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ARTICLE OPEN

Efficient protocol for qubit initialization with a tunable
environment
Jani Tuorila1,2,3, Matti Partanen1, Tapio Ala-Nissila2,4,5 and Mikko Möttönen 1,6

We propose an efficient qubit initialization protocol based on a dissipative environment that can be dynamically adjusted. Here, the
qubit is coupled to a thermal bath through a tunable harmonic oscillator. On-demand initialization is achieved by sweeping the
oscillator rapidly into resonance with the qubit. This resonant coupling with the engineered environment induces fast relaxation to
the ground state of the system, and a consecutive rapid sweep back to off resonance guarantees weak excess dissipation during
quantum computations. We solve the corresponding quantum dynamics using a Markovian master equation for the reduced
density operator of the qubit-bath system. This allows us to optimize the parameters and the initialization protocol for the qubit.
Our analytical calculations show that the ground-state occupation of our system is well protected during the fast sweeps of the
environmental coupling and, consequently, we obtain an estimate for the duration of our protocol by solving the transition rates
between the low-energy eigenstates with the Jacobian diagonalization method. Our results suggest that the current experimental
state of the art for the initialization speed of superconducting qubits at a given fidelity can be considerably improved.

npj Quantum Information  (2017) 3:27 ; doi:10.1038/s41534-017-0027-1

INTRODUCTION
Preparation of a qubit into a well-defined initial state is one of the
key requirements for any quantum computational algorithm.1, 2

The conventional passive initialization protocol relies on the
relaxation of the qubit to a thermal state determined by the
residual coupling to the environment. This protocol is inherently
slow because the relaxation rate has to be minimized to decrease
the probability of errors in a coherent quantum computation.
In the context of error-free quantum computing, a long

initialization time would not present a problem since the quantum
register has to be prepared only once in the beginning of the
computation. However, realistic quantum computational devices
also suffer from gate errors which have to be corrected with
quantum-error-correction codes.3 Such codes rely on logical
qubits which consist of several physical qubits. The codes initiate
from a predetermined state for the physical qubits and are being
constantly executed during a computation. They also have strict
requirements for the initialization and gate error thresholds for
individual qubits, of the order of 10−5 for the conventional
concatenated codes.4, 5 In the more refined topological quantum
error correction codes,6 the logical error can be suppressed with
stabilizing measurements, which increase the thresholds up to
10−2 for the physical qubit operations and lead to improved
protection of quantum information during the computation.
Nevertheless, stabilizer codes such as surface7, 8 and color9, 10

codes still require a continuous supply of measurement qubits in a
known low-entropy state. Thus, initialization time is also an issue
in large-scale quantum computing.
Fast and accurate qubit initialization remains a technological

challenge in the superconducting qubit implementations that

have shown great potential for scalability.8 Major developments
have been made with active protocols, such as initialization by
successive projective measurements,11–13 by Purcell-filtered cav-
ity,14 or by cooling with a coherent microwave drive.15–18 The
typical figure of merit of a protocol is the time τ10 required for a
qubit excitation to decay by an order of magnitude. In the
reported experiments,14 a thermal-equilibrium fidelity of 99.9%
with τ10 = 40 ns has been obtained with a protocol for a Purcell-
filtered superconducting qubit with transition frequency ωq/(2π) =
5.16 GHz and intrinsic relaxation time T1 = 540 ns. However, the
method uses a tuned qubit that is not desirable since it reserves a
broad frequency band, and a high ground-state fidelity using a
long-lived qubit remains to be demonstrated with this method. An
initialization protocol based on coherent driving has reached a
99.5% ground-state fidelity with τ10 = 1.4 μs, ωq/(2π) = 5 GHz, and
T1 = 37 μs,17 without relying on qubit tuning. Even though this
protocol meets the error thresholds of the topological codes,
large-scale quantum computing calls for shorter initialization
times. Furthermore, initialization fidelities greater than 99.99% are
preferred in large-scale computations to reduce the number of
physical qubits needed for a logical qubit.
Qubit initialization can also be achieved with feedback-based

schemes,11, 19–22 which rely on a single-shot measurement of the
qubit state. In recent experiments,19, 20 the discrimination of the
qubit state is predominantly limited by T1, with the current
benchmark for the average assignment fidelity being 99.8% in
700-ns read-out time.19 However, an increase of the fidelity by
each order of magnitude requires yet another reduction of the
read-out time or an increase of T1 by an order of magnitude,
which still remains an experimental challenge. Furthermore,
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the fidelity and speed of this method may not exceed that of the
quantum measurement, and hence significantly contribute to the
total error budget. Therefore, the search for a more efficient
initialization scheme is of great importance.
In solid-state systems, an initialization protocol can potentially

be realized by strongly coupling the qubit to a cold dissipative
reservoir for fast initialization and by switching off the coupling
for the actual computation.23, 24 If the bath has a lower effective
temperature than the qubit, the ground-state fidelity of the qubit
is increased. This type of set-up is a part of environmental
quantum-state engineering by dissipation, where one aims to
drive the system into a desired steady state by using a carefully
tailored environment.25–30 Such engineering has already
been used in generation of coherent superposition states,31–33

in creation of entanglement,34–36 and in simulations of open
quantum systems.37, 38

In this paper, we focus on a ground-state initialization
proposal,39, 40 where a superconducting qubit and a low-
temperature resistive bath are coupled indirectly through two
resonators as shown in Fig. 1. The effective inductance of the left
resonator, which is capacitively coupled to the bath, can be
dynamically adjusted, allowing control over its bare resonance
frequency. If the left resonator is sufficiently detuned from the
qubit, it shunts the noise of the resistive bath at the qubit
frequency, and hence the decoherence of the qubit is dictated by
its slow intrinsic relaxation rate. If the left resonator is in resonance
with the qubit, the qubit couples strongly to the bath leading to
an increased relaxation rate. We use two resonators because a
single resonator cannot be easily detuned from the qubit by
several linewidths due to the required strong coupling with the
cold bath and because the second resonator, coupled directly to
the qubit, can be used for qubit readout using the standard
dispersive methods.41

Previous calculations of static transition rates in this scenario
indicate that the lifetime of the qubit can be controlled over
several orders of magnitude.39, 40 However, an actual initialization
protocol and its dynamics, speed, and fidelity have not been
reported. Here, we develop a qubit initialization protocol and
solve its corresponding quantum dynamics by using a Markovian
master equation. We show analytically that the ground state is
protected during the sweeps of the left resonator to and from the
resonance, implying that the speed of the protocol is determined
by the strong resonant coupling with the dissipative bath. At the
resonance, we find an approximative analytic solution for the low-
energy eigenproblem using Jacobian diagonalization.42, 43 It yields
a useful lower bound for the duration of the protocol at a given
fidelity. Optimization of the physical circuit parameters suggests
that, with present-day technology, the current benchmarks for
fidelity and protocol speed17 can be considerably improved with
the help of our protocol.

RESULTS
System
The above-discussed tunable-environment qubit can be conve-
niently studied using a lumped-element circuit model shown in
Fig. 1a. Here, the superconducting qubit with the transition energy
ħωq is coupled to a bosonic heat bath through two LC resonators.
Both resonators are formed by a lumped capacitance Ck and an
inductance Lk, where k = L,R refer to the left and right resonators,
respectively. The bath arises from the resistance R at temperature
T. The left resonator is coupled directly to the bath and to the
right resonator through capacitances CE and Cc, respectively. The
inductance LL(t) of the left LC resonator is made tunable using a
SQUID, the Josephson inductance of which is controlled by an
external magnetic flux. As a consequence, the bare angular
frequency of the left resonator ωLðtÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LLðtÞCL

p
can also be

adjusted with the external flux. The right resonator has a fixed
bare angular frequency ωR ¼ 1=

ffiffiffiffiffiffiffiffiffi
LRCR

p
and is coupled to the qubit

through the capacitance Cq.
The Hamiltonian of the circuit can be written as40

ĤðtÞ ¼ ĤSðtÞ þ ĤE þ ĤIðtÞ; ð1Þ

where the three terms describe the system, the resistive
environment, and their interaction, respectively. The system
Hamiltonian can be expressed as

