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ABSTRACT

In recent years, machine learning approaches to modelling gui-
tar amplifiers and effects pedals have been widely investigated and
have become standard practice in some consumer products. In par-
ticular, recurrent neural networks (RNNs) are a popular choice for
modelling non-linear devices such as vacuum tube amplifiers and
distortion circuitry. One limitation of such models is that they are
trained on audio at a specific sample rate and therefore give un-
reliable results when operating at another rate. Here, we investi-
gate several methods of modifying RNN structures to make them
approximately sample rate independent, with a focus on oversam-
pling. In the case of integer oversampling, we demonstrate that a
previously proposed delay-based approach provides high fidelity
sample rate conversion whilst additionally reducing aliasing. For
non-integer sample rate adjustment, we propose two novel meth-
ods and show that one of these, based on cubic Lagrange inter-
polation of a delay-line, provides a significant improvement over
existing methods. To our knowledge, this work provides the first
in-depth study into this problem.

1. INTRODUCTION

Virtual Analog (VA) modelling [1] refers to the digital emulation
of analog systems, such as guitar amplifiers and distortion effects.
The aim is to replace bulky and expensive hardware with software,
typically implemented as an audio plugin, to be used in a digital
audio workstation.

Approaches to VA modelling are generally divided between
white-box methods [2, 3], which derive equations based on circuit
modelling, and black-box methods, which define a general model
structure and use data to optimise the model parameters [4, 5].
Black-box models based on neural networks have become a popu-
lar approach to creating digital models of guitar amplifiers and dis-
tortion effects in recent years, including models based on Convo-
lutional Neural Networks [6], Recurrent Neural Networks (RNNs)
[7, 8] and Differentiable Digital Signal Processing [9].

Audio plugins are frequently implemented at multiple sample
rates (SR), allowing the user to choose. For white-box methods,
adjusting the SR is straightforward, as it is generally explicitly in-
cluded as a parameter in the model. For neural network methods,
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the SR of the model is fixed to that of the training data and is gen-
erally not adjustable after training. The exception to this is the
State-Trajectory Network (STN) [7], which has an adjustable SR
but also requires additional state information to be recorded from
the target device.

In this paper, we focus on a particular class of RNN model
that is commonly applied to guitar amplifier modelling [8]. This
model can achieve excellent perceptual quality at a relatively low
computational cost [10, 11, 12]. Specifically, we investigate some
previously proposed methods and two novel extensions for over-
sampling the models at inference-time. We show that with the
correct choice of method, the SR of a pre-trained RNN model can
be adjusted with very little impact on the emulation quality, whilst
additionally reducing aliasing. For guitar amplifier plugins based
on RNNs, this allows for oversampling without requiring multi-
ple models to be trained at different SRs. Furthermore, it allows
the processing of signals with arbitrary SRs without the need for
resampling at run-time.

This paper is outlined as follows: Sec. 2 formally outlines the
problem statement with Sec. 3 presenting the possible methods of
modifying RNNs to be approximately SR independent. In Sec. 4,
the methods are evaluated for a simplified test problem of a linear
filter, and in Sec. 5 evaluation is carried out on several neural
network models of guitar amplifiers and effects pedals. Sec. 6
provides concluding remarks and areas of further work.

2. PROBLEM STATEMENT

Consider a continuous-time input audio signal x(t) that has been
sampled at a rate of Fs = 1/T to give xn ≡ x[n] ≈ x(nT ), where
n is an integer sample index. In this work we consider recurrent
neural networks (RNNs) of the form:

hn = f
(
hn−1, xn) (1a)

yn = g (hn, xn) , (1b)

where hn ∈ RH×1 is the hidden state of length H and yn is the
output signal. This class of model has been extensively used in re-
cent years for modelling guitar amplifiers and effects pedals [10].
The recurrent layer, Eq. (1a), is typically a Gated Recurrent Unit
(GRU) or a Long Short-Term Memory Network (LSTM), but this
work is not tied to any specific recurrent unit architecture. The
function f(·) is in general non-linear and typically a combination
of hyperbolic tangent and logistic activation functions. Alterna-
tively, Eq. (1a) can be interpreted more generally as a non-linear
auto-regressive model (NARMAX) [13]. Here we take g(·) to be a
fully-connected memoryless affine layer, which is by definition SR
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Figure 1: Baseline recurrent neural network architecture studied
in this work, where f is a non-linear recurrent cell and g is a fully
connected affine layer.

independent, therefore do not consider further its influence when
operating at different SRs.

