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A B S T R A C T

Cycling is a sustainable transport mode that endorses an active lifestyle. While cycling shows great potential,
it is essential for urban planning to consider attributes influencing the choices that cyclists act upon.
Cyclists’ route choices have been studied since the Eighties with knowledge being applied in cycling network
planning. Yet, the role of cycling as a sustainable transportation mode has been largely absent from travel
demand modelling. This paper researches cyclists’ route choice preferences and evaluates the opportunity
of incorporating route choice modelling into travel demand modelling to improve the accuracy of cycling
route choice. To this end, a route choice framework is developed in which a stated preference survey for
data collection is conducted, a multinomial Logit model is applied to the data to identify the factors that
significantly influence cyclists’ route choice behaviour. The generated route choice utility models are further
integrated into an existing regional travel demand model to evaluate the performance of cyclists’ route choice
modelling in the presence of additional factors. Then, the route choice model outputs are validated against two
sets of external data. The results show that bike facilities, traffic volume, and trip length are the key factors
influencing cyclists’ route choice preferences, and the generated route choice models can be an applicable
improvement in incorporating the influences of cyclists’ preferences into travel demand modelling.

1. Introduction

1.1. Motivation

Promoting active transportation modes, such as walking, wheeling,
and cycling, is gaining popularity, due to the numerous advantages
including improved health (Raustorp and Koglin, 2019; Shaker et al.,
2021), alleviated congestion (Wang and Zhou, 2017), and decreased air
pollution (Keall et al., 2018). In particular, the World Health Organiza-
tion (WHO) recommends adults aged 18–64 years to have 150–300 min
of moderate-intensity aerobic physical activity per week (World Health
Organization, 2020) and an increase in usage of active transportation
modes can help the population to meet the WHO’s global health rec-
ommendations. Besides, using active modes contributes to emission
reduction. For instance, if 41% of the short car trips are replaced
with walking or cycling, CO2𝑒 emissions will be reduced by around
5% (Neves and Brand, 2019). The European Cyclists’ Federation has
defined strategic cycling development as a key measure in EU policy-
making for achieving climate targets (European Cyclists Federation,
2017) while delivering cost savings and improving the well-being of
people.
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Cyclist choices are exposed to numerous factors related to the
physical environment, with personal preferences influencing the choice
outcome. This has brought forward the need to study attributes in-
fluencing the choice outcome of trips as well as the extent of their
impacts. Utility theory has been successfully used to measure cyclists’
choices, particularly their mode choice (Maat et al., 2005; Pinjari et al.,
2007; Oakil et al., 2016) and route choice (Casello and Usyukov,
2014; Sobhani et al., 2019) behaviours, by assuming individuals follow
utility-maximization behaviour (Train, 2009). This theory has accumu-
lated knowledge on individual travel behaviour and to what extent
policy changes affect modal share.

Travel Demand Modelling (TDM) has been applied to foresee the
effects of transport plans. In the last few years, while cycling has begun
to gain more attraction in planning processes, a mismatch often exists
between cyclists’ route choice preferences and implementing cycling in
TDM. Route choice models commonly follow trip length minimization
or classification of preferential bike facilities (Broach and Dill, 2016),
which do not factorize in all the attributes influencing route choice
preferences. This raises the question of whether the addition of new
factors could improve forecasting cycling route choice behaviour.
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1.2. Background on cycling route choice

One of the earliest cycling route choice studies is presented by Bovy
and Bradley (1985), arguing in favour of understanding cyclists’ choices
for predicting their habits and making trade-offs along with behavioural
changes that may occur after network modifications. Since then, many
studies (Stinson and Bhat, 2003; Sener et al., 2009) discussed research-
ing route choice to be an act of enabling a better understanding of
cyclists’ preferences and pinpointing influential design attributes to
facilitate better designing of cycling networks and their facilities.

