The internal map
quality is better represented by the results for the final trajectory with the optimized fix
that was as low as 0.21 m when averaged across the test strips. Furthermore, the errors
obtained on each strip are proportional to the length of the trajectory, as is often the case
with SLAM-based systems. The norm of the translational error ranges from 0.07 m on the
shortest test (strip 2) with a total traveled distance of 270 m, up to 0.32 m on the longest test
(strip 5) with a traveled distance of 447 m.
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Figure 6. Top view of the trajectories on the three test strips, including the reference trajectories
(blue), the final trajectories using the optimized fix (green), and the online trajectories using the initial
fix (red).

(a) (b)

Figure 7. Translational positioning errors along each axis and the norm of the error as a function of
time. (a) Errors related to the online trajectory using the initial fix and (b) the final trajectory using
optimized fix. Subplots for both cases, going from top to down corresponds to the test strips 1, 2, and
5 accordingly. Note that the x-axis is approximately the direction of travel in the tests as shown in
Figure 6.
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Table 3. Summary of the positional errors for both the final and online trajectories, evaluated for
each test strip and also for all the strips combined, where the trajectories are concatenated first and
the errors are computed afterwards. Furthermore, the results are presented for both initial fix and
optimized fix, where the first one imitates an optimized initial global fix, while the latter represents an
ideal alignment between the estimated and reference trajectories. For the two main positioning modes
online trajectory with initial fix and final trajectory with optimized fix, the norm of the positioning error
across all strips is highlighted in bold.

Positioning RMSE (m)

Final Trajectory Online Trajectory

x y z norm x y z norm

Initial Fix

Test strip 1 0.135 0.405 0.358 0.557 0.360 3.023 0.400 3.070
Test strip 2 0.019 0.150 0.194 0.246 0.546 1.820 0.276 1.920
Test strip 5 0.203 0.871 1.547 1.787 0.100 0.974 1.592 1.869
All strips 0.150 0.588 0.961 1.136 0.353 2.206 0.998 2.447

Optimized Fix

Test strip 1 0.074 0.094 0.038 0.126 0.354 2.661 0.078 2.686
Test strip 2 0.025 0.043 0.051 0.071 0.534 1.688 0.073 1.772
Test strip 5 0.131 0.214 0.200 0.321 0.116 1.751 0.304 1.781
All strips 0.093 0.143 0.125 0.212 0.348 2.162 0.193 2.199

In addition to the positioning accuracy, we provide the empirical distribution of the
measured update times taken by the SLAM processing in Figure 8. We can see that the
majority of the updates were performed between 30 ms and 50 ms, which is safely inside
our target of 100 ms corresponding to the time to obtain a single scan (see Table 1). This
quick update time suggests that the system is capable of real-time operation, and there is
even remaining computational capacity within each of these 100 ms cycles to perform, e.g.,
onboard tree measurements in the future.
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Figure 8. Empirical distribution of the time taken to perform all SLAM computations for an incoming
scan. The vertical dashed line shows the threshold for real-time operation corresponding to the time
to acquire a single scan with the Ouster scanner.

4.2. Results for Stem Detection and Stem Attribute Estimation

In this section, we present the results for automatic stem detection and stem attribute
estimation from the SLAM-corrected point cloud data using the algorithms presented in
Section 3.2. As discussed in Section 3.2, we provide the results for two different parameter
modes, accurate attributes and tree map, the first of which aims to accurately estimate stem
attributes at the cost of detecting a lower number of trees, whereas the latter is designed to
detect the majority of the trees similar to Ponsse’s thinning density assistant while allowing
higher errors for the stem attributes.

The geometry of the tree stems is accurately modelled by the SLAM-corrected point
cloud data as illustrated in Figure 9a,b, which is a prerequisite for obtaining accurate stem
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attribute estimates. However, the large beam width of the Ouster scanner leads to increased
noise in the stem cross sections as visualized in Figure 9a. The upper forest canopy is not
captured in the point clouds due to the limited field of view of the scanner used, as shown
in Figure 9c, which prevents tree height measurements and limits the accuracy of stem
volume estimation. As a result, we mostly focus on tree detection, DBH estimation, and
stem curve estimation in the rest of this section.

Figure 9. (a) Top view of the SLAM-corrected point cloud in the height interval z ∈ [1.0, 1.5] m
showing cross sections for a few tree stems. The points have been coloured based on the acquisition
time of the data. (b) Side view of an example tree stem in the SLAM-corrected point cloud obtained on
the test strip 1 with points coloured based on their z-coordinate. (c) Side view of the SLAM-corrected
point cloud on the test strip 1 showing heights estimated for the detected trees (black cylinders
extending up to the estimated tree height) together with the corresponding reference height values
marked by red lines. Points are coloured based on their z-coordinate.

Figure 10. (a) A map of tree stems detected using the parameter mode accurate attributes from the
SLAM-corrected point cloud data for the three harvester test strips together with reference tree
locations (black dots) obtained using the ZEB Horizon system along the trajectory shown with the
gray line. Detected trees with (without) a matching reference tree are denoted with light-coloured
unfilled circles (dark-coloured filled circles). Different colours (red, green, blue) are used to distinguish
between the three test strips. (b) Same as (a) but for the trees detected with the parameter mode tree map.