In this work we consider the case where the RNN has been
trained on audio signals at a certain SR, Fs, but at inference we
wish to operate at an oversampled rate of F ′

s = 1/T ′ = MFs,
where {M ∈ R |M > 1} is the integer or non-integer oversam-
pling factor. Assuming the input signal resampled at the new rate,
so that x̃n ≈ x(nT ′), we seek a model which correctly predicts the
oversampled hidden state time-series, h̃n, such that the perceptual
quality of the output signal ỹn is not negatively impacted by the
change of SR. We would expect that oversampling reduces alias-
ing artifacts caused by the non-linear activations – which could in
fact improve the perceived quality – therefore we seek an oversam-
pling method that reduces aliasing without otherwise affecting the
original harmonic spectral content.

In this work we focus on a base SR of Fs = 44.1 kHz and con-
sider oversampling relative to this. SR conversion from a higher to
a lower rate is left to further work. We evaluate the quality of mod-
els based on their accuracy within the original Nyquist limit, i.e.
we only consider frequency content below 22.05 kHz and consider
potential artifacts beyond this negligible due to inaudibility.

3. METHODS

In this section we outline the existing approaches to SR indepen-
dent RNNs, as well as a proposed extension to these. For compar-
ison, for a given f and g, we additionally consider computing the
same recursion, Eq. (1a), at a different SR, and refer to this as the
“naive” method.

3.1. State-trajectory network method (STN)

Recent work has explored the connection between RNNs and nu-
merical solvers for state-space systems [7, 14, 15]. In this section
we show that interpreting an RNN in this way provides one pos-
sible method of SR modification, and will refer to it as the State-
trajectory network (STN) method after the work in which it was
originally proposed [7]. The general RNN functional form Eq. (1a)
can be rewritten in terms of the state residual, r(hn−1, xn):

hn = hn−1 +
(
−hn−1 + f

(
hn−1, xn))︸ ︷︷ ︸

r(hn−1,xn)

(2)

This can now be viewed as the Forward Euler (FE) numerical so-
lution to the ordinary differential equation (ODE)

ḣ = Fsr (h, x) (3)

Figure 2: STN method: modified RNN architecture for changing
the SR by factor of M by scaling the state residual [7].

where hn is assumed drawn from an underlying continuous state
variable h(t) at t = nT , and xn is advanced by one time step. It
follows that simulating this ODE at a new SR F ′

s leads to

h̃n = h̃n−1 +
1

M
r
(
h̃n−1, x̃n

)
=

(
1− 1

M

)
h̃n−1 +

1

M
f
(
h̃n−1, x̃n

) (4)

where M = F ′
s/Fs is the oversampling factor. Parker et al. [7] in-

vestigated modelling non-linear state-space systems with a model
of this form, where they trained a multi-layer perceptron in place of
the function r. In their work they suggest that the factor M could
be used to alter the time-scale of the recursion, with some caveats:
for M > 1, the system may lack high frequency behaviour and for
M < 1 that aliasing might occur [7]. In this work we investigate
the former and show that SR conversion in this manner does in-
deed lead to a low-passing effect within the audible spectrum. We
refer to predicting the hidden states via Eq. (4) as the STN method
of SR modification. The corresponding block diagram is shown in
Figure 2.

3.2. Linearly interpolated delay-line (LIDL)

An alternative method is to modify the delay length (in samples)
in the original RNN architecture, as originally proposed in [16].
Consider the RNN in Eq. (1a) as approximating a continuous time
system, which implements a fixed delay of T = 1/Fs s:

h(t) = f (h(t− T ), x(t)) , (5)

This system can be sampled with another time-step, T ′ by setting
t = nT ′ to obtain:

h(nT ′) = f
(
h((n−M)T ′), x(nT ′)

)
(6)

where M is as defined in the previous section. We can then ap-
proximate this system in discrete time as:

h̃n = f
(
h̃n−M , x̃n

)
(7)

where h̃n ≡ h̃[n] ≈ h(nT ′). In this method, the hidden state of
the RNN is delayed by the same duration (in s) as when operating
at the original SR. For integer oversampling, M ∈ Z+, and the
delay of M samples can be easily implemented with a delay line.