ĤSðtÞ ¼ Ĥ0ðtÞ þ Ĥ1ðtÞ; ð2Þ

where

Ĥ0ðtÞ ¼ �hωLðtÞâ†LâL þ �hωRâ
†
RâR þ �hωqσ̂þσ̂�; ð3Þ

Fig. 1 Schematic qubit initialization set-up. a Lumped-element
circuit model. A superconducting qubit (blue box) with angular
frequency ωq and intrinsic relaxation rate κIq is indirectly coupled to
a thermal bath (brown), formed by a resistor R, through two LC
resonators. By tuning the inductance LL(t) of the left resonator
(orange), one can tune its bare resonance frequency and coupling
strengths gLR(t) and κL(t) with the right resonator (magenta) and the
bath (temperature T), respectively. The right resonator has a bare
angular frequency of ωR and is coupled to the qubit and an intrinsic
bath with coupling strengths gRq and κIR. (b) Analogous cavity
quantum electrodynamics (QED) set-up where a two-level atom is
coupled to a thermal bath through two optical cavities. The
coupling to the thermal bath is controlled by tuning the length
‘LðtÞ of the left cavity
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and

Ĥ1ðtÞ ¼ �hgLRðtÞ â†L þ âL
� �

â†R þ âR
� �þ i�hgRq â†R þ âR

� �
σ̂� � σ̂þð Þ

ð4Þ

� �hgLRðtÞ â†LâR þ âLâ
†
R

� �þ i�hgRq â†Rσ̂� � âRσ̂þ
� �

: ð5Þ
Above, âL, âR, and σ̂� are the annihilation operators for the left
and right resonators and the qubit, respectively. In the following,
we denote the eigenstates of the unperturbed Hamiltonian (3)
with nL; nR; nq

�� �
, where the occupation numbers of the left and

right resonators can have values nL, nR = 0, 1, 2, … and that
of the qubit assumes values nq = g,e, which stand for the ground
and excited state, respectively. When the rotating wave
approximation (RWA) applied in Eq. (5) is accurate, the total
occupation number N = nL + nR + nq is a conserved quantity during
a unitary time evolution. The Hamiltonian ĤSðtÞ describes a
tripartite system formed by two harmonic resonators and a
qubit. The right resonator is coupled bi-linearly to the left
resonator and to the qubit with the respective coupling

frequencies gLRðtÞ ¼ g0LR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLðtÞ=ωR

p
and gRq ¼ eCq

ffiffiffiffiffiffiffiffiffiffiffi
�hωR=CR

p
�h CqþCJð Þ

EJ
EC

� �1=4
,

where g0LR ¼ ωRCc= 2
ffiffiffiffiffiffiffiffiffiffi
CLCR

p� �
is the resonant coupling strength

between the left and right resonators, CJ is the capacitance of the
Josephson junction, and EJ and EC = e2/[2(Cq + CJ)] are the
Josephson coupling energy and the charging energy per electron
for the superconducting island, respectively. Coupling between
the qubit and the left resonator is mediated by the right resonator
and is, therefore, of second order in coupling frequencies g0LR and
gRq. Consequently, the right resonator acts as an additional filter
for the thermal noise of the bath. In our analytic considerations,
we apply the RWA for both of the coupling terms, cf. Eq. (5). The
interaction with the bath is also bi-linear and described by

ĤIðtÞ ¼ �CEV̂LδV̂res ¼ �CE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hωLðtÞ
2CL

s
â†L þ âL
� �

δV̂res; ð6Þ

where V̂L ¼
ffiffiffiffiffiffiffiffiffiffi
�hωLðtÞ
2CL

q
â†L þ âL
� �

is the voltage over the left resonator,
and δV̂res describes the voltage fluctuations over the resistor. The
resistor Hamiltonian ĤE is given by that of a bosonic thermal
bath44. We do not express it explicitly since we are only interested
in the transition rates, which are determined in thermal
equilibrium by the Johnson–Nyquist spectrum of the voltage
fluctuations:

SδVresðωÞ ¼
2�hRω

1� e��hω= kBTð Þ : ð7Þ

Furthermore, we neglect any filtering of this spectrum owing to
the resistor itself by assuming that the frequencies relevant for the
system obey ω � 1/(RCR)

40.
In typical realizations of superconducting qubits, the tempera-

ture of the circuitry is below 100mK and the resonator and qubit
frequencies lie in the 5–10-GHz range. As a consequence, thermal
occupations of the one and two excitation states for a detuned
system are roughly below 10% and 1% relative to the ground-
state occupation, respectively. Furthermore, during the protocol,
non-adiabatic transitions between instantaneous eigenstates with
different total occupation numbers N are suppressed owing to
negligible matrix elements for such transitions. This allows the
development of an approximative analytic model in the subspace
spanned by the four lowest-energy instantaneous eigenstates of
the Hamiltonian (2). We emphasize that the following discussion is
not specific to the lumped-element model or superconducting
qubits, but can be used rather generally for qubits with indirect
adjustable coupling to a thermal bath, as shown in ref. 40 with
the distributed circuit elements which are frequently used in
contemporary circuit QED.

Transition rates
The transition rates from the mth instantaneous eigenstate of the
Hamilonian ĤSðtÞ to the nth state can be calculated from Fermi’s
golden rule as

ΓmnðtÞ ¼ ΨnðtÞh jCE V̂L ΨmðtÞj ij j2
�h2

SδVres �ωmnðtÞ½ �

¼ Γ0 ΨnðtÞh j â†L þ âL
� �

ΨmðtÞj i�� ��2 ωLωnmðtÞ
ω2
R

1
1�e��hωnm ðtÞ= kBTð Þ ;

ð8Þ
where ωmn(t) =ωn(t) −ωm(t), and ωk(t) are the eigenfrequencies
corresponding to the eigenstates ΨkðtÞj i of the Hamiltonian ĤSðtÞ,
i.e., ĤSðtÞ ΨkðtÞj i ¼ �hωkðtÞ ΨkðtÞj i, Γ0 ¼ CE=

ffiffiffiffiffiffiffiffiffiffi
CLCR

p� �2
R=ZRð ÞωR, and

ZR ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LR=CR

p
. We thus observe that positive-frequency fluctua-

tions in the environment cause emission in the small system.45

Note, that in Eq. (8) we express the transition rates in units of Γ0,
which equals the bare zero-temperature left-resonator transition
rate for ωL(t) =ωR. Clearly, we can maximize the transition rates by
maximizing CE and R with respect to CR and ZR, respectively.
We further note that in principle CE should be added to CL to
obtain the effective left-resonator capacitance, but if CE � CL its
effects on the eigenstates and eigenfrequencies of the system are
negligible.40

In Methods, we analytically solve the transition rates for the first
three excited eigenstates employing the RWA. We first truncate
the Hamiltonian (2) to the low-energy subspace spanned by the
ground state and single-excitation states. Then, we diagonalize
the static Jaynes–Cummings coupling in Eq. (5) between the right
resonator and the qubit. As a result, the first three eigenstates of
the Hamiltonian (2) are the eigenstates of the effective
Hamiltonian matrix

HSðtÞ ¼ �h

ω� 0 GL�ðtÞ

0 ωþ GLþðtÞ

GL�ðtÞ GLþðtÞ ωLðtÞ

0
BBBBBBBB@

1
CCCCCCCCA
; ð9Þ

which is written in the basis formed by |1, 0, g〉 and the
Jaynes–Cummings eigenstates | ± 〉 with the corresponding
eigenfrequencies ω± ¼ ωav

Rq ±ΩRq. We use the short-hand nota-

tions ωav
ij ¼ ωi þ ωj

� �
=2, Ωij ¼ δijj j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2ij

q
, δij = ωi −ωj, and λij =

Gij/|δij|. Above, we have GRq = gRq and, thus, λRq is the usual

perturbation parameter of the Jaynes–Cummings model that
characterizes the strength of the coupling. Similarly, the coupling
strengths between the left resonator and the states | ± 〉 are

determined by λL ± (t) where GL ± ðtÞ ¼ gLRðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ± δRq= 2ΩRq

� �	 

=2

q
.