In Figure 10a,b, we illustrate maps of detected trees obtained with the two parameter
modes. The figures show that the parameter modes accurate attributes and tree map enable
tree detection up to a distance of roughly 10 m and 15 m from the scanner, respectively. To
obtain more quantitative estimates of the tree detection rate, we show the mean complete-
ness rate across all test strips as a function of distance from the trajectory in Figure 11a,b
and the completeness rate averaged across a 15 m range from the trajectory in Figure 11c,d.
In addition to the overall completeness rate, the figures also present the completeness rate
for different DBH categories illustrating the effect of tree size on the detection rate. For
the parameter mode accurate attributes, the completeness rate drastically increases with
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increasing DBH as shown in Figure 11a,c. When considering trees within a range of 15 m
from the trajectory, the completeness rate equals only 9.6% for trees with DBH ∈ [0, 20)
cm, but it reaches 62.5% for trees with DBH > 36 cm. From Figure 11a, it is also clear that
the tree detection rate sharply drops for distances above 10 m, and practically no trees are
detected above a distance of 15 m.

For the parameter mode tree map, Figure 11b,d show that the average completeness rate
within a 15-m-range from the trajectory is roughly constant at 90% for the DBH categories
with DBH ≥ 20 cm, whereas the corresponding average completeness rate for trees with
DBH < 20 cm is only 49%. Furthermore, Figure 11b illustrates that the completeness rate
stays roughly constant up to a distance of 15 m, above which the completeness sharply
reduces to zero.

Figure 11. (a) Completeness (markers) and correctness rate (solid blue line) of stem detection averaged
across the test strips as a function of the distance from the trajectory based on the parameter mode
accurate attributes. The completeness rate is shown separately for four different DBH categories
DBH ∈ [0, 20) cm, DBH ∈ [20, 28) cm, DBH ∈ [28, 36) cm, and DBH ∈ [36, ∞) cm. The point density
averaged across the test strips as a function of the distance from the trajectory is shown with the
red line and the right y-axis. (b) Same as (a) but for stems detected using the parameter mode tree
map. (c) Average completeness rate of stem detection within 15 m range from the trajectory based
on the parameter mode accurate attributes for the same four DBH categories as in panels (a,b). The
overall completeness rate considering trees of all sizes is shown with the gray bar. The dashed and
solid black lines show the number of detected trees and reference stems, respectively, within each
size category. (d) Same as (c) but for the parameter mode tree map.

For both parameter modes, the completeness rate varies slightly across the different
strips, as can be inferred from Table A1 in Appendix A. For both parameter modes, the
lowest overall completeness rate was obtained on strip 1, while the highest completeness
rate was attained on strip 5. The differences between the strips can be mostly attributed to
differences in the tree size distributions since the average DBH was the lowest on strip 1,
while strip 5 contained the lowest proportion of small trees (see Table A1). When comparing
the completeness rates within each DBH category, there are no clear trends or differences
between the different strips.
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The average correctness rate of stem detection is 96.8% for the parameter mode
accurate attributes, whereas it is only 78.0% for the parameter mode tree map. Interestingly,
the correctness rate related to tree map increases as a function of distance from the scanner,
reaching values above 90% for distances above 10 m as further discussed in Section 5.2.

Next, we experimentally demonstrate the bias correction procedure explained in
Section 3.2.3 to highlight its importance for the current system based on a Ouster scanner
with a large beam divergence of 6.1 mrad. Without the bias correction, we observe that
the average diameter bias of individual stem arcs increases approximately linearly as a
function of distance with a rate of 6.9 cm per 10 m as illustrated in Figure 12a. This estimate
for the increase rate of bias approximately agrees with the beam divergence of 6.1 mrad
corresponding to a 6.1 cm increase in the beam width at a distance of 10 m.

Figure 12. (a) Diameter bias of individual stem arcs on strip 1 as a function of the distance between
the arc and the scanner before applying the bias correction. The dashed black line shows the linear
model based on a least-squares fit that is used to extract the parameters for the bias correction. The
number of points has been downsampled by a factor of 10 for illustration purposes. (b) Diameter bias
of individual stem arcs on strip 2 as a function of the distance between the arc and the scanner after
correcting the bias using parameters obtained from the linear fit shown in panel (a). Similar to (a), the
number of points has been downsampled. (c) Stem arcs in the height interval z ∈ (3.35, 3.65) m for
an example tree on test strip 1, together with circles representing diameter estimates before (red) and
after (blue) correcting for the bias. (d) Histogram of DBH errors before (red) and after (blue) applying
the bias correction. The statistics include all detected trees with a matching reference tree on test
strips 1, 2, and 5. In all of the panels, the parameter mode accurate attributes was used for estimating
the stem diameters from the point cloud data.