However, in the case of non-integer resampling (e.g. from 44.1 kHz
to 48 kHz) the state at time step n−M is not defined. In this case,
Chowdhury [16] proposed using linear interpolation between the
two nearest states to approximate the unknown state:

h̃n−M ≈ (1−∆)h̃n−⌊M⌋ +∆h̃n−⌊M⌋−1 (8)
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Figure 3: LIDL method: modified RNN architecture for oversam-
pling by a factor of M by linearly interpolating between successive
states. ∆ = M − ⌊M⌋ and ∆′ = 1−∆. Adapted from [16].

where ∆ = M − ⌊M⌋. Linear interpolation is known to be a
good approximation for very small fractional delays due to its lin-
ear phase response [17], but shows increasing errors in magnitude
at higher frequencies. It is worth noting that for M < 1, Eq. (8)
becomes implicit, therefore this method is not suitable for lower-
ing the SR. In theory, one-sided extrapolation could be used here
instead, but this is left to further work.

3.3. All-pass delay line method (APDL)

The LIDL method can be interpreted as using a first-order FIR fil-
ter to approximate the fractional delay when oversampling by a
non-integer factor. In this work we also consider an IIR filter ap-
proach to this by embedding an all-pass filter in the state feedback
loop, as shown in Figure 4. The first-order all-pass filter has the
transfer function:

Hη(z) =
η + z−1

1 + ηz−1
, (9)

and is known to approximate a delay of ∆ samples when [18]:

η =
1−∆

1 +∆
. (10)

This approximation is only valid in the low-frequency limit, how-
ever. Unlike linear interpolation, all-pass filter interpolation gives
a unity magnitude response but shows increasing errors in phase
at high frequencies [18, 17]. For an oversampling ratio of M , a
fractional delay of ∆ = M − ⌊M⌋ samples is required, so from
Eq. (10), the following recursion results:

an = η · (h̃n−⌊M⌋ − an−1) + h̃n−⌊M⌋−1, (11)

where a ∈ RN×1 is the all-pass filter state. The current all-pass
filter state can then be substituted into Eq. (7) as an approximation
to h̃n−M .

Note that for integer M , the APDL method and the LIDL
method are identical. Likewise, the APDL method is not suit-
able for lowering the SR (M < 1). Furthermore, as ∆ → 0,
the filter relies on pole-zero cancellation to give a flat frequency
response, which can introduce numerical errors when operating
with finite-precision arithmetic. As such, it has been previously
recommended to design APF interpolators such that, where possi-
ble, ∆ ∈ [0.1, 1.1] [19]. In Section 5 we show that this does indeed
cause problems for SR conversion from 44.1 kHz to 48 kHz.

Figure 4: Proposed APDL method: modified RNN architecture for
oversampling by a non-integer factor of M with an all-pass filter
that implements a fractional delay. η is given by Eq. (10).

3.4. Cubic Lagrange interpolated delay-line (CIDL)

The final method we consider involves using a higher order FIR
filter to approximate the fractional delay. In this work we propose
using a cubic Lagrange interpolation [18], where the filter order is
K = 3. Higher order filters were not investigated but are left to
further work. In general, a fractional delay of ∆ samples can be
achieved by convolution with the impulse response [18]:

l∆[n] =
K∏

k=0,k ̸=n

∆− k

n− k
, n = 0, . . . ,K. (12)

For an oversampling factor of M , we can convolve this kernel with
K+1 previous states to approximate the state at time-step n−M :

h̃n−M ≈
K∑

k=0

l∆[k] · h̃n−k−γ . (13)

where for M > 1:

γ = 1 + ⌊|M − 2|⌋, ∆ = M − ⌊|M − 2|⌋ − 1. (14)

Note that for M < 2 this results in an asymmetric selection of
nearest neighbouring samples over which to interpolate. In general
this will generate more error than a centered design but is unavoid-
able due to the state at time-step n being unknown. For M > 2, a
centered design is always realisable and therefore recommended.