We treat the coupling to the left resonator perturbatively using
Jacobian diagonalization.42, 43 Jacobian diagonalization of a
hermitian matrix consists of a sequence of similarity transforma-
tions designed to annihilate one off-diagonal matrix element at a
time. Optimal convergence is achieved by forming the subspace
at each step of the basis states with the strongest coupling.
Depending on the value of the control parameter ωL(t), we
have either λL+(t)≥ λL−(t) or λL+(t) < λL−(t) and, thus, the Jacobian
diagonalization is most efficiently done in a temporally piecewise
manner. As a result, we obtain the transition rates

Γ10ðtÞ ¼ Γ0
2

1� δL�ðtÞ= 2ΩL�ðtÞ½ �f g ωLðtÞω1ðtÞ
ω2
R

� �
1

1� e��hω1ðtÞ= kBTð Þ ;

ð10Þ

Protocol for qubit initialization
J Tuorila et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2017)  27 



Γ20ðtÞ ¼ Γ0
2

1 ∓ δL ± ðtÞ= 2ΩL ± ðtÞ½ �f g ωLðtÞω2ðtÞ
ω2
R

� �
1

1� e��hω2ðtÞ= kBTð Þ ;

ð11Þ
Γ30ðtÞ ¼ Γ0

2
1þ δLþðtÞ= 2ΩLþðtÞ½ �f g ωLðtÞω3ðtÞ

ω2
R

� �
1

1� e��hω3ðtÞ= kBTð Þ :

ð12Þ
where ω1ðtÞ ¼ ωav

L�ðtÞ � ΩL�ðtÞ, ω2ðtÞ ¼ ωav
L ± ðtÞ ∓ΩL ± ðtÞ, and

ω3ðtÞ ¼ ωav
LþðtÞ þ ΩLþðtÞ. For transition rate (11), we use the top

signs when λL+(t)≥ λL−(t), and bottom signs when λL+(t) < λL−(t).
Note that the transition rates between the first three excited
states are zero in the RWA due to the selection rules for
our environmental coupling term. However, we include all
transition rates to the numerical solution, within the truncation.
Furthermore, the principle of detailed balance Γmn ¼
exp ��hωmn= kBTð Þ½ �Γnm holds, which implies that the excitation
rates are strongly suppressed in the low-temperature limit. In
addition to the engineered environment described by the resistor
R, the qubit and the right resonator typically dissipate energy to
their own intrinsic environments with the transition rates κIq and
κIR, respectively.
We compare the analytic eigenfrequencies and transition rates

with the corresponding numerical results in Fig. 2. For large
detuning g0LR; gRq � ωR � ωq

�� ��� �
, we find that already the first

diagonalization step in the Jacobian diagonalization procedure
results in a very good agreement with the numerically obtained
frequencies and rates. We also observe that when the left
resonator is in resonance with either the right resonator or the
qubit [δL ± (t) ≈ 0], the transition rates from the resonant

eigenstates to the ground state are equal. We take advantage of
this fact in our protocol below. In the vicinity of the resonances,
there exist regions where the transition rates from the nearly
resonant states change by several orders of magnitude. The
widths of these regions are directly proportional to the coupling
term g0LR, and also to gRq for the case of ωL(t) =ω−.

Protocol
Our proposed initialization protocol is depicted in Fig. 2c and
proceeds as follows. In the beginning of the protocol (t = 0), the
parameters of the set-up follow the hierarchy

gRq<g
0
LR � ωq<ωR � ωLð0Þ: ð13Þ

In particular, the qubit frequency is chosen to be the smallest in
order to minimize the effects of the possible multi-photon
processes in the qubit caused by the right-resonator at any stage
of the protocol. For t = 0 and t = τ, where τ is the duration of the
protocol, the coupling to the engineered environment should be
minimal so that the intrinsic sources of dissipation are dominating
the qubit decoherence. Therefore, we refer to the bare left-
resonator frequency ωL(0) =ωL(τ) as the ‘‘off’’ state of our set-up,
and choose its value such that gLRð0Þ � ωLð0Þ � ωR. This
guarantees that (see Figs. 1 and 2)

Γ10ð0Þ � κIq and Γ20ð0Þ � κIR; ð14Þ
since the widths of the regions for enhanced transition rates are
proportional to g0LR. This way the added dissipative channel does
not create excess decoherence for the qubit. We also choose
gRq � ωR � ωq, which implies only weak hybridization between

Fig. 2 Low-energy level structure, relaxation rates, and the proposed initialization protocol. a Instantaneous eigenfrequencies and b
relaxation rates of the lowest three excited states as functions of the bare left-resonator angular frequency. We show with dashed lines the
corresponding analytic results from the Jacobian diagonalization [see Methods and Eqs. (10)–(12)] on top of those resulting from numerical
diagonalization (solid lines). Vertical dashed lines denote the operative stages of the protocol, where ‘‘op’’ stands for operation point and ‘‘off ’’
refers to the state where the coupling between the qubit and the engineered environment is very weak. We use the parameters shown in
Table 1. c Initialization protocol in terms of the control parameter ωL(t) (see text for details)
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the qubit and the right-resonator. In our numerical simulations, we
use the values shown in Table 1 for the relevant parameters.
In the first stage of the protocol, the left resonator is swept

fast to resonance with the effective right resonator at
ωLðt1Þ ¼ ωþ � ωR þ g2Rq=δRq, which is only slightly hybridized
with the qubit due to the dispersive coupling. As a consequence,
the right resonator becomes strongly coupled to the cold bath
resulting in an increase in its relaxation rate to the ground state by
orders of magnitude (see Fig. 2). This operation point (denoted in
Fig. 2 with ‘‘op 1’’) guarantees equal relaxation rates for both
resonators, which is important as the relative occupations are
typically not known in the beginning of the protocol and, also,
because non-adiabatic transfer of occupation between the resona-
tors can occur during the fast sweep. Any occupation in either
resonator is then dissipated to the resistor during t : t1 → t2. The
wait time Δt2 depends on the required protocol error α = 1 − P0(τ),
where we use the notation Δti = ti − ti−1 for the relevant protocol
time intervals with t0 = 0 and t5 = τ, and define P0(τ) as the desired
ground-state occupation and the end of the protocol.
After the first relaxation step (t≥ t2), the resonators are

in the ground state within the protocol error α. Then, the left
resonator is swept into resonance with the effective qubit at
ωL t3ð Þ ¼ ω� � ωq � g2Rq=δRq. At this operation point (denoted in
Fig. 2 with ‘‘op 2’’), the relaxation rate of the qubit is increased by
several orders of magnitude and is equal to the left-resonator rate.
The latter is important since at this operation point, the qubit is
also hybridized with the left resonator and, consequently, any
initial occupation in the qubit is partly transferred to the left
resonator during the sweep. By waiting for t : t3 → t4, the
hybridized qubit and left resonator dissipate their energy to the
resistor. The second wait time Δt4 is also determined by the
desired value of α. Finally, the left-resonator frequency is swept
back to its high initial value ωL(τ) =ωL(0). In addition to the wait
times Δt2 and Δt4, the protocol duration τ ¼ P5

i¼1 Δti is
determined by the three sweep times Δt1, Δt3, and Δt5. For
simplicity, we will assume in our discussions that the sweep times
are equal, i.e., ts = Δt1 = Δt3 = Δt5.
The speed of the protocol for a given fidelity should be

maximized for efficient use in quantum information processing. In
general, a good initialization protocol should have κIqτ � 1. This
way one can perform multiple initializations during a coherent
quantum computation. In our protocol, this requires the

minimization of the combined duration of the three sweeps of
the control parameter ωL(t) and the relaxation intervals, during
which the actual initialization takes place. The length of the
relaxation intervals is set by the relaxation rates and the desired
fidelity, implying that after they are optimized, the duration of the
protocol can be shortened only by faster sweeping. However, it is
well known that fast changes in parameters can induce non-
adiabatic transitions between the instantaneous eigenstates of the
system.46–49 Our requirements for the optimal operation points
(ωL ≈ω ± ) guarantee that our protocol is robust with respect to
changes between the relative occupations of the instantaneous
eigenstates during the first two sweeps. After the second
relaxation process, the system lies in the ground state within
the desired error α. Thus, the essential sweep is the last one
starting from the qubit resonance (ωL(t4) =ω−) and the ground
state |Ψ0(t4)〉, and ending to the far off-resonant ground state
|Ψ0(τ)〉. The relevant question is the following: how much of the
ground state is excited during the final fast sweep?
We can calculate the transition probabilities Pmn≡ Pm → n(τ ; t4)