Aultman-Hall et al. (1997) used a GIS database to compare routes
taken by commuter cyclists with the shortest routes and provided
insight into factors affecting route choices such as willingness to avoid
grades and high-activity areas. Casello and Usyukov (2014) investi-
gated the impacts of trip length, traffic speed and volume, gradient, and
the presence of bike lanes as the main factors in cyclists’ route choice.
The impacts of other factors such as the number of trees and public
transport stops along the path, as well as the presence of attractions also
have been investigated in cyclist route choice (Sobhani et al., 2019).
Influential factors on cyclists’ behaviour can be classified into appropri-
ate groups based on their characteristics to perform comparisons within
and among groups (Stinson and Bhat, 2003; Sener et al., 2009). Grond
(2016), for instance, defined four groups of factors: (i) physical road
characteristics, (ii) trip characteristics, (iii) user characteristics, and (iv)
features of the built environment. A more detailed review of factors
affecting cyclists’ route choice is presented in Section 2.2.

1.3. Background on cycling in travel demand modelling

To estimate the current traffic situation and forecast future travel
behaviour, studying the transport system with TDM was conducted
(Ben-Akiva et al., 1985; de Dios Ortúzar and Willumsen, 2011). Porter
et al. (1999) explained that TDM, which is commonly referred to as
a four-step model, was originally designed for only cars and public
transport trips. The extent of modelling can range from a city scale
to a national scale. As the scope of the case study in our research
extends to a regional level, the abbreviation RTDM referring to regional
travel demand modelling is further used, without loss of generality. The
advantages of RTDM are its ability to analyse travel choices such as
mode and route choices on aggregated and disaggregated levels, con-
sideration of land use and transportation systems as part of influencing
trip-making, and capability to examine the effect of alternative policies
and operations in travel patterns (Schwartz et al., 1999; Porter et al.,
1999).

Incorporating cycling and walking into RTDM has faced challenges
due to their short trip scale that varies significantly from motorized
trips (Eash, 1999). Broach and Dill (2016) described cycling incorpora-
tion into RTDM as sluggish, and models have rarely fully incorporated
cycling. Cycling is often combined with walking as a non-motorized
mode (Singleton and Clifton, 2013; Bradley et al., 2019). Recently,
some RTDM approaches that account for cycling route choice behaviour
have been developed. Bradley et al. (2019) presented examples of
RTDM that have incorporated a cycling trip assignment step into the ap-
plication of cycling route choice theory, namely tour-based SF-CHAMP
of San Francisco, trip-based Portland Metro of Portland, and activity-
based SANDAG of San Diego. In Finland, the latest version of the RTDM
called Helmet 41 currently accounts for simplistic cyclists’ route choice
decisions through preferential bike facilities (West et al., 2020).

However, there is a lack of studies on incorporating a compre-
hensive behavioural route choice model into RTDM to investigate
its contribution to forecasting the accuracy of cycling route choice
decisions. It should be noted that the documentation of developed

1 The open-source materials to install and run Helmet 4 can be found in
https://github.com/HSLdevcom/helmet-model-system.

modelling of cyclists and pedestrians in RTDM is often lacking or not
readily available in English. This issue also applies to Helmet 4. Thus,
this paper provides updated information, insights, and advancements
in the field, especially for the Finnish RTDM.

1.4. Research objectives

Following what is discussed above, we identify the following gaps
in the field of cycling route choice behaviour.

1. The factors that influence cyclists’ route choice preferences have
not been studied widely, especially in Finland, as cyclists’ pref-
erences may be location-dependent, due to, e.g., cultural legacy
or weather conditions.

2. The role of cycling as a transport mode has been largely absent
from RTDM.

Therefore, the focus of this paper is two-fold. The first objective is to
generate more knowledge on factors influencing cyclists’ route choice
behaviour. The second objective is to integrate a route choice model
into RTDM, investigating whether the presence of additional factors can
improve the performance of cyclists’ route choice modelling in terms of
forecasting accuracy.