We perform the bias correction explained in Section 3.2.3 by calibrating the parameters
of the linear model in Equation (7) using the bias data from strip 1, after which we apply
the obtained bias correction model for all of the three strips. As shown in Figure 12b, the
distance dependence of the diameter bias is drastically reduced after the bias correction.
On test strip 2, we find a residual increase rate of −0.5 cm per 10 m. The effect of the
bias correction is further visualized in Figure 12c showing stem arcs of one of the trees
together with a circular fit to the data and a circle based on the bias-corrected diameter.
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Furthermore, Figure 12d shows the distribution of DBH errors obtained with the parameter
mode accurate attributes before and after the bias correction. Importantly, the bias correction
not only shifts the center of the distribution to approximately 0 cm, but it also reduces the
spread of the distribution since the magnitude of diameter overestimation varies from arc
to arc before the correction. For the parameter mode accurate attributes, we observe that the
variance part of the RMSE of DBH (obtained as

√
RMSE2 − bias2) equals 3.0 cm before the

bias correction, while it is reduced to 2.1 cm after the correction. For the parameter mode
tree map, the corresponding reduction is even larger.

Figure 13a–d show scatter plots for the DBH and stem curve estimates obtained using
the parameter modes accurate attributes and tree map. For the parameter mode accurate
attributes, the bias, RMSE, and MAE of DBH were 0.1 cm (0.2%), 2.1 cm (7.3%), and 1.0 cm
(3.4%), respectively, whereas the corresponding metrics for the stem curve were 0.1 cm
(0.5%), 2.3 cm (8.3%), and 1.2 cm (4.3%), respectively. For the parameter mode tree map,
the RMSE and MAE were higher: the DBH error had a bias of −0.4 cm (1.4%), an RMSE
of 3.3 cm (12.1%), and an MAE of 1.5 cm (5.6%), whereas the corresponding metrics for
the stem curve were −0.2 cm (−0.6%), 3.7 cm (14.0%), and 1.8 cm (7.0%), respectively. For
both parameter modes, as well as for both DBH and stem curve, the ratio between RMSE
and MAE exceeds 2.0, which is clearly above the ideal value of 1.48 expected for normally
distributed errors due to a few outlying values visible in the scatter plots of Figure 13a–d.
As can be seen from Table A2 in Appendix A, the bias, RMSE, and MAE of DBH and stem
curve are mostly of similar magnitude across the three strips for a given parameter mode.
For the parameter mode tree map, slightly higher RMSE and MAE are obtained for test
strip 1, which may be caused by the large number of small trees, the diameter of which is
difficult to estimate due to the large beam width of the scanner used.

Figure 13. (a) Scatter plot of estimated DBH values vs. reference values based on the parameter mode
accurate attributes. (b) Same as (a) but for the parameter mode tree map. (c) Scatter plot of the stem
curve estimates vs. reference values based on the parameter mode accurate attributes. (d) Same as (c)
but for the parameter mode tree map.

In Figure 14a, we illustrate a stem curve obtained for an example tree on test strip
1 using the parameter mode accurate attributes. From the figure, we observe that the
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smoothing spline fit to the diameter estimates agrees well with the corresponding reference
measurements, but the tree height is underestimated due to the limited field of view of the
scanner. To illustrate the typical height range enabling stem curve estimation, Figure 14b
shows the distributions of the lowest and highest heights, for which the stem curve could
be estimated for the individual trees. On average, the stem curve could be measured
between z = 0.9 m and z = 5.4 m for the parameter mode accurate attributes, whereas the
corresponding height range was z ∈ (0.9, 6.0) m for tree map. However, the highest height
enabling stem curve estimation varied significantly, ranging between z = 2 m and z = 8 m,
as illustrated in Figure 14b.

Figure 14. (a) Example stem curve from the SLAM-corrected point cloud data as a function of the
height from the ground together with the reference stem curve (red circles) based on the ZEB Horizon
system. The blue circles show the median diameter of bias-corrected stem arcs at each height, whereas
the solid blue line shows the corresponding smoothing spline fit. The stem curve has been estimated
for one of the trees on the test strip 1. (b) Distribution of lowest (blue) and highest (red) heights, for
which the stem curve could be estimated for individual trees on the three test strips. The vertical
dashed lines denote the mean values for the lowest and highest height.

Finally, we study how the DBH and stem curve errors depend on the tree size and the
tree-to-harvester distance. In Figure 15, we illustrate the bias, RMSE, and MAE of DBH
and stem curve estimates for the four studied DBH size categories when using either of
the parameter modes accurate attributes or tree map. From the figure, we first see that the
bias of both DBH and stem curve estimates is close to zero for all of the DBH categories
regardless of the parameter mode used. When comparing the parameter modes with each
other, we observe that the RMSE and MAE within each DBH category are systematically
lower for accurate attributes as expected. For both of the parameter modes, the absolute
RMSE and MAE are typically clearly higher for trees with DBH < 20 cm than for trees
with DBH ≥ 20 cm. This may be explained by a lower number of stem hits for the smaller
trees and a lower effective signal-to-noise ratio. For the DBH categories with DBH ≥ 20 cm,
the differences are relatively small, especially when using the outlier-robust MAE as the
error metric.