= |〈Ψn(τ)|Ψm(t4)〉|
2 between the low-energy eigenstates in the

sudden approximation using the RWA results obtained in the
previous section. However, since we are interested in the ground-
state sweep fidelity PS = P00 and since in the RWA the ground state
is unaffected by the change of parameters, we have to include the
contributions arising from the counter-rotating terms. In Methods,
we derive the worst-case estimate for the ground-state sweep
fidelity in the sudden approximation. We obtain

PS ¼ Ψ0ðτÞh Ψ0ðt4Þj ij j2 � 1� gLRðτÞ
ωLðτÞ þ ωR

� gLRðt4Þ
ωq þ ωR

� �2
; ð15Þ

where we assume that the sweep duration Δt5 → 0. Thus, the
deviation from the perfect sweep fidelity is given by the difference
between the perturbation parameters gLR(t)/[ωL(t) +ωR] before
and after the sweep. Order-of-magnitude estimates for typical
superconducting circuit parameters give gLR/(2π) ~ 100 MHz,
ωR/(2π),ωq/(2π) ~ 10 GHz and, accordingly, we have that the
deviation from full fidelity is 1 − PS ~ [gLR/(ωq +ωR)]

2 ~ 10−4.
Typically, the deviation is a couple of orders of magnitude smaller
since the difference between the perturbation parameters is very
small. We can, therefore, assume in our analytic considerations
that the ground state is well protected during the sweeps of
parameters in the Hamiltonian, and that the protocol duration can
be estimated solely in terms of the relaxation rates of the static
stages of the protocol, i.e., τ ≈ Δt2 + Δt4. In the experimental
implementation of the protocol, any cross coupling between the
qubit and the flux line, used to adjust the left-resonator frequency,
should be considered together with excitations of the SQUID.
However, these issues seem not to significantly affect the
achievable speed of our initialization protocol.
In Fig. 3, we compare the analytically obtained sweep fidelity

from Eq. (15) with the sweep fidelity obtained by solving the
instantaneous ground state |Ψ0(t)〉 numerically. We observe that if
the RWA is valid, i.e., for g0LR � ωR, the analytic result closely
follows the numerical solution. For increasingly strong coupling,
the second-order perturbation theory becomes insufficient which
is visible as a large deviation between the analytic and numerical
results. Even for g0LR ¼ 0:1ωR, however, the deviation from the
perfect fidelity is of the order of 10−7, which indicates that the
effects of the fast sweep on the ground-state fidelity of the
protocol can be neglected.

Markovian master equation for the time-dependent system
In order to obtain more quantitative understanding of the
protocol, we study its dynamics with the help of a Markovian
master equation for the reduced system density operator
ρ̂SðtÞ ¼ TrE ρ̂ðtÞf g, where the total density operator ρ̂ðtÞ obeys

Table 1. Parameters used in the numerical simulations.

Parameter Value Unit

gRq/(2π) 6.8 × 10−2 GHz

g0LR= 2πð Þ 7.4 × 10−2 GHz

ωq/(2π) 9.5 GHz

ωR/(2π) 10.0 GHz

ωL(0)/(2π) 11.5 GHz

Γ0 3.1 × 10−2 109 s−1

λRq 0.14

CR, CL 1.0 pF

LR 0.25 nH

Cc, Cq 15.0 fF

CJ 26.0 fF

CE 4.0 fF

EJ/EC 50.0

R 0.5 kΩ
T 10.0 mK

We also show the circuit parameters of the lumped-element model that
produce the used angular frequencies
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the von Neumann equation

i�h
dρ̂
dt

¼ ĤðtÞ; ρ̂	 

; ð16Þ

where ĤðtÞ is defined in Eq. (1). We first diagonalize the system
Hamiltonian ĤSðtÞ, as defined in Eq. (2), in a time-independent
basis {|n〉} with the time-dependent unitary transformation
D̂ðtÞ ¼ P

n ΨnðtÞj i nh j. After the transformation, the time-
evolution of ρ̂0ðtÞ ¼ D̂†ðtÞρ̂ðtÞD̂ðtÞ is governed by the effective
system Hamiltonian

ĤeffðtÞ ¼ �h
X
nm

ωnðtÞδnm � i ΨnðtÞj _ΨmðtÞ
 �	 


nj i mh j; ð17Þ

where the latter term causes non-adiabatic transitions. Such term
always appears if one wishes to preserve the form of the von
Neumann equation in a time-dependent unitary transformation.
After the transformation, the derivation of the master equation
proceeds in a conventional manner50–52: We assume that the
initial state of the total system is uncorrelated, i.e., ρ̂ð0Þ ¼
ρ̂Sð0Þ � ρ̂Eð0Þ, and that the bath is in a thermal state, described
by ρ̂Eð0Þ, throughout the temporal evolution. We consider only
weak coupling to the environment and apply the standard Born
and Markov approximations in the interaction picture, and
subsequently trace over the environmental degrees of freedom.
In the Markov approximation, the correlation time of the
environment is negligibly short and we can express the master
equation for ρ̂′SðtÞ in the secular approximation as

dρ̂′SðtÞ
dt ¼ � i

�h ĤeffðtÞ; ρ̂′SðtÞ
	 


þ 1
2

P
ωnm>0

ΓmnðtÞ 2π̂nmρ̂′SðtÞπ̂†nm � π̂†nmπ̂nmρ̂
′
SðtÞ � ρ̂′SðtÞπ̂†nmπ̂nm

	 


þ 1
2

P
ωnm>0

ΓnmðtÞ 2π̂†nmρ̂
′
SðtÞπ̂nm � π̂nmπ̂

†
nmρ̂

′
SðtÞ � ρ̂′SðtÞπ̂nmπ̂†nm

	 


þ 1
2

P
n
ΓnnðtÞ 2π̂nnρ̂′SðtÞπ̂nn � π̂nnπ̂nnρ̂

′
SðtÞ � ρ̂′SðtÞπ̂nnπ̂nn

	 

:

ð18Þ

Above, we have defined the ladder operators between the static
basis states as π̂nm ¼ nj i mh j. The instantaneous transition rates
Γmn(t) are identical to those obtained with Fermi’s golden rule in
Eq. (8).53 Similar to the case of a static Hamiltonian,50, 51 the
environmental decoherence is included in the Lindblad terms on
the last three rows of the master equation. The first term models
the transitions between the adiabatic states that dissipate energy
to the environment, the second term represents absorption from
the environment and the last term induces dephasing of the
adiabatic states. We note that the secular approximation made
above is justified if the relaxation rates are small compared to
the minimum separation between the eigenfrequencies of the
system,50 i.e., we have

ΓmnðtÞ � min
i≠j

ωiðtÞ � ωjðtÞ
�� ��: ð19Þ

We note that the adiabatic master equation above can be
improved by making successive diagonalizing transformations for
ĤeffðtÞ. As a result, the master equation is represented in the
basis of the so-called superadiabatic states, the time-dependence
of which is typically suppressed after each diagonalizing
transformation. Such adiabatic renormalization was first described
for a general time-dependent quantum system by Berry,54 and
later applied to studies of dissipation in driven superconducting
qubits.55–57 The lowest-order superadiabatic correction was
studied in refs. 58, 59.