3.5. Computational cost

A software benchmark was constructed, with a series of GRU net-
works with hidden sizes ranging from 24 to 72, trained at 44.1 kHz
SR. The networks were implemented in C++, using the RTNeural
library [20], and used to process Taudio = 100 s of audio at
96 kHz SR, using each of the SR adaptation methods described
above. The processing time Tproc for each network and adaptation
method was measured, and used to compute the “real-time factor”
FRT = Taudio/Tproc. The performance benchmark was run on a
2021 Apple M1 MacBook Pro.

Table 1 shows the average percent change in real-time factor
across the different network sizes, relative to the naive implemen-
tation. The delay and STN methods tended to perform the best,
having almost no impact on the measured real-time factor, while
the interpolation-based methods were slightly slower. These re-
sults are expected, as the interpolation-based methods (particularly
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Figure 5: Proposed CIDL method: modified RNN architecture for
oversampling by a factor of M with third-order Lagrange delay-
line interpolation. The filter coefficients, l, and delay γ are given
by Eqs. (12) and (14) respectively.

Delay STN LIDL APDL CIDL
-0.56% -0.57% -2.13% -3.24% -3.17%

Table 1: The average change to the real-time factor measured
in the performance benchmarks across networks of varying size,
relative to the naive implementation.

CIDL and APDL) require more computational work than the other
methods. However, the additional cost of performing SR adap-
tation with any of the proposed methods is small relative to the
computational cost of the GRU network overall.

4. LINEAR ANALYSIS

In this section, we consider a simplified problem of replacing sys-
tem Eq. (1a) with a one-pole linear filter of the form:

hn = Ahn−1 + xn, yn = hn, (15)

where A = e−2πfc/Fs . This can be interpreted as a discretization
(which is exact under zero-input conditions) of a one-pole RC fil-
ter with cutoff frequency, fc and sampled at Fs, driven by some
discrete-time signal xn. In neural network terminology, this could
be interpreted as single-weight RNN with linear activation. The
task of operating the recursion of Eq. (15) at arbitrary SRs is triv-
ial: the parameter A can be computed for any Fs. However, we
consider the case where A is fixed and apply the proposed meth-
ods to operate at different SRs. This is a realistic introductory
problem to SR independent RNNs where the model weights are
not parameterized in terms of SR, therefore we are forced to look
at algorithmic rather than parametric changes to the model.

In the following analysis, we apply the methods outlined in
Sec. 3 to the one-pole IIR filter and for different oversampling ra-
tios M compare the frequency response to the original, unmodified
system at the base SR. The linearity of both the system and meth-
ods allow the analysis to be carried out in the frequency domain.
The baseline frequency response, corresponding to the system op-
erating at the base SR, Fs = 1/T can be derived analytically:

HBASE(ω) =
1

1−Ae−jωT
, (16)

where ω is angular frequency in rad / s. The respective frequency
responses of the system modified with the studied methods can
then be derived:

HNAIVE(ω) =
1

1−Ae−jωT ′ (17a)

HSTN(ω) =
1

M − (M +A− 1) e−jωT ′ (17b)

HLIDL(ω) =
1

1−A (1− α+ αe−jωT ′) e−jωT ′⌊M⌋ (17c)

HAPDL(ω) =
1 + ηe−jωT ′

1 + ηe−jωT ′ −A(η + e−jωT ′)e−jωT ′⌊M⌋

(17d)

HCIDL(ω) =
1

1−A
∑k=3

k=0 l∆[k]e−jωT ′(k+γ)
(17e)

where M is the oversampling factor, T ′ = T/M is the operating
sample period and ∆, γ are defined in Eq. (14).

Figure 6 (left) shows the frequency responses (17a) – (17e) for
different oversampling factors. The baseline frequency response,
HBASE is overlaid on each subplot as a black dashed line. Figure 6
(center) shows spectral error magnitude as a function of frequency,
in decibels, defined as:

L(ω) = 20 log10

∣∣∣∣H<method>(ω)

HBASE(ω)

∣∣∣∣ . (18)

In Figure 6 (right) the y-axis shows the mean spectral error, L̂,
determined by averaging Eq. (18) over the frequency in the range
ω ∈ (0, Fs/2) where Fs/2 is the Nyquist limit at the base SR. The
x-axis is the pole-location A, in the (unmodified) IIR filter (15).