In Figure 16a,b, we show the bias, MAE, and RMSE of DBH and stem curve estimates
as a function of the distance from the trajectory for the two parameter modes. Based on
the figures, the bias of DBH and stem curve estimates oscillates around zero and has no
clear trend after the bias correction. However, the outlier-robust MAE appears to increase
with increasing distance from the trajectory for both DBH and stem curve estimates and for
both studied parameter modes. This suggests that the increased effective noise caused by
the distance-dependent laser beam width hampers stem diameter estimation even after
performing the bias correction. Furthermore, we observe that the MAE and RMSE for the
parameter mode tree map are systematically higher for a given tree-to-trajectory distance
compared to accurate attributes indicating that the higher MAE and RMSE values for tree
map in Table A2 of Appendix A are not only caused by the the higher completeness rate of
tree map at further distances.
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Figure 15. (a) Bias, RMSE, and MAE of DBH estimates obtained using the parameter mode ac-
curate attributes for trees in four different DBH categories DBH ∈ [0, 20) cm, DBH ∈ [20, 28) cm,
DBH ∈ [28, 36) cm, and DBH ∈ [36, ∞) cm. The overall bias, RMSE, and MAE are shown with a gray
bar. The results include all detected tree stems on the three test strips. (b) Same as (a) but for the DBH
estimates obtained using the parameter mode tree map. Note the different y axis limits compared
to panel (a). (c) Bias, RMSE, and MAE of stem curve estimates obtained using the parameter mode
accurate attributes for trees in four different DBH categories DBH ∈ [0, 20) cm, DBH ∈ [20, 28) cm,
DBH ∈ [28, 36) cm, and DBH ∈ [36, ∞) cm. The overall bias, RMSE, and MAE are shown with a gray
bar. The results include all detected tree stems on the three test strips. (d) Same as (c) but for the
stem curve estimates obtained using the parameter mode tree map. Note the different y axis limits
compared to panel (c).

Figure 16. (a) Absolute bias (circles), MAE (triangles), and RMSE (squares) for DBH estimates as a
function of the tree-to-trajectory distance. The results for the parameter modes accurate attributes and
tree map are shown in blue and red colours, respectively. The results have been aggregated using
distance intervals of 3 m and considering distance intervals with at least 5 detected trees. (b) Same as
(a) but for the bias, MAE and RMSE of stem curve estimates.
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5. Discussion
5.1. Discussion on Harvester Localization Using SLAM

Related to our SLAM solution, we can categorize the different sources of localization
errors into random and systematic errors. Random errors are primarily propagated from
the raw measurements and from the additional cabin pose estimation that was necessary to
compare our SLAM trajectory to the reference one. A good approximation of the random
error can be measured at the beginning of the test strips, where drift has not yet accumulated
significantly. At these initial segments (also used to compute the initial fix), we measured
an average RMSE of 2.4 cm across the three test strips. Meanwhile, systematic errors can
be introduced by a variety of factors. The alignment between the reference and estimated
trajectory can highly alter the measured error between them. Further systematic error can be
accumulated due to the inaccuracy of the noise models constructed within the observation
factors for the graph optimizations. However, we attribute most of the errors to the straight
path that the harvester was following. Since we are operating an iterative SLAM method
without global measurements, our only mechanism to reduce the drift error is by loop
closures. Although conventional loops are not present in the harvester trajectories compared
to other MLS systems, our algorithm was still able to recognize previously visited areas
and apply corrections. The occasional jumps visible in the online trajectories were also
an expected consequence of such corrections. In our tests, most loop detections occurred
when the harvester returns to the initial position at the end of the measurements, reducing
the online error significantly, thus having much smaller errors also in the final state of
the trajectory. Although the errors are significantly reduced in the final trajectory, we still
observed that the error is proportional to the length of the trajectory, suggesting that our
system cannot fully compensate for the drift. Additionally, we observed that the largest
errors accumulated along the y- and z-coordinates as our trajectories were spanned primarily
along the x-direction, providing more constraints and information along the x-axis.

It is difficult to directly compare our results to previous works, such as the one by
Nevalainen et al. [7], where they measured an error of 0.2 m per 50 m and 0.5 m per 100
m for the xy-components excluding the error along the z-axis (i.e., axis of gravity). The
closest comparison we obtained was by observing the final trajectory using the initial fix
alignment as shown in Figure 17. Since the alignment is performed before entering the
forest, a large error on longer distances to the start is expected. Here, using the initial fix, we
observe errors from 1 to 2 m at the first 100 m of distance depending on the strip. However,
when studying the optimized fix (x markers in Figure 17), the error of the trajectory is
greatly reduced and is always less than 0.5 m across the first 100 m. However, not all of
the observed drifts using the initial fix are caused by the errors in the initial alignment. A
small part of the drift is also present using the optimized fix, which can be noted from the
increased mean error (in Table 3) in the longer trajectories.
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Figure 17. Mean positioning error of the final trajectory as a function of the shortest distance to the start
position. We included both the initial (point marker) and optimized (x marker) fix. Furthermore, the test
strips are differentiated by colours. Plotted for every tenth trajectory element to improve visibility.
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5.2. Discussion on Stem Detection and Stem Attribute Estimation

We observed in Section 4.2 that the completeness rate of tree detection is rapidly
reduced as the distance from the scanner increases. We attribute this observation to two
main factors: First, the point density rapidly decreases as a function of distance as shown
in Figure 11a,b. Beyond a distance of 20 m, the point density is less than 1000 pt/m2,
i.e., approximately 20 times lower than the average point density within a 15 m distance
from the trajectory. Second, the large beam divergence of the Ouster scanner causes the
effective noise of the stem arcs to increase with distance, which can prevent successful stem
arc detection at large distances if the heuristic quality criteria are no longer satisfied.