Protocol speed
Let us study the decay of an excitation in our system by solving
the master equation (18) for an initial state spanned by the low-
energy adiabatic states as Ψð0Þj i ¼ P4

n¼0 anð0Þ Ψnð0Þj i. We
assume that the environment is so cold that thermal excitations
of the system are negligible. This guarantees that the quantum
state ρ̂SðtÞ of the system remains in the low-energy subspace
during the temporal evolution. In the beginning of a realistic
initialization procedure, we may have no knowledge on the
distribution of the occupations Pn(0) = |an(0)|

2. Therefore, we
choose the operation points of our protocol such that

t 2 t1; t2½ � : Γ2 � Γ20ðtÞ ¼ Γ30ðtÞ ¼ Γ0=2; Γ10ðtÞ � 0; ð20Þ

Fig. 3 Ground-state sudden sweep fidelity 1 − PS as a function of the control parameter value ωL(τ) at the end of the protocol. We compare the
analytically obtained sweep fidelity in Eq. (15) with that obtained by finding the ground state |Ψ0(t)〉 numerically. We show the data for a
g0LR ¼ 0:001ωR; b g0LR ¼ 0:0074ωR (value used in the simulations in Figs. 2, 5, and 6); and c gLR= 0.1ωR. The qubit frequency is ωq= 0.95ωR
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and

t 2 t3; t4½ � : Γ1 � Γ10ðtÞ ¼ Γ20ðtÞ ¼ ωq=ωR
� �2

Γ0=2; Γ30ðtÞ � 0;

ð21Þ
which is the case for ωLðt2Þ � ωþ � ωR þ g2Rq=δRq and
ωL t4ð Þ � ω� � ωq � g2Rq=δRq, respectively.
Before discussing the numerical results, we present a simple

analytic estimate for the initialization fidelity. The general form for
the excited-state occupations can be solved from the master
equation (18) and written as

PiðtÞ ¼ Pið0Þe�
R t

0
Γi0 t0ð Þdt0

: ð22Þ
By neglecting the small contributions of the fast sweeps, these can
be readily written in terms of Eqs. (20) and (21). We find that the
deviation from the perfect fidelity, αðτÞ ¼ 1� P0ðτÞ ¼

P3
i¼1 PiðτÞ,

can be written as

αðτÞ
αð0Þ ¼ P1ð0Þe�Γ1Δt4 þ P2ð0Þe�Γ2Δt2 þ P3ð0Þe�Γ1Δt4�Γ2Δt2 ; ð23Þ

where the relative initial occupations of the excited states have
been defined as Pið0Þ ¼ Pið0Þ=

P3
j¼1 Pjð0Þ for i = 1, 2, 3. The

tolerable deviation α(τ) from perfect fidelity at the end of the
protocol is fixed in the beginning of the protocol. Since we do not
know the relative occupations in the beginning of the initialization
protocol, we have to wait the times Δt2 ≈ ln[α(0)/α(τ)]/Γ2 and Δt4 ≈
ln[α(0)/α(τ)]/Γ1 so that any excitation in the system is decayed
down to the desired accuracy. As a consequence, we obtain an
upper bound for the total wait time τ ¼ Δt2 þ Δt4 of the protocol
as

τ � log10 αð0Þ=αðτÞ½ � 2lnð10Þ
Γ0

1þ ωR

ωq

� �2
" #

¼ βτ10: ð24Þ

Above, we denote α(τ) = 10−βα(0) where β≥ 0, and τ10 = 2ln(10)
[1 + (ωR/ωq)

2]/Γ0. For ωR≳ωq, we have that τ10 ≈ 4ln(10)/Γ0, which
sets the time scale for the decrease of α(τ) by an order of
magnitude. We note that the secular approximation used in the
derivation of the master equation requires through Eq. (19) that

Γ0 � min g0LR; g
0
LR
gRq
δRq

ffiffiffiffiffiffi
ωq

ωR

r� �
¼ g0LR

gRq
δRq

ffiffiffiffiffiffi
ωq

ωR

r
� Γmax

0 ; ð25Þ

where the equality holds since in our case 0<gRq � δRq and
ωq <ωR. Additionally, we required that in the off state of
the protocol, the intrinsic rates dominate over those of the
engineered environment, i.e., Γ10ð0Þ ¼ αqκ

I
q and Γ20ð0Þ ¼ αRκ

I
R,

where αq; αR � 1. We show in Methods that these lead to the

condition Γ0 � ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2αqκIqδ

2
Lqð0Þ= δLqð0Þ þ ωq

	 
2
ωR

n o
3

r
, where

γ ¼ Γ0=Γ
max
0 � 1 and δLq(0) =ωL −ωq is the detuning between

the left-resonator and the qubit in the off state of the protocol.
This sets a lower bound for the decay time:

τ10 	 4 lnð10Þ
ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δLqð0Þ þ ωq
	 
2

ωR

γ2αqκIqδ
2
Lqð0Þ

3

vuut ¼ 300 ns; ð26Þ

where the numerical estimate is made for typical superconducting
circuit parameters ωR/(2π) = 10 GHz, ωq/(2π) = 9.5 GHz, δLq(0)/(2π)
= 2 GHz, and κIq¼ 104 s−1. We have used β = 0.5 and confirmed
with a classical calculation of the transition rate Γ2 that the secular
approximation holds within a relative error of 4%. We also set
αq = 0.1. The lower bound for the decay time above would
represent a significant improvement to that of the current
experimental benchmark for qubit ground-state initialization
protocol.17 By choosing the off state infinitely far from the qubit
(δLq → ∞), the decay time can be improved to τ10≳ 90 ns. In the
following, we set α(0) = 1 in order to obtain an estimate for the

total wait time for initialization of a qubit excitation. For example,
if one wishes to obtain a ground state fidelity of α(τ) = 10−3 with
our protocol, the wait time should be of the order of τ ¼ 3τ10.

Qubit temperature
Above, we calculated the deviation α(τ) from the perfect fidelity by
neglecting the intrinsic dissipation in the qubit. However, in
addition to the temperature T of the resistor, the fidelity is reduced
by the intrinsic temperature Tq of the qubit. We estimate this
effect by first defining the effective qubit temperature Teff in terms
of the excited-state occupation Pqex of the qubit at the end of the
protocol as

Pqex �
1

1þ e�hωq= kBTeffð Þ : ð27Þ

By using the principle of detailed balance, we can solve Pqex in our
four-state model from

P0 Γ01 þ Γ02 þ κIqe
��hωq= kBTqð Þh i

¼ P1Γ10 þ P2Γ20 þ Pqexκ
I
q; ð28Þ

where Pqex ¼ 1
2 P1 þ P2ð Þ and we have included the coupling κIq

between the qubit and its intrinsic environment. The occupation
at the end of the protocol can be calculated at the second
operation point, where we use Γ10 = Γ20 = (ωq/ωR)

2Γ0/2 = Γ1, Γ30 = 0,
and the detailed balance relation Γ0i ¼ Γ1 exp ��hω0i= kBTð Þ½ � for the
excitation and absorption rates. Above, we have neglected
the intrinsic excitation of the right resonator. We note that with
the above assumptions P3 = 0 and, thus, P0 ¼ 1� 2Pqex. Thus, we
can write the excited state population for the qubit as

Pqex ¼
e��hω#

1= kBTð Þ þ e��hω2= kBTð Þ þ κIq=Γ1

� �
e��hωq=ðkBTqÞ

2þ κIq=Γ1 þ 2 e��hω#
1= kBTð Þ þ e��hω2= kBTð Þ þ κIq=Γ1

� �
e��hωq= kBTqð Þh i

¼ 1

1þ e�hωq= kBTeffð Þ :

ð29Þ
We show in Fig. 4 the above analytic excited qubit state
occupation Pqex and the corresponding effective temperature
Teff. For our example parameters (see Table 1) and for the intrinsic
qubit temperature Tq = 100 mK, the data show a saturation of the
qubit excitation and the effective qubit temperature to values
Pqex � 4 ´ 10�6 and Teff ≈ 36mK, respectively, for T≲ 30mK. In our
simulations, we use the value T = 10mK. In the remaining
calculations, we have neglected the intrinsic qubit dissipation in
order to keep our results independent on the temperature of the
intrinsic environment of the qubit.

