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ABSTRACT

In this work, we present a data-driven approach to modeling tone
stack circuits in guitar amplifiers and distortion pedals. To this
aim, the proposed modeling approach uses a feedforward fully
connected neural network to predict the parameters of a coupled-
form state-space filter, ensuring the numerical stability of the re-
sulting time-varying system. The neural network is conditioned on
the tone controls of the target tone stack and is optimized jointly
with the coupled-form state-space filter to match the target fre-
quency response. To assess the proposed approach, we model three
popular tone stack schematics with both matched-order and over-
parameterized filters and conduct an objective comparison with
well-established approaches that use cascaded biquad filters. Re-
sults from the conducted experiments demonstrate improved accu-
racy of the proposed modeling approach, especially in the case of
over-parameterized state-space filters while guaranteeing numeri-
cal stability. Our method can be deployed, after training, in real-
time audio processors.

1. INTRODUCTION

Virtual analog (VA) modeling refers to digitally emulating analog
audio processing devices [1, 2]. In the last few years, machine
learning techniques have drawn a lot of attention in the context of
VA modeling tasks including distortion effects [3], guitar ampli-
fiers [4, 5], phasing and flanging [6, 7], and dynamic range com-
pressor [8–10] modeling. An appealing aspect of such techniques
relies on their ability to model devices with intricate combinations
of linear and non-linear characteristics without any prior knowl-
edge of the device’s circuitry. Such approaches, referred to as
black-box modeling [11], are fully data-driven as they only re-
quire pairs of input and output signals. In contrast, traditional
audio signal processing techniques, referred to as white-box mod-
eling [12], require circuit analysis at a component level, a process
that is repetitive and prone to human errors. The architectures of
modern VA black-box models are commonly based on convolu-
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tional neural networks (CNNs) [3,4] and recurrent neural networks
(RNNs) [5].

More recent studies have adopted the concept of differentiable
digital signal processing (DDSP) [13] for audio effect modeling
[14–16]. In the DDSP paradigm, audio signal processing stages
are attached to machine learning models and optimized in an end-
to-end setup. Kuznetsov et al. [17] demonstrated that digital finite
impulse response (FIR) and infinite impulse response (IIR) filters
can be made differentiable and trained to emulate characteristics of
target filters. Related to filter learning, several methods have been
proposed for modeling equalization (EQ) matching and learning
EQ shaping devices.

Two closely related works from Nercessian [18] and Pepe et
al. [19] proposed deep feedforward neural networks to estimate
the parameters of biquad filters. Colonel et al. [20] suggested the
use of a neural network to predict poles and zeros of cascaded IIR
filters. In [18, 19] and [20], the networks were conditioned on the
target magnitude response. In a similar manner, Bhattacharya et
al. [21] proposed a method to predict the parameters of peak and
shelving filters.

The previously mentioned approaches address static settings,
that is, the outcome of the neural network cannot be adjusted by
a set of controls that would allow for richer tone-shaping capa-
bilities. To overcome this limitation, the work presented in [15]
allows the use of controls by combining neural networks and the
nodal discrete-Kirchoff (DK) method [12] in order to predict val-
ues of individual circuit components. Nonetheless, the nodal DK
method requires an a priori knowledge of the circuit, responsible
for the tone-shaping control, which in many cases is unknown.
Another work that proposed to emulate analog audio effects with
non-static settings is presented in [16] which is an extension from
the previous study in [18]. This model utilizes a set of differen-
tiable cascaded biquad filters. To ensure that the filter is stable in
a time-varying system, the filter has to be implemented in a stable
form, such as the state-variable filter or state-space structure [22],
which is suitable for cascaded second-order recursive filters.