The parameter mode tree map was furthermore observed to result in a non-negligible
number of commission errors, which can arise from multiple reasons: First, the lenient
parameter thresholds lead to incorrectly identified arcs representing, e.g., points reflected
from tree branches, and a sufficient number of such incorrectly identified arcs may further
lead to an incorrect detection of a tree stem. The number of incorrectly detected tree stems
is higher closer to the scanner due to, e.g., a higher point density, which partly explains
the distance dependence of the correctness rate. Second, the reference tree map obtained
from the ZEB Horizon point cloud may not contain all the small trees, especially close to
the boundaries of the ZEB Horizon point cloud. As a third potential reason, sufficiently
large distortions in the point cloud may potentially lead to a single tree being detected
multiple times.

5.3. Current Limitations and Potential Future Applications

We foresee that harvester-based MLS systems may have several different applications
as illustrated in Figure 18, the most obvious being real-time assistance of the harvester
operator based on forest information estimated from the laser scanner data. As mentioned
in the introduction, Ponsse has lately introduced a prototype concept for an MLS-based
thinning density assistant utilizing the number of detected trees to help the operator to
achieve a targeted thinning density. However, the decision-making could be optimized
in much greater detail if the harvester MLS system would enable accurate estimation of a
variety of stem attributes in line with the studied parameter mode accurate attributes. In an
ideal scenario, the harvester MLS system and the algorithms processing the data would
enable deriving accurate real-time information of, e.g., the geometry and species for most of
the surrounding trees while also extracting other information of the ecosystem, such as the
detection of valuable habitat, suitable retention trees, and decaying wood. This information
could be further converted to instructions on which trees to fell and which to leave growing
during a thinning or logging process while ensuring that valuable habitat is saved and
sufficient amount of wood is left in the forest to meet green house gas emissions targets.

This application of harvester MLS would not only require real-time positioning of the
harvester but also necessitate real-time detection and measurement of surrounding trees.
Even though the SLAM-based positioning algorithm used in this work could in principle be
executed in real time as explained in Section 4.1, the current Matlab implementation of the
stem attribute estimation algorithm does not run in real time but works in a post-processing
setting taking the SLAM-corrected point cloud as its input. To understand the bottlenecks
of the current implementation, we profiled the performance of the current method using a
subset of the point cloud corresponding to a 40 m by 20 m rectangle with 20 million points
and a point density of 2.5 × 104 pts/m2. Executing the Matlab code on a laptop with Intel
Core i7-7820HQ 2.9 GHz processor and 32 GB of RAM, the analysis of the studied point
cloud took approximately 385 s, including the DTM generation, tree detection, and stem
attribute estimation. For a test strip with an assumed length of 150 m and a width of 40 m,
this execution time translates to an estimated total analysis time of 1500 s = 48 min, which
exceeds the harvester operation time of 25–40 min on a single test strip in our experiments.
In the current implementation, the detection of stem arcs dominates the runtime and
especially the DBSCAN clustering algorithm takes up to one third of the total execution
time. We expect that the runtime may potentially be reduced significantly in the future by
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using a different programming language, such as C++, and/or by making more extensive
use of parallel computing. The point cloud could also be subsampled before the stem
detection step to reduce the execution time of the DBSCAN clustering algorithm. Points in
the original point cloud nearby the detected clusters may be reintroduced before the circle
fitting and the comparison against heuristic quality criteria to increase the number of points
used for the stem attribute estimation. However, the completeness rate of tree detection
may suffer from a reduced point density in the clustering step. Further improvements to
the runtime may potentially be obtained by developing less computationally expensive and
more efficient methods for the stem detection, e.g., using deep learning methods enabling
rapid GPU execution [55,56].
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Detect trees around the
harvester in real-time and use
the locations of trees for
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Figure 18. Summary of potential future applications of harvester MLS with requirements for
positioning and tree attribute estimation. The graph also presents the connection between the
applications and the studied modes of positioning (online trajectory + initial fix vs. final trajectory +
optimized fix) and tree attribute estimation (parameter mode tree map vs. accurate attributes).

In addition to runtime improvements, the real-time analysis of the point cloud data
would require updating the working principle of the stem attribute estimation algorithm to
enable continuous update and aggregation of stem attributes as new data are accumulated.
Since the stem arc detection algorithm presented in Section 3.2 analyzes the point cloud
data one brief time interval at a time, the same arc detection method may be applied in the
case of continuously accumulated data. However, some additional logic may be required
to continuously improve the assignment of detected stem arcs into trees and to update
estimated stem attributes and their uncertainties, e.g., using a Bayesian approach.