Numerical results
Let us compare the analytic model above with the numerical
solution of the master equation (18). To this end, we solve the
master equation by truncating to the subspace spanned by the
five lowest adiabatic energy eigenstates which are obtained by
diagonalizing the instantaneous Hamiltonian ĤSðtÞ, defined in Eq.
(2). In particular, the transition rates in Eq. (8) are calculated with
the numerically obtained instantaneous eigenfrequencies and
eigenstates. We have confirmed that the relative errors caused by
the truncation in the ground-state occupation are of the order of
10−7 or smaller. In Fig. 5, we present the dynamics of the
occupations Pi(t) for the four lowest-energy states. We study the
decay of a single excitation with three different initial occupation
probabilities. Our choice for the off-state (see Fig. 2) guarantees
that the three degrees of freedom are initially weakly coupled and
the states |Ψ1(0)〉, |Ψ2(0)〉, and |Ψ3(0)〉 can be well approximated by
the first excited states of the qubit, the right resonator, and the left
resonator, respectively.
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In the numerical simulations, we choose the wait times at the
operation points equal to those presented in the analytic model. If
the excitation belongs initially to the qubit, the numerical results
are in very good agreement with the analytic occupations
obtained in Eq. (22). During the sweep to the qubit resonance,
part of the initial qubit occupation is transferred non-adiabatically
to the left resonator. However, the final numerical fidelity is close
to the analytic estimate since at the second operation point the
qubit and the left resonator become hybridized and the relaxation
rates for the resulting two states are equal. This is clearly visible in
Fig. 6 where we show the dependence of the protocol error α(τ)
on the total duration τ. Similarly, if the right resonator has a non-
vanishing initial occupation, part of it is transferred to the left-
resonator during the first sweep. Again, this does not lead to
major deviations from the analytic fidelity due to the equal
relaxation rates at the first operation point.
We note that one has to be careful when tuning to the first

operation point. If the operation point is above the resonance, i.e.,
ωL(t1) >ω+, any occupation remaining in the state |Ψ2(t)〉 at t = t2
will be transferred to the state |Ψ3(t)〉 in a Landau–Zener-type
process when the system is subsequently swept across the
avoided crossing. This leads to a decrease in the protocol fidelity,
since at the second operation point the relaxation rate Γ30 ≈ 10−2Γ0
(see Fig. 2).
If the desired fidelity P0(τ) = 1 − α(τ) is close to unity, the wait

times have to be long and, as a consequence, the choice for the

initial location of the excitation does not have a large influence on
the protocol time. The analytic estimate (24) serves as an upper
bound for the total wait time τ, and we approach the upper bound
in the case of the full qubit excitation. Fortunately, the numerically
obtained fidelity is always higher than that given by the analytic
upper bound for the wait time, since there always exist some
residual relaxation to ground state from the nonresonant states. If
the excitation is partly or completely in the right-resonator, the
desired fidelity is reached faster than in the analytic prediction, as
depicted in Fig. 6. This occurs because the part of the initial right-
resonator occupation that has not decayed at the first operation
point can continue the decay at the second operation point due
to the hybridization with the left resonator, which causes
occupation transfer during the first sweep. We also observe that
for our choice of parameters the relatively strong coupling
between the qubit and the right resonator, gRq/δRq ≈ 0.14, causes
oscillations in the protocol fidelity as a function of the protocol
time τ.

DISCUSSION
In summary, we have proposed and modeled a qubit initialization
protocol where the coupling between a superconducting qubit
and an engineered environment can be externally controlled with
a tunable resonator. Using experimentally realizable parameters,
we have solved the time-dependent Markovian master equation

Fig. 4 a Analytic excited state occupation Pqex; and b the corresponding effective qubit temperature Teff after the initialization protocol as
functions of the resistor temperature T, cf. Eq. (29). In b, we also plot the temperatures for the intrinsic qubit (red dashed line) the resistive bath
(black dashed line). We use the intrinsic qubit temperature Tq= 100mK and the intrinsic relaxation rate κIq¼ 104 s−1. Other parameters are
shown in Table 1

Fig. 5 Dynamics of the occupation probabilities of the low-energy eigenstates. We show results for the initial probabilities P0(0)= P3(0) = 0,
and a P1(0)= 0 and P2(0)= 1; b P1(0) = P2(0) = 0.5; c P1(0) = 1 and P2(0)= 0. Analytic occupation probabilities are shown with dashed lines, and
obtained from Eq. (22) by assuming sudden sweeps. The used parameters are shown in Table 1. In the numerical solutions, the sweep time
ts= 1 ns and α(τ)= 10−5

Protocol for qubit initialization
J Tuorila et al.

8

npj Quantum Information (2017)  27 Published in partnership with The University of New South Wales



for the protocol and shown that the tunable resonator can be
used for fast and precise reset of a qubit excitation. We have also
demonstrated that fast changes of the bare angular frequency of
the tunable resonator do not reduce the final ground-state fidelity
of the protocol. As a result, the duration of the protocol for a given
fidelity can be estimated in terms of the decay rate of the tunable
resonator, Γ0, with a simple analytic model. We also found that the
present experimental state-of-the-art decay time17 for ground-
state qubit initialization may be decreased almost by an order of
magnitude. Moreover, we observed that at dilution refridgerator
temperatures (T≲30mK) the effective qubit temperature can be
reduced to one third of its intrinsic temperature of 100 mK,
resulting in an excited qubit state occupation of roughly 10−6.
In the off-mode of the protocol, the coupling to the engineered

environment has to be weak enough such that the decoherence
during quantum computation is determined mainly by the
intrinsic environment of the qubit. This sets a limitation for the
protocol speed since the decay rate Γ0 has to be lower than the
intrinsic dissipation rates in the system. Furthermore, the
assumption of weak coupling with the environment restricts the
possible values of decay rates. In future work, the evolution of the
reduced density operator should be solved in the regime of strong
environmental coupling, which may lead to further improvements
in the protocol speed. Also, the possibilities of combining our
protocol with driven reset method17 should be investigated for
further improvements on the protocol duration and speed.

METHODS
Jacobian diagonalization
We perturbatively solve the eigenproblem of the instantaneous Hamilto-
nian (2). In the RWA, the occupation number N̂ � â†LâL þ â†RâR þ σ̂þσ̂� is a
conserved quantity because ĤS; N̂

	 
 ¼ 0. This means that ĤSðtÞ and N̂ have
joint eigenstates. Eigenvalues of the occupation number are N = nL + nR +
nq = 0, 1, 2,…, where nL and nR are the occupation numbers of the left and
right resonators, respectively, and assume values nL, nR = 0, 1, 2, …. The
number nq denotes the qubit occupation and assumes values 0 and 1.
Each occupation number N belongs to (2N + 1) degenerate eigenstates of
the form |nL, nR, nq〉. These are also the eigenstates of the unperturbed
Hamiltonian Ĥ0ðtÞ. We note that if the counter-rotating terms neglected in
the RWA are included, the occupation number is no longer conserved and
the above arguments do not hold. In the numerical simulations we employ
the non-RWA Hamiltonian.
We are interested in the transitions between the low-energy eigenstates.

The N = 1 manifold consists of three states: {|0, 0, e〉, |0, 1, g〉, |1, 0, g〉}
where, for clarity, we use the symbols g ↔ 0 and e ↔ 1 for the qubit
occupation number nq in the ground and excited state, respectively. As a

consequence, the eigenstates of the RWA Hamiltonian with occupation
number N = 1 are linear combinations of these three basis states.
Therefore, it is enough to find eigenstates for the truncated 3 × 3
Hamiltonian matrix

HSðtÞ ¼ �h

ωq �igRq 0

igRq ωR gLRðtÞ

0 gLRðtÞ ωLðtÞ

0
BBBBBB@

1
CCCCCCA
: ð30Þ

We rely on approximative methods for an intuitive analytic solution for an
arbitrary value of ωL(t). The challenge is to find the solution for nearly
resonant states, for which non-degenerate perturbation theory fails. The
coupling between the left-resonator and the qubit is of second order in the
coupling frequencies g0LR and gRq, which causes slow convergence in the
conventional nearly degenerate and Brillouin–Wigner perturbation the-
ories. Instead, we first diagonalize the Hamiltonian HS(t) in the N = 1
manifold of the static subspace formed by the right resonator and the
qubit, resulting in the Hamiltonian in Eq. (9) which was written as