In this work, we propose a differentiable digital filter to model
tone stacks. The structure of the proposed differentiable digital
filter is based on a coupled-form state-space filter to promote nu-
merical stability and to learn a single filter of arbitrary order. The
entries of the filter are predicted by a neural network. The neural
network is conditioned on tone controls, such as bass, middle, and
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Figure 1: The Fender ’59 Bassman (FMV) tone stack schematic.

treble. This leads to a trained neural network that can accurately
replicate the sound of a given device in any control setting. Fur-
thermore, the filter adopts a state-space representation where the
system matrix is given in a coupled form. As such, the predicted
filter is ensured to be stable in a time-varying system [23], unlike
the direct-form biquad structures that have been previously pro-
posed [18, 20]. This work focuses only on black-box methods due
to the appealing feature of requiring no a priori knowledge of the
audio circuit. As such, a comparison against white-box methods is
beyond the scope of this work.

The remainder of this paper is structured as follows: Section 2
reviews the background on tone stack circuits. Section 3 presents
the proposed method. Section 4 describes the experiment details.
Section 5 shows the results. Finally, Section 6 concludes.

2. BACKGROUND

Tone stacks refer to the parametric EQ circuits designed for gui-
tar effects and amplifiers [24]. They are typically passive filters
consisting of capacitors and resistors [12, 25]. These tone circuits
are generally positioned between the pre-amplifier and the power
amplifier, serving as the main spectral shaping circuit in many am-
plifiers [12, 15]. A tone stack usually features three controls: tre-
ble, middle, and bass. Each adjusts the frequency response of its
respective band. However, some tone circuits found in distortion
pedals may have fewer controls [25,26]. One of the most common
tone stack topologies is used in the Fender, Marshall, and Vox am-
plifiers, often referred to as the FMV tone stack [24]. While tone
stacks offer a broad range of EQ flexibility in an amplifier, their
original purpose was to compensate for the attenuated frequen-
cies in the output of guitar pickups [25, 27]. Figure 1 shows the
schematic of the FMV from a Fender ’59 Bassman amplifier.

Due to the passive nature of the circuits, interactions between
controls can occur, where changing one control affects the behav-
ior of the other frequency bands. An example of the interaction is
shown in Fig. 2. Here we can observe that by decreasing the tre-
ble, the attenuation point in the middle frequency is affected and
shifted upward. Accurately modeling these characteristics can be
challenging, especially with a high-order tone stack.

The FMV tone stack has been modeled using various tech-
niques in prior studies, including conventional white-box model-
ing [28] as well as differentiable models [14, 15]. These methods
require a priori knowledge of the circuitry. In contrast, we pro-
pose a black-box model capable of generally emulating tone stacks
without requiring detailed circuit comprehension, while also ad-
justing filter characteristics based on parametric inputs.

Figure 2: Magnitude responses of the Fender ’59 Bassman tone
stack circuit, Bass = 0.5, Mid = 0, Treble = [0, 0.1, 0.2, ..., 1].

3. PROPOSED METHOD
The proposed method for modeling tone stacks accepts as input a
vector containing control values in the interval [0, 1], and produces
as output the parameters of a coupled-form state-space filter. The
mapping from the input controls to the state-space filter parameters
is done by a feedforward fully connected neural network (FNN).
During training, the error between the state-space filter frequency
response and that of the circuit is minimized. An illustration of the
proposed method is given in Fig. 3.

In more detail, the FNN input x ∈ RG, where G is the num-
ber of circuit controls, consists of the values of the tone control
positions, e.g., treble, middle, and bass. The FNN consists of N
layers of affine transformations followed by leaky rectified linear
unit (leakyReLU) activation functions [29]. The output of the FNN
passes through a final linear affine transformation, yielding the out-
put vector y ∈ RF , which is transformed into the matrices of a
discrete-time state-space filter. The output size F depends on the
chosen order of the state-space filter.

To describe the transformation from the output y to the state-
space filter parameters, let us consider a second-order filter as an
example. In this case, y ∈ R7 is transformed into the following
state-space matrices:

A =

[
R(p0) −I(p0)
I(p0) R(p0)

]
,B =

[
y2
y3

]
,CT =

[
y4
y5

]
,D =

[
y6
]
,

where R(·) and I(·) are operators that retain the real and imagi-
nary parts of a complex number, respectively, and p0 and p∗0 are the
complex-conjugate poles of the state-space filter computed using
vector elements of y as:

p0 = f(y0 + jy1),

where j =
√
−1, the numerical subscripts denoting the indices of

the vector elements, and

f(z) = tanh(|z|) z

max(|z|, ϵ) , (1)

where z is a complex number and ϵ = 10−7 is used to prevent divi-
sion by zero. The transformation f(z) ensures that the eigenvalues
of the system matrix A lie within the unit circle, guaranteeing the
stability of the system. This transformation is also used in [16,20].