The real-time operation may also require improved accuracy for the harvester po-
sitioning. According to the results of Section 4.1, the real-time positioning error during
the thinning operation may be significantly higher than the positioning error obtained
after the optimization of the full trajectory. For some applications, the temporal drift
of the trajectory may be tolerated if it is sufficient to only consider a local map of the
surroundings accumulated during a limited period of time. More complex applications
(e.g., thinning/felling optimizer in Figure 18) may, however, require a higher accuracy for
the real-time positioning, e.g., due to a need to match the detected trees with the ones in a
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prior plan. To overcome this issue, future work is needed to study how to integrate a prior
map of the forest to the processing flow and if such a map could also improve the accuracy
of real-time positioning. The prior map could be obtained, e.g., using national ALS-based
forest inventories.

Another potential application of harvester-based MLS is the collection of vast amounts
of up-to-date training data for large-scale individual-tree-based forest inventories con-
ducted using ALS. Here, the idea is to use the high-quality tree attributes, such as stem
volume, estimated from the harvester MLS data as teaching data for machine learning
or deep learning models predicting the corresponding tree attributes from sparse ALS
data (e.g., 5 pt/m2) covering large regions or even entire countries [57,58]. Compared to
conventional field measurements or terrestrial laser scanner (TLS), harvester MLS systems
would enable the collection of significantly larger, up-to-date training datasets, potentially
enabling a higher accuracy for the trained machine learning models and the use of local
models instead of national models, further improving accuracy. However, there are a few
key challenges related to this potential application of MLS data: First, the tree attributes
detected from the harvester MLS data need to provide a representative sample of the trees
to be modelled. Second, the trees detected from harvester MLS data must be correctly
matched to trees detected from the sparse ALS data. Thus, the positioning errors within the
harvester MLS data need to be sufficiently small, in addition to which the harvester MLS
data need to be georeferenced to the global coordinate system, e.g., using the detected tree
locations from the harvester MLS data and the ALS data for the final alignment [54,59–61].

When using the harvester MLS data to produce high-quality training data for ALS
inventories, it is important to note that the trajectory computation and the stem attribute
estimation can be performed offline. However, this would require that the onboard com-
puter of the harvester should have sufficient memory to store the acquired data or the data
need to be continuously transferred to the cloud. The offline computation may take more
computational resources and utilize the full dataset, potentially leading to higher accuracy
for the positioning and stem attribute estimation compared to the real-time analysis. Note
that the tree attributes derived for the harvested trees can be used as training data for
ALS data collected before the harvesting, whereas the trees remaining in the forest can
be used as reference for ALS data collected before or after the harvesting. In an actual
implementation, many further details need to be considered, such as the effect of snow on
tree attributes, as well as tree growth between the acquisition of datasets.

A further possibility is to utilize HPR data, i.e., stem curve measurements physically
conducted by the harvester for the logged trees [16], to improve the stem attribute estima-
tion. For example, the HPR data could be used to optimize the parameters of the stem
attribute estimation algorithm or to calibrate parameters needed for the bias correction by
comparing MLS-derived stem diameters of logged trees to the measurements in the HPR
data. Furthermore, the MLS-derived stem curves of logged trees to be used as training data
could be even updated or replaced using the HPR data in order to improve the quality of
the training data.

For the above discussed applications to provide added value, the estimated tree
attributes should have low enough errors and they need to be obtained for a sufficiently
high proportion of the trees. In this work, we studied stem attribute estimation using
two parameter modes demonstrating the trade-off between the accuracy of obtained stem
attributes and the completeness rate of stem detection. The RMSE of DBH and stem curve
estimates ranged between 2.1 cm and 3.6 cm, which is somewhat higher than state-of-
the-art error of 1–2 cm obtained in the literature using MLS systems with a low beam
divergence, such as ZEB Horizon [6,33,41]. Importantly, the RMSE is also higher than in
our previous studies applying a relatively similar stem attribute estimation algorithm for
MLS data collected with different systems in comparable boreal forest conditions [9,38],
which suggests that the relatively high error obtained in this work is likely caused by
the measurement system and not the algorithms used. We attribute the error of stem
diameter estimates mainly to the high beam divergence of the used Ouster OS0 scanner
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and the limited field of view of the measurements. The high beam divergence resulted
in increased effective noise in the point cloud and overestimation of the stem diameters
when not correcting the distance-dependent bias. The large beam divergence reduced the
detection rate of distant trees as their arcs were of low quality due to the beam-width-
induced increased noise. As another source of error, the stems were only mapped from one
side due to the linear trajectory of the harvester in contrast to typical MLS measurements
viewing each stem from multiple directions. This may have hampered tree detection and
diameter estimation due to occlusion. The problems related to the limited field of view are
exacerbated if the harvester MLS system is used for real-time assistance of the operator
since the trees to be cut down are mainly observed in front of the harvester.