HSðtÞ ¼ �h

ω� 0 GL�ðtÞ

0 ωþ GLþðtÞ

GL�ðtÞ GLþðtÞ ωLðtÞ

0
BBBBBB@

1
CCCCCCA
; ð31Þ

where ω± ¼ ωav
Rq ±ΩRq. We also recall the short-hand notations

ωav
ij ¼ ωi þ ωj

� �
=2, Ωij ¼ δijj j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2ij

q
, δij =ωi −ωj, and λij = Gij/|δij|, with

GRq = gRq and GL ± ðtÞ ¼ gLRðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ± δRq= 2ΩRq

� �	 

=2

q
. We then study the

corrections caused by the coupling to the left resonator employing the
Jacobian diagonalization42, 43 for the eigenproblem. We are especially
interested in the transition rates when the left resonator is in resonance
either with the right resonator or the qubit.
In Eq. (31), Hamiltonian ĤS is written in the basis spanned by {|−〉, |+〉,

|1, 0, g〉}, where

±j i ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ± δRq= 2ΩRq

� �q
0; 1; gj i ∓ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ δRq= 2ΩRq

� �q
0; 0; ej i

� �
: ð32Þ

At this point, the left resonator is coupled to the hybridized qubit and right
resonator states | ± 〉, which in the dispersive regime gRq � δRq

�� ��� �
have

the Jaynes–Cummings eigenfrequencies

ω± ¼ ωav
Rq ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δRq=2
� �2 þ g2Rq

q
�

ωR þ g2Rq
δRq

;

ωq � g2Rq
δRq

;

8>><
>>: ð33Þ

where we have anticipated our choice of parameters and assumed that
δRq > 0. If the left resonator is far detuned, the perturbation parameters
λL ± ðtÞ � 1 and hence the above basis states accurately approximate the
true eigenstates. In the vicinity of resonances with λLþðtÞ 
 1 or
λL�ðtÞ 
 1, one has to take effects arising from the coupling terms into
account by making subsequent diagonalizations in the resonant sub-
spaces. However, if GL ± � ωþ � ω�j j one can neglect the contributions
caused by the off-resonant coupling term G∓.
When λL+(t)≥ λL−(t), we make a diagonalizing Jacobian transformation

for the Hamiltonian (31) in the subspace spanned by |+〉 and |1, 0, g〉
(see Fig. 7). We obtain

HSðtÞ ¼ �h

ω� G#�ðtÞ G"�ðtÞ

G#�ðtÞ ω#ðtÞ 0

G"�ðtÞ 0 ω"ðtÞ

0
BBBBBB@

1
CCCCCCA
; ð34Þ

where ω"=#ðtÞ ¼ ωav
LþðtÞ±ΩLþðtÞ and G"=#�ðtÞ ¼ GL�ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 ± δLþðtÞ= 2ΩLþðtÞ½ �f g=2p
. Furthermore,

" = # ðtÞj i ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1± δLþðtÞ= 2ΩLþðtÞ½ �

p
1; 0;gj i±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ δLþðtÞ= 2ΩLþðtÞ½ �

p
þj i

h i
ð35Þ

Fig. 6 Qubit initialization error as a function of the protocol
duration. We present a comparison between different initial states
and sweep times. For P2ð0Þ ¼ 1, the initialization error is a strongly
oscillating function of the protocol duration and its values are
located within the shaded region. The physical parameters used are
shown in Table 1. The decay time τ10 = 300 ns
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are the states corresponding to the approximative eigenvalues �hω"=#ðtÞ.
Thus in Eq. (34), the Hamiltonian ĤSðtÞ is represented in the basis
�j i; # ðtÞj i; " ðtÞj if g. For all values of the control parameter ωL(t) of our

protocol, the perturbation parameter λ"�ðtÞ � 1 and, thus, further
Jacobian transformations cause only minor corrections to the third excited
eigenfrequency ω3ðtÞ � ω"ðtÞ and eigenstate Ψ3ðtÞj i � " ðtÞj i.
In the vicinity of the qubit resonance, δL−(t) ≈ 0, one has λL+(t) < λL−(t).

Consequently, we diagonalize the Hamiltonian (31) in the subspace
spanned by the states |−〉 and |1, 0, g〉 and obtain

HSðtÞ � �h

ω1ðtÞ 0 0

0 ω2ðtÞ 0

0 0 ω3ðtÞ

0
BBBBBBBB@

1
CCCCCCCCA
; ð36Þ

where have neglected the small couplings between the new approximate
eigenstates and defined the eigenfrequencies

ω1ðtÞ ¼ ωav
L�ðtÞ � ΩL�ðtÞ; ð37Þ

ω2ðtÞ ¼ ωav
L ± ðtÞ ∓ΩL ± ðtÞ; ð38Þ

ω3ðtÞ ¼ ωav
LþðtÞ þ ΩLþðtÞ; ð39Þ

and the corresponding eigenstates

Ψ1ðtÞj i ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δL�ðtÞ= 2ΩL�ðtÞ½ �

p
1; 0; gj i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δL�ðtÞ= 2ΩL�ðtÞ½ �

p
�j i

h i
;

ð40Þ

Ψ2ðtÞj i ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ δL ± ðtÞ= 2ΩL ± ðtÞ½ �

p
1; 0; gj i ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1± δL ± ðtÞ= 2ΩL ± ðtÞ½ �

p
±j i

h i
;

ð41Þ

Ψ3ðtÞj i ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δLþðtÞ= 2ΩLþðtÞ½ �

p
1; 0; gj i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δLþðtÞ= 2ΩLþðtÞ½ �

p
þj i

h i
:

ð42Þ
Using Eq. (8), we obtain the transition rates (10)–(12). For the
eigenfrequency (38) and eigenstate (41) of the second excited state, we
use the top signs when λL+(t)≥ λL−(t) and bottom signs when λL+(t) < λL−(t).
Note also that the eigenstates (37)–(39) are approximately orthogonal

since Ψ1ðtÞjΨ2ðtÞh i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δL�ðtÞ= 2ΩL�ðtÞ½ �p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� δLþðtÞ= 2ΩLþðtÞ½ �p � 1

for λL+(t)≥ λL−(t), and Ψ2ðtÞjΨ3ðtÞh i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δL�ðtÞ= 2ΩL�ðtÞ½ �p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δLþðtÞ= 2ΩLþðtÞ½ �p � 1 for λL+(t) < λL−(t). The Jacobian iteration could

be continued further but by comparing these results with the numerical
solution of the eigenproblem, we observe that the couplings between the
states above are already so small that the Hamiltonian is accurately
diagonalized.

Ground-state fidelity during sudden sweeps
The ground-state sweep fidelity PS ¼ Ψ0ðτÞjΨ0ðt4Þh ij j2 can be calculated in
the sudden approximation by finding the corrections to the RWA ground
state ΨRWA

0 ðtÞ�� � ¼ 0; 0;gj i caused by the counter-rotating terms Ĥ2ðtÞ ¼
�hgLRðtÞ â†L â

†
R þ âLâR

� �þ i�hgRq âRσ̂� � â†Rσ̂þ
� �

. Since these change the
occupation number by two, we should expand our low-energy basis to
cover the eigenstates of the occupation numbers N = 0, 1, 2, 3, which gives
altogether 16 basis states. However, the perturbation divides the eigen-
space to two uncoupled sets, one of which is formed by the even-
occupation states and the other one by the odd-occupation states. In
conclusion, we do not expect the ground-state sweep fidelity to depend
on the matrix elements between the ground state and any eigenstate with
odd parity (N = 1, 3, 5, …). Thus, the counter-rotating terms break the
symmetry in the RWA Hamiltonian that leads to the conservation of the
occupation number, and replace it with a weaker requirement of parity
conservation.
We analytically calculate the correction arising from the counter-rotating

term Ĥ2ðtÞ only for the ground state, which is created in our low-energy
subspace by the off-resonant coupling between |0, 0, g〉 and the N = 2
eigenstates. Since we have gLRðtÞ= ωLðtÞ þ ωR½ � � 1 and gRq= ωq þ ωR

� � � 1
during the whole protocol, we can treat the effects arising from Ĥ2ðtÞ in the
second-order non-degenerate perturbation theory. Since H2ðtÞ 0; 0; gj i ¼
gLRðtÞ 1; 1; gj i � igRq 0; 1; ej i, we obtain