The mapping in Eq. (1) compresses the magnitudes of the
complex-valued poles to be less than 1 while preserving the orig-
inal angles. An illustration of this operation is shown in Fig. 4.
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Figure 3: Illustration of the proposed method. The left side of the
figure illustrates the proposed method during inference. Computa-
tional blocks depicted on the right side are used during training.

Note the positions of the highlighted pole (blue cross). Addition-
ally, this form of A is known as the coupled form. It has been
shown to be asymptotically stable with time-varying coefficients
[23], given that all the poles are inside the unit circle. In contrast,
direct-form IIR filters are not guaranteed bounded-input bounded-
output (BIBO) stable in this setting [23]. Moreover, the coupled
form is less sensitive to errors from quantization [30,31], which is
preferable for real-time discrete systems. For higher-order filters,
A is structured as a coupled-form block diagonal matrix.

After the transformation of y, the discrete-time state-space fil-
ter is realized as:

s[n+ 1] = As[n] +Bu[n], (2)
v[n] = Cs[n] +Du[n], (3)

where s[n], u[n], and v[n] denote the state, input, and output vec-
tors, respectively, at time-step n. In practice, the process of fil-
tering using Eq. (2) is not easily parallelizable due to its recursive
nature. When training on GPUs, it is therefore preferable to eval-
uate the frequency response of the state-space filter directly. The
frequency response is given by [32]:

Ĥ(z)
∣∣∣
z=ejωk

= D +C(ejωkI −A)−1B, (4)

where ωk corresponds to the frequency bin k ∈ 0, 1, ..., N − 1 in
the evaluation, and N is the total frequency bins. Evaluating the
frequency response allows us to minimize the error between the
magnitude responses |Ĥ(z)| of the model and the target |H(z)|.

4. EXPERIMENTS

To assess the performance of the proposed tone stack method, de-
noted as DiffSF, we compare it to two baseline models.

4.1. Baseline Models

For comparison, we reproduced two baseline models, namely the
IIRNet developed by Colonel et al. [20] and a differentiable cas-
caded biquad filter model proposed by Nercessian et al. [16, 18],
which we decide to call DiffBQ. Both models are based on an FNN

Figure 4: Parameterization of predicted poles (Eq. (1)). (a) Un-
stable poles, (b) compressed magnitudes (tanh(|p|)), (c) original

angles
(

p
max(|p|, ϵ)

)
and, (d) stabilized poles.

predicting parameters for a set of differentiable cascade biquad fil-
ters. Originally, they were designed for EQ matching tasks where
the input layer takes in the desired magnitude response and the
output layer gives the poles, zeros, and gains.

In this study, the input layer now receives the parametric tone
controls instead. The predicted poles of both baseline models are
parameterized with Eq. (1) to stabilize the filter. In the IIRNet
model, this parameterization is also applied to the zeros to obtain
a minimum-phase filter. The architecture of the IIRNet model is
an FNN with two hidden layers of 512 units and the activation
function leakyReLU with α = 0.2. The architecture of the second
baseline model, the DiffBQ, is slightly different from the IIRNet.
It has three hidden layers of 256 units, and the activation function
is ReLU. The resulting poles, zeros, and gains from the neural
network are mapped to the biquad filter coefficients and computed
for the frequency response. If the filter is of odd order, the last
filter section will have a real pole and a real zero.