The remainder of this paper is organized as follows. Section 2 pro-
vides the methodological framework of the route choice; it introduces
Greater Helsinki as the case study; and explains how the estimated
results are integrated into a regional travel demand model. Section 3
describes the sample characteristics, model outputs, and validation of
the proposed route choice model incorporated in existing TDM efforts.
Finally, Section 4 draws the concluding remarks of our paper.

2. Method and data

2.1. Methodological framework

The methodological framework of the study, as presented in Fig. 1,
is split into four stages: (1) identification of factors, (2) data collection,
(3) model estimation, and (4) model integration and validation. Stages
1 through 3 are part of the route choice framework, while stage 4 is
related to the application of the route choice model in RTDM. In the
following subsection, the study area is briefly introduced, followed by
detailed explanations of various stages.

2.2. Study area

Greater Helsinki, Finland, is a collaborative region of 14 munici-
palities encircling the capital Helsinki, which consists of three distinct
areas: the inner capital area, the outer region, and other areas. A
map of the study area is shown in Fig. 2. The area’s population is
around 1.53 million inhabitants with 1.20 million inhabitants living in
the inner capital area (Tilastokeskus, 2021).

The latest region-wide travel behaviour survey in 2018 (Brandt
et al., 2019) estimated around 4.7 million daily trips across the re-
gion on a normal weekday. The share of walking, cycling, and public
transportation is found to be 60%. The share of cycling as a primary
mode is also found to be 9% in 2018, which accounts for approximately
420,000 daily trips.

2.3. Defining study factors and levels

Factors of interest must be considered as those frequently emerging
in cycling route choice studies, while also being preferable to cyclists.
Since the study aims at incorporating the route choice model into
RTDM, compatibility with the regional travel demand model imple-
mentations and suitability for the context of the study area are also
necessary.
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Fig. 1. Overview of the employed methodological framework.

Fig. 2. The study area, including 14 municipalities of Greater Helsinki and Siuntio.

After the identification of study factors, factor levels, which indicate
how a factor may change in different situations, must be determined
to measure the change in each factor’s influence. Determining enough
levels for each factor is essential, as too few levels may not describe the
factor’s impact accurately while identifying too many levels produces
unnecessary complexity.

Among the extensive literature on factors affecting cyclists’ routing
behaviour, 15 publications are selected. Choosing publications that

vary culturally, spatially, and temporally is determined to be important
to minimize choosing factors that might indicate strong preference at a
specific setting during a certain temporal period. Additionally, selecting
popular publications that are cross-referenced frequently is also found
relevant aspect for comparing findings between papers. Our study
uses a classification style, for factors affecting cyclists’ route choice
behaviour, similar to Grond (2016). Table 1 presents factors emerging
in the literature concerning the four predefined classes, and a coding
scheme for them. Then, Table 2 uses the encoded letters to summarize
the findings from publications and determine factors that have been
collectively found most influential. Besides influential factors, Table 1
provides information on the study area and the type of data, e.g., stated
preference (SP) and/or revealed preference (RP), used to investigate
cyclists’ behaviour.

Factors such as gradient, bike facility, and trip length seem to have
a strong presence and influence in numerous studies. Many factors are
not found significant in the selected studies. This does not imply that
those factors have no effect; on the contrary, it may refer to the fact that
some factors do not influence a particular cultural or spatial setting or
such influence exists but its effect is deemed weaker than the effect
from several other factors.