Furthermore, the limited vertical field of view of Ouster OS0 scanner prevented us
from accurately estimating the tree height and consequently the stem volume. Regardless
of the used parameter mode, the bias of tree height estimation was approximately −6 m
with the RMSE equaling 7 m. The stem volume estimates obtained from the tree height and
stem curve consequently had a large negative bias of approximately −20% with the RMSE
equaling 30% for accurate attributes and 33% for tree map. We expect that the integration of a
scanner with a smaller beam divergence and increased field of view would enable stem at-
tribute estimation with significantly reduced errors while also improving the completeness
and correctness rates of tree detection even for more distant trees. Such improvements may
make it feasible to significantly improve the optimization of the harvesting process. Natu-
rally, there are other properties of the scanner that also need to be considered in a practical
implementation of a harvester MLS system, such as the overall cost of procurement and
maintenance, durability, reliability, and tolerance to winter conditions.

We also point out that the bias correction procedure described in Section 3.2.3 may
be extended further to account for different sources of bias [53]. For example, previous
studies have observed that the bias of stem curve estimation tends to increase as a function
of height from the ground for different MLS systems [38]. Such height-dependent bias
could also be mitigated at least partly by fitting a parametric or non-parametric model to
the bias as a function of the height variable. The calibration of the bias correction naturally
requires some reference data, but after the calibration the same model can be applied for
the same scanner system provided that the model generalizes well and is not specific to,
e.g., certain type of test sites.

Finally, we emphasize that our experiments on the harvester MLS system were per-
formed in a coniferous forest that represents a typical managed forest in the boreal forest
zone at the time of the first thinning. Our tests were carried out during the winter time,
but we expect the system to perform equally well in different seasons. However, further
research would be needed to demonstrate the performance of our methods and system in
different forest conditions, such as in a temperate forest. In principle, the proposed SLAM
solution is not specific to the forest type, but the resulting positioning error may naturally
depend on a multitude of factors, such as the density of the forest, as well as the length and
shape of the trajectory. On the other hand, our algorithm for stem attribute estimation is
primarily designed for trees with a single, relatively straight stem, such as coniferous trees
in the boreal forest zone. Adaptations to other forest types, such as temperate forests with
deciduous trees, may require modifications to the stem attribute estimation algorithm if the
assumption of a single, straight stem is not valid.

6. Conclusions

We demonstrated a first full processing flow for a harvester equipped with an MLS
system, starting from a SLAM-based positioning solution followed by algorithmic detection
of trees and measurement of their stem attributes.

The SLAM-based positioning solution was shown to be capable of real-time operation
with a positioning error of 2.45 m (for online trajectory with the initial fix) across the
three studied test strips. The test strips were linear, representing a real-world harvesting
operation devoid of any loop closures that are crucial for positioning a typical SLAM-based



Remote Sens. 2024, 16, 3292 30 of 34

MLS. The error was reduced to 0.21 m (for final trajectory with the optimized fix) after
performing all the measurement updates and determining an improved transformation to
the global coordinate system by comparing the final trajectory to the reference one. Only
approximately 2 cm of the error can be attributed to random error, and the rest to the
accumulating drift perpendicular to the travel direction, and the quality of the fix, i.e.,
miss-alignment between the map and the georeferenced world frame. We hope to improve
the drift and the fix in future work by incorporating existing (potentially incomplete) tree
maps, e.g., from previous harvester missions or from national-level ALS scans.

The full SLAM-corrected point clouds were subsequently utilized for stem attribute
estimation. By correcting the distance-dependent bias caused by the relatively large beam
width of the laser scanner, we estimated the stem diameter at an RMSE of approximately
3 cm with a completeness of 90% for trees larger than 20 cm in diameter and within 15 m
of the harvester. Even though harvester MLS data acquisition does not collect a complete,
360-degree view of the tree stems, the obtained results are similar to the state-of-the-art MLS
methods using the Ouster OS0 scanner in similar forest conditions. However, significant
improvements are required for real-time detection and attribute estimation of the trees. We
foresee that such an improved system may ultimately enable real-time optimization of the
harvester operation and also help to automatically collect vast amounts of accurate training
data for large-scale ALS-based forest inventories at the individual tree level.
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Appendix A. Strip-Wise Results for Stem Detection and Stem Attribute Estimation

In this section, we summarize strip-wise results for stem detection in Table A1 and
stem attribute estimation in Table A2 for both studied parameter modes accurate attributes
and tree map.

Table A1. Completeness rate of stem detection for the studied DBH categories on each of the test
strips considering trees within a range of ±15 m from the harvester trajectory. For both studied
parameter modes accurate attributes and tree map, the completeness rate in each DBH category is
reported, and the overall correctness rate of stem detection is also provided. For the completeness
and correctness rates, the average across the strips is reported in the last row. The values within
parenthesis refer to the number of trees used to compute the completeness and correctness rates.