4.2. Dataset Generation

In this work, three tone stack circuits found in the Electro-
Harmonix Big Muff Pi [26], the Fender ’59 Bassman [28], and
the Marshall JCM 800 [12] are modeled. The Marshall JCM
800 and Fender ’59 Bassman tone stacks are both third-order fil-
ters, whereas the Electro-Harmonix Big Muff Pi tone circuit is a
second-order filter. The datasets are the collections of generated
paired data obtained from LTSpice1. The circuits are simulated
to obtain the frequency responses of various tone control settings.
The simulation uses a unit impulse as an input to the tone circuit
at each control setting. The output impulse response is then trans-
formed into the frequency response by evaluating the frequency
response at 1/12-octave band frequencies from 0.1 Hz to 24 kHz.
Using fractional octave bands requires fewer sampling points for
adequate resolution at low frequencies compared to linearly spaced
frequency vectors.

The tone control combinations are sampled based on a param-
eter grid. In the training set, the position of each control ranges

1https://www.analog.com/en/resources/design-tools-and-
calculators/ltspice-simulator.html
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Table 1: Validation results where the smallest errors on each row are highlighted with bold font. The table shows that the proposed methods
DiffSF-2 and DiffSF-3 are outperforming in all cases

Tone stack Order RMSE MAE (dB)
IIRNet DiffSF-2 DiffBQ DiffSF-3 IIRNet DiffSF-2 DiffBQ DiffSF-3

BigMuff Matched 0.011 0.009 0.011 0.009 0.32 0.22 0.32 0.22
Over-param 0.002 0.001 0.002 0.001 0.04 0.01 0.05 0.01

Fender Bassman Matched 0.050 0.050 0.050 0.050 0.91 0.90 0.91 0.90
Over-param 0.004 0.001 0.004 0.001 0.09 0.01 0.08 0.02

Marshall JCM 800 Matched 0.199 0.264 0.030 0.030 2.71 2.69 0.38 0.36
Over-param 0.002 0.001 0.002 0.001 0.04 0.01 0.04 0.01

Figure 5: Example sampling point combinations for the bass and
middle controls.

from 0 to 1, with a 0.1 increment. In the validation set, data is
gathered at points between those of the training set, specifically
[0.05, 0.35, 0.65, 0.95]. Figure 5 shows how the training and val-
idation data are sampled in a two-knob case. The training sets are
designed to cover a wide range of combinations within the control
space, while the validation set is structured to include intermediate
points. This ensures that the model can be effectively validated
for its ability to interpolate across settings. From observations, the
training loss and validation loss demonstrate similar convergence
patterns, although the validation loss consistently remains higher.

4.3. Training

We compare a differentiable coupled-form state-space filter to cas-
caded direct-form biquad filters. We adhere to the neural network
architectures used in the IIRNet and DiffBQ for a fair comparison.
The proposed model to be compared with the IIRNet is named the
DiffSF-2, indicating the utilization of an FNN with two hidden
layers. Another model is the DiffSF-3, denoting three hidden lay-
ers, and it is compared with the DiffBQ. Since architectures are the
same as those used in the baseline methods, the only differences
are the filter structure and the size of the output layer.

Every model undergoes 50,000 iterations of training through-
out the whole dataset using Adam optimizer [33]. Validation is
conducted every 1,000 iterations to monitor the training process
and mitigate the risk of overfitting in the model. The neural net-
work is trained to minimize the magnitude-response error. The
learning rate is scheduled to be reduced over time. The maxi-
mum learning rate is 3 · 10−4 and the minimum is 10−5. The
training set is divided into mini-batches, each comprising half

of the dataset. Each tone stack is trained using two models of
different sizes, namely, the matched-order model and the over-
parameterized model. The matched-order model aligns with the
filter order of the original circuit. The over-parameterized model
is designed with a higher order of MOP = 2M − 1, where M
is the filter order of the modeled circuit. This is expected to help
increase flexibility and enhance the learnability of the neural net-
work. The loss function used during the training is the root mean
squared error (RMSE), which can be written as:

LRMSE =

√√√√ 1

N

N−1∑
k=0

(
|H(ejωk )| − |Ĥ(ejωk )|

)2

, (5)

where |H(ejωk )| and |Ĥ(ejωk )| are the target and predicted mag-
nitude responses, respectively, N is the total number of frequency
points, and ωk = πfk/fs is the angular frequency. To further
measure the error produced by each model in a more perceptually
meaningful manner, an additional validation metric is the mean
absolute error (MAE) in decibels (dB), formulated as