4.1. Integer oversampling

For integer oversampling, the delay-based methods (LIDL, APDL,
and CIDL) all reduce to the same frequency response which is
identical to the original frequency response. This comes at the cost
of frequency aliasing above the original SR. This can be seen in
Figure 6 (left): when operating at an oversampled rate of M = 2,
the original spectrum is mirrored about the original SR. In the con-
text of a low-pass filter, this may seem like a major problem due to
the creation of fictitious high-frequency behaviour. However, as-
suming the input signal, x, is bandlimited to the original Nyquist
limit then this high frequency behaviour will not be present in the
output signal. This assumption is reasonable in the context of over-
sampling for aliasing reduction, given an appropriate choice of up-
sampling filter with sufficient stop-band attenuation [21].

In contrast to the delay-line methods, the STN method does
not exhibit any frequency-mirroring, but has a low-passing effect
on the frequency response. Although not pictured in the plot, as
F ′
s → ∞, the frequency response converges, which is intuitive

given its resemblance to an explicit numerical solver. However it
converges to the incorrect response therefore represents a differ-
ent system to the original. The naive method simply stretches the
function along the frequency axis, causing significant frequency
warping below the original Nyquist limit.

4.2. Non-integer oversampling

Non-integer oversampling exposes differences between the LIDL,
APDL and CIDL methods. In Figure 6 (center), the LIDL method
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Figure 6: Left: magnitude responses of the modified and unmodified one-pole filter (17a) - (17e) for different oversampling factors M .
Note that a single cycle of the full-band DFT is shown for all SRs. Centre: the corresponding spectral error (18) when compared to the
unmodified system at the base rate, Fs = 44.1 kHz. The frequency axis is cropped to the original Nyquist range. Right: mean spectral
error (over original Nyquist range) against target system pole location, A = e−2πfc/Fs . In LH and centre columns, the pole location is
fixed at A = e−20π/44.1; in RH column this point is indicated by the magenta dotted line. NB y-axis limits differ across subplots.

acts as a high-shelving filter within the original Nyquist range. At
48 kHz (M = 1.0884), the APDL provides a flatter response ex-
cept at very high frequencies, where the pole at the new Nyquist
frequency causes a resonance. The CIDL method gives a differ-
ent error profile to the LIDL method but the mean spectral error is
approximately the same. At 96 kHz, both APDL and CIDL pro-
vide a significantly flatter response than LIDL. Note that Figure 6
(center) shows the magnitude error for a RC filter at one particular
cut-off frequency only (fc = 10 kHz).

To get a broader view, we can compare the methods across
the full range of possible pole locations. Figure 6 (right) shows
these results. In this case, the absolute spectral error has been av-
eraged over the Nyquist range of the base SR. It can be seen that,
at 48 kHz, the LIDL and CIDL methods give similar results, but
at 96 kHz the higher-order interpolation (CIDL) gives a notable
improvement particularly as the system pole approaches the unit
circle pole, i.e. as fc → 0. In the other extreme, as fc → ∞, the
error of all three delay-based methods approaches zero, which is
reassuring as in this limit the RC filter should pass all frequencies
with no attenuation. In contrast, the STN method gets worse in
this limit with an error of up to 3 dB. At both non-integer oversam-
pling factors the APDL gives the lowest spectral error across the
full range of pole locations. This suggests that APDL is the best
method for non-integer SR conversion – a result which is perhaps
not surprising given that the APF has, by definition, a flat mag-

nitude response. However, we will see in Sec. 5 that this result
does not always translate to good behaviour for more complex,
nonlinear systems, and that the FIR-based methods may indeed be
preferable.

5. EVALUATION ON NEURAL NETWORKS

The different methods were evaluated on 18 pre-trained LSTM
networks found in the GuitarML Tone Library 1. These are models
of various effects including low- and high-gain amps, fuzz pedals,
acoustic simulation and one compressor pedal. The models are
designed for a plug-in operating at 44.1 kHz – so we assume the
models were correctly trained on audio at this SR. We make our
testing code publicly available and provide audio examples 2.