Completeness (%)

DBH
∈[0, 20) cm

DBH
∈[20, 28) cm

DBH
∈[28, 36) cm

DBH
∈[36, ∞) cm Overall

Correctness
(%)

accurate attributes

Test strip 1 8.1 (9/111) 48.1 (38/79) 65.4 (34/52) 60.0 (6/10) 34.5 (87/252) 95.6 (87/91)
Test strip 2 12.8 (5/39) 50.0 (31/62) 51.5 (34/66) 68.2 (15/22) 45.0 (85/189) 97.7 (85/87)
Test strip 5 11.8 (2/17) 42.4 (42/99) 54.5 (50/91) 56.3 (9/16) 46.2 (103/223) 97.2 (103/106)
All strips 9.6 (16/167) 46.3 (111/240) 56.5 (118/209) 62.5 (30/48) 41.4 (275/664) 96.8 (275/284)

tree map

Test strip 1 53.2 (59/111) 92.4 (73/79) 94.2 (49/52) 80.0 (8/10) 75.0 (189/252) 74.1 (189/255)
Test strip 2 33.3 (13/39) 87.1 (54/62) 83.3 (55/66) 100.0 (22/22) 76.2 (144/189) 76.6 (144/188)
Test strip 5 58.8 (10/17) 85.7 (84/98) 92.3 (84/91) 81.3 (13/16) 86.0 (191/222) 83.4 (191/229)
All strips 49.1 (82/167) 88.3 (211/239) 90.0 (188/209) 89.6 (43/48) 79.0 (524/663) 78.0 (524/672)

Table A2. Absolute and relative bias, RMSE, and MAE of DBH and stem curve estimates for each of
the test strips together with average results based on all detected stems across the strips. The table
includes results for both of the considered parameter modes and also provides the average results
considering all trees on the test strips. The statistics are based on the trees detected within a range of
±15 m from the harvester trajectory.

DBH

Bias
(cm)

Bias
(%)

RMSE
(cm)

RMSE
(%)

MAE
(cm)

MAE
(%)

Parameter mode accurate attributes

Test strip 1 −0.3 −1.2 1.9 6.9 1.3 4.6
Test strip 2 0.6 1.9 1.9 6.3 0.9 3.1
Test strip 5 0.0 0.0 2.4 8.2 1.0 3.5
All strips 0.1 0.2 2.1 7.3 1.0 3.4

Parameter mode tree map

Test strip 1 −0.4 −1.5 3.9 16.2 1.5 6.3
Test strip 2 −0.2 −0.7 2.5 8.6 1.3 4.6
Test strip 5 −0.4 −1.3 3.0 10.5 1.6 5.7
All strips −0.3 −1.2 3.2 12.0 1.5 5.5

Stem Curve

Bias
(cm)

Bias
(%)

RMSE
(cm)

RMSE
(%)

MAE
(cm)

MAE
(%)

Parameter mode accurate attributes

Test strip 1 −0.2 −0.6 2.3 8.5 1.4 5.3
Test strip 2 0.4 1.4 2.3 7.9 1.2 4.0
Test strip 5 0.2 0.6 2.4 8.5 1.0 3.5
All strips 0.1 0.5 2.3 8.3 1.2 4.3

Parameter mode tree map

Test strip 1 0.2 0.8 4.4 18.9 2.0 8.4
Test strip 2 −0.2 −0.8 3.0 10.5 1.7 5.9
Test strip 5 −0.2 −0.8 3.2 11.6 1.8 6.6
All strips −0.1 −0.3 3.6 13.9 1.8 6.9
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34. Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-Held Personal Laser Scanning–Current Status and
Perspectives for Forest Inventory Application. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 165–183.

35. Vandendaele, B.; Martin-Ducup, O.; Fournier, R.A.; Pelletier, G.; Lejeune, P. Mobile laser scanning for estimating tree structural
attributes in a temperate hardwood Forest. Remote Sens. 2022, 14, 4522. [CrossRef]

36. Liang, X.; Hyyppä, J.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Yu, X. The use of a mobile laser scanning system for mapping large
forest plots. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1504–1508. [CrossRef]

37. Hyyppä, E.; Kukko, A.; Kaartinen, H.; Yu, X.; Muhojoki, J.; Hakala, T.; Hyyppä, J. Direct and automatic measurements of stem
curve and volume using a high-resolution airborne laser scanning system. Sci. Remote Sens. 2022, 5, 100050. [CrossRef]

38. Hyyppä, E.; Yu, X.; Kaartinen, H.; Hakala, T.; Kukko, A.; Vastaranta, M.; Hyyppä, J. Comparison of backpack, handheld,
under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests. Remote Sens. 2020,
12, 3327. [CrossRef]

39. Ouster. OS0: Ultra-Wide View High-Resolution Imaging Lidar; Revision: 12/07/2020, Hardware Version: Rev C; Ouster, Inc.:
San Francisco, CA, USA, 2020. Available online: https://data.ouster.io/downloads/datasheets/datasheet-rev05-v2p1-os0.pdf
(accessed on 1 August 2024).

40. Leica. Leica Nova TS60;Retrieved 12.2.2024; Leica: Heerbrugg, Switzerland, 2020. Available online: https://leica-geosystems.
com/products/total-stations/robotic-total-stations/leica-nova-ts60 (accessed on 1 August 2024).

41. Chen, S.; Liu, H.; Feng, Z.; Shen, C.; Chen, P. Applicability of personal laser scanning in forestry inventory. PLoS ONE 2019,
14, e0211392. [CrossRef]
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