The process of choosing factors for this study consists of 2 steps.
First, the number of factors presented in Table 2 was reduced as many
of them were not found to have accessible data (e.g., street green), were
not seen as significant in the context of our case study (e.g., bridge
facilities are not frequent in Greater Helsinki), or were not suitable for
the current form of the TDM implementation (e.g., turns). Cutting off
those factors, the conclusive six chosen factors for this study are listed
as (1) bike facility, (2) road class, (3) traffic volume, (4) controlled
intersection, (5) gradient, and (6) trip length. Besides, limiting the
number of study factors (i.e., 6 in this study) prevents the SP from
becoming too exhausting and difficult to complete. In the second step,
factor levels are determined based on existing model parameters and
levels that are found to be suitable among the examined set of studies.
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Table 1
Types of emerging factors in route choice studies.
Road characteristics Trip characteristics User characteristics Built environment features

A Gradient L Trip length R Age CC Scenery
B Signalized intersection M Average speed S Gender DD Street green
C Bike facility N Travel time T Cycling purpose EE Crowdedness
D Traffic volume O Wrong-way travel U Cycling experience FF Residential unit density
E Road quality P Left and right turns V Income GG Street lighting coverage
F On-street parking Q Road continuity W Cycling frequency HH City features
G Speed limit X Cycling with children II Land use mixture
H Number and width of lanes Y Car ownership JJ Public transport service level
I Road class Z Level of education
J Bridge facility AA Weather influence
K Tram tracks BB Bike operation cost

Table 2
Most significant identified factors in each study.
Publication A B C D E G I J L N O P Q S T CC DD FF GG JJ Study area Data

Stinson and Bhat
(2003)

✓ ✓ ✓ ✓ ✓ ✓ US SP

Sener et al.
(2009)

✓ ✓ ✓ ✓ ✓ Texas, US SP

Menghini et al.
(2010)

✓ ✓ ✓ Zurich,
Switzerland

RP

Hood et al.
(2011)

✓ ✓ ✓ ✓ ✓ ✓ San Francisco, US RP

Winters et al.
(2011)

✓ ✓ ✓ ✓ ✓ Vancouver,
Canada

SP

Broach et al.
(2012)

✓ ✓ ✓ ✓ ✓ ✓ Portland, US RP

González et al.
(2016)

✓ ✓ ✓ ✓ Providencia, Chile SP, RP

Grond (2016) ✓ ✓ ✓ ✓ ✓ Toronto, Canada SP, RP
Vedel et al.
(2017)

✓ ✓ ✓ ✓ Copenhagen,
Denmark

SP

Zimmermann
et al. (2017)

✓ ✓ ✓ ✓ ✓ Eugene, US RP

Chen et al.
(2018)

✓ ✓ ✓ ✓ ✓ Seattle, US RP

Majumdar and
Mitra (2018)

✓ ✓ ✓ Kharagpur &
Asansol, India

SP

Bernardi et al.
(2018)

✓ ✓ ✓ The Netherlands RP

Ghanayim and
Bekhor (2018)

✓ ✓ ✓ ✓ ✓ Tel Aviv, Israel RP

Hardinghaus and
Papantoniou
(2020)

✓ ✓ ✓ Munich, Germany
& Athens, Greece

SP

Table 3 contains a list of six examined variables, their levels, and their
definitions.

2.4. Stated preference survey design

After the identification of study factors, data reflecting the prefer-
ences of the cyclists must be acquired. SP data is used in this context
since it allows the researchers to define several scenarios and to have
full control over the variables with a lower operational effort and cost,
compared with RP data (Hensher et al., 2005).

The first step of designing an SP survey is to describe the alterna-
tives that are available to the individual. This collection of relevant
alternatives is called a discrete choice set from which individuals
choose their preferred outcome. Choice set size and composition influ-
ence the results of model estimation and prediction (Ton et al., 2018).
A full factorial design containing every possible combination of factor
levels can be performed to make the choice set, however, the extent of
a choice set can end up being too large. For instance, in this research,
with the predefined factors and their levels, excluding the trip length,
there are 432 (42 × 33) alternatives according to a full factorial design,
and it has to be reduced to a manageable size (Hensher et al., 2005)
by using a fractional factorial design.

In the end, a fractional factorial design is applied to generate
reasonable-sized choice sets in the statistical analysis software SPSS.