5.1. Test metrics and input signals

To simulate a realistic use-case, the models were tested on one
minute of guitar and bass recordings – the same test set used in
previous works [10]. First we up-sampled the input signal to the
target SR, F ′

s, to obtain x̃ then passed this audio signal through

1https://guitarml.com/tonelibrary/tonelib-pro.html
2https://a-carson.github.io/dafx24_sr_indie_rnn/
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Figure 7: SNR results across LSTM models trained on various effects for common SR conversion ratios. The input audio signal was one
minute of electric guitar and bass. The mean SNR over all effects is shown in the last column.
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Figure 8: Signal-to-noise ratio of harmonic components (SNRH) in the model output signal against input sine tone frequency, f0, for LSTM
models trained on various effects. The oversampling factor is M = 1.0884 corresponding to SR modification from 44.1 kHz to 48 kHz.
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the respective modified networks to obtain the output ỹ. The out-
put was then down-sampled to the base-rate (ŷ) and the signal-
to-noise ratio (SNR) computed relative to the baseline model out-
put at 44.1 kHz, y, using Eq. (19). The up-sampling and down-
sampling was implemented with the FFT-based method proposed
in [22] because of machine-precision level of accuracy.

SNR =

∑N−1
n=0 y2∑N−1

n=0 (y − ŷ)2
. (19)

For a more detailed analysis on how the proposed methods per-
form across a range of driving frequencies, and to evaluate aliasing
reduction, we consider the case of sinusoidal inputs. Sine tones of
duration one second were generated with frequencies ranging from
f0 = 27.5 Hz to 4186 Hz (corresponding to the notes on a piano)
at the base SR Fs and the inference SR F ′

s respectively. The tones
were then processed through the baseline model and the SR ad-
justed models to obtain y and ỹ respectively. Two signal-to-noise
metrics are then considered: signal to aliasing noise ratio (SNRA)
and signal to harmonic noise ratio (SNRH).

The SNRA is computed by first windowing ỹ with a N ′-length
Chebyshev window with 120 dB stop-band attenuation and taking
the DFT to get the spectrum Ỹ . The amplitudes and phase of the
harmonic components were extracted from the spectrum and used
to synthesise an ideal alias-free version of the signal ỹBL at the
base SR. This signal was then windowed with an N -length Cheby-
shev window, transformed to obtain spectrum ỸBL, and scaled
such that the first harmonic of ỸBL and Ỹ were equal in ampli-
tude. The SNRA was then computed as

SNRA =

∑N/2
k=0 |ỸBL[k]|2∑N/2

k=0

(
|Ỹ [k]| − |ỸBL[k]|

)2 , (20)

where the N/2 bin corresponds to the Nyquist limit at the base
SR Fs. To compare the non-aliased components of y and ỹ, a
band-limited version of the baseline was synthesised, yBL, and the
SNRH computed as

SNRH =

∑N−1
n=0 y2

BL∑N−1
n=0 (yBL − ỹBL)

2
. (21)

5.2. SNR Results

Figure 7 shows the audio-input SNR results across the various
LSTM models at common oversampling ratios (corresponding to
SRs conversion from 44.1 kHz to 48 kHz, 88.1 kHz and 96 kHz
respectively). Figure 8 shows the results of the more detailed sine-
tone-input analysis at 48 kHz.

It is clear that in all cases, any of the methods outlined in Sec-
tion 3 provide a significant improvement in SNR compared to the
the naive method of using the original (unmodified) RNN at ar-
bitrary SRs. The STN method provides an increase in SNR, but
gets progressively worse as the SR increases – a trend also seen in
the linear analysis. This suggests that the STN method should be
avoided in practice for large SR changes.

The delay-based methods – LIDL, APDL and CIDL – gener-
ally perform significantly better and do not deteriorate as SR in-
creases. At M = 2 times oversampling, all three methods reduce
to a pure delay line and therefore give identical results. In this case
the quality increase compared to the STN method is significant –

giving a minimum of 18 dB (“MesaMiniRec”) and up to 50 dB in-
crease (“DumbleLowG”) in SNR.