ω0ðtÞ ¼ � g2LRðtÞ
ωLðtÞ þ ωR

� g2Rq
ωq þ ωR

; ð43Þ

Ψ0ðtÞj i ¼ AðtÞ 0; 0;gj i � gLRðtÞ
ωLðtÞ þ ωR

1; 1;gj i þ i
gRq

ωq þ ωR
0; 1; ej i

� �
; ð44Þ

where the zero of energy is set by the RWA ground-state energy and in the
ground state we have neglected the second-order terms, which are outside
our low-energy subspace. The deviation from zero energy is caused by the
Bloch–Siegert-type60 non-resonant corrections to the RWA result. The
normalization of the state is given by

AðtÞ ¼ ωLðtÞ þ ωR½ � ωq þ ωR
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLðtÞ þ ωR½ �2 ωq þ ωR

� �2 þ g2LRðtÞ ωq þ ωR
	 
2 þ g2Rq ωLðtÞ þ ωR½ �2

q
ð45Þ

� 1� g2LRðtÞ
2 ωLðtÞ þ ωR½ �2 �

g2Rq

2 ωq þ ωR
	 
2 ; ð46Þ

where the latter equality is written to second order in the small parameters
gLR(t)/[ωL(t) +ωR] and gRq/(ωq +ωR). Thus, the ground state can be
approximately expressed as

Ψ0ðtÞj i � 1� g2LRðtÞ
2 ωLðtÞþωR½ �2 �

g2Rq

2 ωqþωR½ �2
� �

0; 0; gj i � gLRðtÞ
ωLðtÞþωR

1; 1;gj i

þi gRq
ωqþωR

0; 1; ej i:
ð47Þ

Fig. 7 Energy levels in the Jacobian diagonalization scheme for the four lowest eigenstates. We show the Jaynes–Cummings diagonalization
for the states |0, 1, g〉 and |0, 0, e〉, and the successive first diagonalizing transformation for the states |1, 0, g〉 and |+〉}, which is relevant for the
case λL+≥ λL− (see text). The resulting approximative eigenfrequencies are ω1= ω−, ω2=ω↓, and ω3= ω↑. The angular frequencies ω±, ω"=#, ωav

ij ,
and Ωij are defined in the text
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As a consequence, the sweep fidelity can be expressed as

PS � 1� gLRðτÞ
ωLðτÞ þ ωR

� gLRðt4Þ
ωq þ ωR

� �2
; ð48Þ

where the sweep is assumed to start from ωL(t4) =ω− ≈ωq. Thus, the
maximum deviation from the perfect survival of the ground state is given by
the square of the difference between the perturbation parameters.

Parameter optimization and the numerical method
In this section, we optimize the parameters for our protocol. According to
our analytic model, the decay time τ10 determines the transition rate as

Γ0 ¼ 4 lnð10Þ=τ10: ð49Þ
Furthermore, we require that in the off mode the transition rates are much
smaller than the intrinsic rates κIR and κIq. Thus, we obtain upper bounds for
the transition rates in Eqs. (10)–(12) by writing them in the limit where
ωLð0Þ 
 ωR;ωq as40

Γ"10ð0Þ � Γ0
g0LR
� �2

g2Rq
δ2Lqð0Þδ2Rq

δLqð0Þ þ ωq
� �2

ωq

ω3
R

" #
� κIq; ð50Þ

Γ20ð0Þ � Γ0
g0LR
� �2

δLqð0Þ � δRq
� �2 δLqð0Þ þ ωq

� �2
ω2
R

� κIR; ð51Þ

Γ30ð0Þ � Γ0
ω2
Lð0Þ
ω2
R

; ð52Þ

where we have employed the zero-temperature limit and δLq(0)
determines the maximum sweep range in our protocol. If ωL(0) is large,
the lowest three excited states can be approximated as Ψ1ð0Þj i
� 0; 0; ej i, Ψ2ð0Þj i � 0; 1;gj i, and Ψ3ð0Þj i � 1; 0;gj i. We also note that

Γ20ð0Þ ¼ Γ"10ð0Þ
ωRδ

2
Lqð0Þδ2Rq

g2Rqωq δLqð0Þ�δRqð Þ2 <Γ
"
10, since the parameters of our protocol

satisfy ωq <ωR and gRq < δRq.
Another restriction for the transition rates comes from the fact that the

master equation is valid only if

Γ0 � min
i≠j

ωiðtÞ � ωjðtÞ
�� �� ¼

gLR t3ð ÞgRq
δRq

� g0LRgRq
ffiffiffiffiffiffiffiffiffiffi
ωq=ωR

p
δRq

; forωL t3ð Þ ¼ ω� � ωq;

gLR t1ð Þ � g0LR; forωL t1ð Þ ¼ ωþ � ωR;

8>><
>>:

ð53Þ
where the latter approximations hold for our protocol since
gLRðtÞ ¼ g0LR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLðtÞ=ωR

p
. The first condition above determines the max-

imum Γ0, since in our protocol gRq/δRq < 1 and ωq/ωR < 1. In the following,
we write

Γ0 ¼ γ
g0LRgRq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωq=ωR

p
δRq

; ð54Þ

and assume that γ � 1 so that inequalities (53) hold. We can optimize the
decay time τ10 by defining the tolerances αq ¼ Γ"10=κ

I
q and αR ¼ Γ20=κ

I
R.

The inequalities (50) and (51) hold for αq; αR � 1. We thus obtain from Eqs.
(50) and (51) that

g0LR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αqκ
I
qδ

2
Lqð0Þδ3Rqω3

R

γg3Rq δLqð0Þ þ ωq
	 
2

ωq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωq=ωR

p3

vuut

´min 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αRκ

I
R δLqð0Þ � δRq
	 
2

g2Rqωq

αqκIqδ
2
Lqð0Þδ2RqωR

3

vuut
2
4

3
5:

ð55Þ

We wish to minimize our decay time, which means that we need to
maximize g0LR. The largest allowed value for g0LR is given by the prefactor in
the inequality above. This can be achieved when the qubit–right-resonator
coupling is chosen as

gRq 	 δLqð0ÞδRq
δLqð0Þ � δRq
�� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αqκIqωR

αRκIRωq

s
: ð56Þ

In this case, an upper bound for the rate coefficient follows from Eqs. (54)
and (55), and can be written as

Γ0 � ωR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2αqκIqδ

2
Lqð0Þ

δLqð0Þ þ ωq
� �2

ωR

3

vuut �
ffiffiffiffiffiffiffiffiffiffi
κIqω

2
R

3
q

; ð57Þ

which is independent of gRq. In the latter inequality above, we have
assumed that ωLð0Þ 
 ωq. For typical experimental parameter values
δLq(0)/(2π) = 2 GHz, ωR/(2π) = 10 GHz, ωq/(2π) = 9.5 GHz, δRq/(2π) = 0.5 GHz,
κIq¼ 104 s−1, κIR¼ 106 s−1, and for αR = αq = 0.1, we obtain

gRq=ð2πÞ 	 68MHz; ð58Þ

g0LR=ð2πÞ � 74MHz; ð59Þ

Γ0 � 31´ 106 s�1: ð60Þ
Above, we have set γ = 0.5 and confirmed with a classical calculation of the
transition rate Γ20(t1) that in the case of gRq = 0, the secular approximation
holds up to a relative error of 4%. The lower bound for the decay time is
obtained from Eq. (49) to be

τ10 	 300 ns: ð61Þ
The numerically computed transition rates Γn0(t) and eigenfrequencies

ωn(t) are obtained by solving the eigenproblem for ĤSðtÞ in the eigenbasis
of the unperturbed Hamiltonian Ĥ0ðtÞ, where we have included the
eigenstates nL=R

�� �
of the left and right-resonators up to nL/R = 5, and solved

the master equation in the static basis consisting of five energetically
lowest states. We have confirmed that the relative error in the final ground-
state occupation caused by the truncation of the basis is of the order of
10−7 or smaller.

Data availability
The numerical code and the datasets analyzed during the current study are
available from the corresponding author on reasonable request.
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