The generated 32 choice alternatives are split into four blocks with
each block having eight unlabelled choice questions between two al-
ternatives for each participant to select. The number is in line with the
existing literature (Sener et al., 2009; Vedel et al., 2017; Hardinghaus
and Papantoniou, 2020).

A survey is designed with an online questionnaire in the Webropol
software (Webropol, 2021) and active cyclists over 15 years old are
targeted. A pilot survey was conducted in August 2021 to gain an
overview of how the survey’s contents were perceived. After the final
review, the contents were translated alongside Finnish into Swedish
and English. Data were collected during September 2021. Information
about the survey was shared via online platforms and social media
channels. Brochures were also designed and distributed locally to make
sure that cyclists who may not follow online media could participate.

The structure of the questionnaire consists of two main sections.
The first section of the questionnaire requests respondents to imagine
themselves in a hypothetical situation where participants are given
randomly one choice set, containing 8 scenarios with two alternatives.
In each scenario, respondents are asked to choose the alternative that is
more suitable to their preferences. To assist respondents in imagining
possible outlooks for each alternative, grey-scaled photographs, which
resemble each choice alternative to a degree, are included in the
questionnaire. An exemplary choice pair that is presented to some
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Table 3
Identified factors and determined levels with definitions.

Factor Level Level definition

1 Bike facility

Mixed traffic Cyclists ride among motorized vehicles
Bike lane On road painted bike lane
Adjacent cycle path Designated cycle path for cyclists next to a road
Separated cycle path Cycle path that is completely separated from the road

2 Road class
Local street The route follows small residential and collector streets
Main street The route follows the main streets
Arterial road The route follows arterial roads

3 Traffic volume

Light Roads along the route have hardly any cars (0–500 veh/h)
Moderate Roads along the route have some cars (500–1000 veh/h)
Substantial Roads along the route have a noticeable amount of cars (1000–2000 veh/h)
Heavy Roads along the route are full of cars (>2000 veh/h)

4
Signalized No traffic signal There are no signalized intersections
intersection Few traffic signals There are one to two signalized intersections

Many traffic signals There are at least three signalized intersections

5 Gradient
No hills There are no noticeable hills along the route (0–2.5%)
Moderate hills There are moderate hills along the route (2.5%–5%)
Steep hills There are steep hills along the route (>5%)

6 Trip lengtha – –

a Trip length is treated as a continuous variable.

Fig. 3. An example of choice pair presented to respondents in the SP survey.

respondents is shown in Fig. 3. The second section of the survey asked
for information concerning respondents’ residential municipality, age
group, gender, and cycling experience. Respondents are also asked
about their purpose for cycling, when they generally cycle, the average
trip length, and frequency, and whether they use e-bikes that can affect
the cyclists’ route choice by removing the burden of cycling.

2.5. Route choice model estimation

Modelling the choice of discrete decisions with uncertainty is per-
formed with models of random utility. The deterministic component
of the utility of alternative 𝑖 for the decision maker (i.e., a person) 𝑛,
𝑉𝑛𝑖, is a sum function that consists of a factor value with its assigned

weighting (coefficient) describing a factor’s share in the whole utility.
This is defined by

𝑉𝑛𝑖 =
∑

𝑘
𝛽𝑘𝑖𝑓 (𝑋𝑘𝑛𝑖), (1)

where 𝑘 represents the number of factors, 𝑘 = 1,… , 𝐾, and is included
with every element specific to the 𝑖th alternative, 𝛽𝑘𝑖 assigns a weight-
ing to a factor 𝑘 for alternative 𝑖 and 𝑓 (⋅) denotes the form of function
in which factor values, 𝑋𝑘𝑛𝑖, may be entered in different forms for
different individuals (Ben-Akiva and Bierlaire, 1999; Hensher et al.,
2005). Then, the utility of alternative 𝑖 for person 𝑛 is calculated as
𝑈𝑛𝑖 = 𝑈𝑛𝑖 + 𝜖𝑛𝑖, where 𝜖𝑛𝑖 is an error term.