The results for non-integer oversampling ratios allow a com-
parison between the delay-based methods. When operating at 48 kHz,
the LIDL method performs comparably to STN, and shows fur-
ther improvement at 96 kHz. At 48 kHz, the APDL and CIDL
methods generally give similar results apart from in three cases
in which the APDL performs similar to or worse than STN and
LIDL: “6505Plus”, “MesaIICplus” and “MesaMiniRec”. This is
further demonstrated in Figure 8a), g), j) and k).

In these models, and for certain sine tone inputs in the mid-
frequency range, the APDL method fails catastrophically giving
nearly 0 dB SNRH. A more detailed examination in these failure
cases showed oscillations at the Nyquist frequency and extreme
aliasing that can perhaps be attributed to numerical round-off error
due to pole-zero cancellation in the all-pass filter when the frac-
tional delay is small (∆ < 0.1) [19]. Further analysis is needed
to determine why it is mid-frequency inputs that cause the prob-
lem, but this is a concerning result given that guitar and bass have
harmonic content in this range. This problem motivated the inves-
tigation into higher order FIR interpolation, which is guaranteed
stable. It can be seen that the CIDL method does not suffer from
the anomalies seen in the APDL method and otherwise gives a
comparable SNR.

For SR conversion from 44.1 kHz to 96 kHz, all delay-based
methods improve in accuracy (compared to at 48 kHz), with CIDL
providing the highest SNR across all models. The aforementioned
anomalies in the APDL method results appear to be suppressed at
this SR, and the APDL performs consistently second-best.

5.3. Aliasing

Figure 9 shows how the proposed CIDL method performs across
different oversampling ratios using the “MesaMini” model as a
case study. This model was chosen as a worst-case-scenario be-
cause it exhibited the strongest aliasing at the base SR. In Fig-
ure 9 (right), it can be seen that oversampling progressively re-
duces aliasing with the reduction most obvious for high-frequency
input signals, as is to be expected. In Figure 9 (left), we can
see how oversampling affects the amplitudes of the expected har-
monic components. It can be seen that for integer sampling ratios
the SNRH is around 100 dB – meaning the harmonic amplitudes
match the baseline to near machine precision (operating at single-
precision). For non-integer ratios, the SNRH is lower due to inter-
polation error but generally increases as the SR increases. These
results indicate that oversampling does indeed reduce aliasing in
RNN models of guitar effects, and that if a high-quality interpola-
tion method is used, such as Lagrange interpolation, the original
harmonic distortion in the baseline model can be preserved to a
high degree of accuracy.

6. CONCLUSIONS AND FURTHER WORK

In this paper we examined methods of modifying recurrent neural
network architectures to enable high-fidelity audio processing at
a SR that differs from the training data. Integer and non-integer
oversampling was considered with down-sampling left to future
work. The methods were tested on several LSTM models of guitar
effects and evaluated through the SNR of the modified (oversam-
pled) model relative to the original model output.
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Figure 9: Signal-to-noise ratio of harmonics (left) and signal-to-
aliasing-noise ratio (right) of the “MesaMini” model output with
the proposed cubic interpolation method (CIDL) of SR conversion.
Note that for M = 2, 4 the CIDL method reduces to the pure
delay-line method [16]. The baseline M = 1 is not shown in LH
figure because the SNRH is infinite.

Two distinct classes of method were compared: the STN method,
in which the SR is adjusted by scaling the state residual (as in an
explicit numerical solver); and delay-based methods, in which the
length of the RNN sample delay is stretched by the oversampling
factor. For non-integer oversampling, the latter method requires
the estimation of a fractional delay. In this case we considered
the previously proposed linear interpolation method (LIDL) and
proposed, in addition, two alternative methods using a first-order
all-pass filter and cubic Lagrange interpolation (APDL and CIDL,
respectively).

For integer oversampling, the delay-based method gave con-
sistently the highest fidelity across all models: improving the signal-
to-aliasing noise ratio with little effect on the magnitude of har-
monic components.

For non-integer oversampling, the proposed CIDL method pro-
vided a considerable improvement over the lower-order FIR LIDL
method. This result suggests that higher-order Lagrange interpo-
lation may improve results even further. The APDL method ap-
peared promising, and for some models its performance was supe-
rior to that of the CIDL method, but crucially in some cases it fails
and produces noisy, highly-aliased, inaccurate output. We there-
fore recommend the proposed CIDL method as the best option for
non-integer SR conversion.
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