EMAE =
1

N

N−1∑
k=0

20
∣∣∣log(|H(ejωk )|)− log(|Ĥ(ejωk )|)

∣∣∣. (6)

The error function EMAE is used only to evaluate the results, and
not during training. We prioritize optimizing the magnitude re-
sponse over the phase response, as differences in magnitude are
more perceptually significant. For the sake of compactness, results
for phase matching are not discussed in this paper.

5. RESULTS
Table 1 shows the validation results in terms of RMSE loss and
MAE in dB. For the Big Muff Pi tone stack, the validation losses
of the baseline models and the proposed models are both relatively
low. However, in the case that the tone control is set close to 0,
the baseline models exhibit higher errors. Figure 6 illustrates the
magnitude responses and the errors in dB of all Big Muff Pi mod-
els given input tone control at 0.05. The errors of the proposed
methods (DiffSF-2, DiffSF-3) are small at all frequencies.

In terms of RMSE, the baseline models provide slightly
smaller losses than the proposed models in the Marshall JCM 800
match-order cases, whereas in the Fender ’59 Bassman matched-
order case, all models perform equally well. Nevertheless, when
the model is over-parameterized, the DiffSF-2 performed the best
both in terms of RMSE and MAE dB. Examples of magnitude re-
sponses and errors for the Fender ’59 Bassman models are shown
in Fig. 7. The trained models can be observed to adequately in-
terpolate the filter parameters for unseen tone control values. An
edge case can be found with the bass control is rolled off. Fig-
ure 8 shows the prediction of the DiffSF-2 model for the Marshall
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Figure 6: (a) Magnitude responses and (b) differences in magni-
tude responses of over-parameterized (MOP = 3) models for the
Electro-Harmonix Big Muff Pi (Tone = 0.05).

JCM 800 when each control is swept. In most cases, the errors are
below 0.1 dB, except when the bass control is at 0.05, where er-
rors noticeably increase. This suggests that the positions of zeros
may be less accurate. Additionally, the energy at low-frequency
bands is low in that setting, resulting in a small impact on the
training loss. Empirically, over-parameterized models outperform
matched-order counterparts across different filter structures due to
increased flexibility, leading to higher accuracy. Thus, it can be
safer to use the over-parameterized model when the exact order of
the target tone circuit is unknown.

Many existing tone stack circuits can be realized as passive
filters with only real-valued poles. While direct-form biquad and
coupled-form state-space filters induce complex conjugate poles,
if we want the poles to be real-valued, then the predicted filter
parameters must have repeated poles, i.e., a pair of poles with 0
as their imaginary parts, rather than a single real pole. However,
the state-space filter is not restricted to having complex conjugate
zeros, meaning that the model can predict real-valued zeros any-
where. Therefore, the real-valued zero can be placed over the re-
peated poles to cancel the effect of the excess pole(s).

6. CONCLUSIONS

To summarize, a differentiable state-space filter is proposed for
tone stack modeling. The model incorporates a feedforward fully
connected neural network for mapping from parametric tone con-
trols to the entries of the state-space matrices. The system matrix
of the filter is parameterized to be stable in a linear time-varying
system using the coupled form. The experiments focus on three
different tone stacks used in popular guitar distortion pedals and
amplifiers. The model directly minimizes the magnitude response
error in the frequency domain. The presented filter structure is
compared against direct-form cascaded biquad filters. Two vari-
ants of the proposed model outperform the baseline models in
terms of all evaluation metrics. In addition to tone stack model-
ing, the differentiable state-space filter can be adapted for various
audio applications, such as audio equalizer design.

Figure 7: (a) Magnitude responses and (b) differences in magni-
tude responses of over-parameterized (MOP = 5) models for the
Fender ’59 Bassman. Bass = 0.95, Mid = 0.05, and Treble = 0.05.
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