Following the utility-maximization principle, an individual 𝑛
chooses the best alternative 𝑖 over alternative 𝑗 from the discrete choice
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set 𝐶𝑛 if the utility of 𝑖 is greater or equal to the utility of 𝑗 as shown
in probabilistic terms as

𝑃 (𝑖|𝐶𝑛) = 𝑃 [𝑈𝑛𝑖 ≥ 𝑈𝑛𝑗∀𝑗 ∈ 𝐶𝑛] = 𝑃 [𝑈𝑛𝑖 = max
𝑗∈𝐶𝑛

𝑈𝑛𝑗 ]. (2)

If the random part of the utility, 𝜖𝑛𝑗 , follows a Gumbel distribution,
Eq. (2) turns into a multinomial Logit model. Then, the probability of
an individual 𝑛 choosing a route 𝑖 when [𝑈𝑛𝑖 ≥ 𝑈𝑛𝑗 ] is given by

𝑃𝑖 =
𝑒𝑉𝑛𝑖

∑𝐽
𝑗=1 𝑒

𝑉𝑛𝑗
, 𝑖 ≠ 𝑗 (3)

In this model, 𝜖𝑛𝑗 , is assumed to be independent and identically
distributed (iid) (McFadden, 1974; Ben-Akiva and Bierlaire, 1999). This
is widely used in discrete choice studies, and it is suitable for modelling
cyclists’ route choice behaviour, where survey participants are assumed
to follow utility-maximizing behaviour and iid assumption.2 Applying a
maximum likelihood method allows determining coefficients, 𝛽, which
can be used to estimate the effects of factors under research.

To describe a parameter’s influence on utility, 𝑈 , Marginal Rates
of Substitution (MRS), computed as −(𝑑𝑈∕𝑑𝑥)∕(𝑑𝑈∕𝑑𝑦), is consid-
ered (Hood et al., 2011; Broach et al., 2012). MRS measures the
change in the quantity of variable 𝑥 divided by the change in the
quantity of variable 𝑦, while keeping the utility constant. In other
words, MRS describes the change in a variable’s units when traded with
another variable and the negative sign indicates the inverse relationship
between the variables, as some quantity of one variable is substituted
by more of the other variable. Thus, given that the utility function is
linear with respect to all variables, the equivalent 𝑦 value of a unit
change in the parameter 𝑥 is defined as

𝑀𝑅𝑆 =
(

(
𝛽𝑥
𝛽𝑦

) − 1
)

× 100, (4)

where 𝛽𝑥 and 𝛽𝑦 are the estimated coefficients of parameter 𝑥 and 𝑦,
respectively.

Also, the contribution of utility (Stinson and Bhat, 2003) is used
to compute the average impact of each parameter to be assessed. This
is not possible with the estimated parameters themselves due to the
coding of the values having different scaling. Thus, the contribution of
utility by a parameter, �̄�𝑥, is formulated as

�̄�𝑥 = 𝜇 × 𝛽𝑥, (5)

where 𝜇 is the average coded value.

2.6. Model integration with RTDM

The last stage of the study aims at observing whether applying the
results from the route choice model could potentially improve route
choice forecasting accuracy in RTDM. This needs the integration of
the route choice model with RTDM that requires network modification,
developing an expression formulation, and results validation.

Helmet, the RTDM of the Greater Helsinki area, is designed as
a four-step model of trip generation, distribution, mode choice, and
trip assignment. In Helmet 4, after considering cycling as an explicit
mode, cycling demand models were formulated for mode choice, and
a simple description of the cycling network was built, which has been
gradually further detailed during the last few years. Demand models
of Helmet 4 are run solely with Python macros while supply models
utilize a combination of Python and the transport modelling software
Emme (INRO, 2021) for network traffic assignment.

2 Using the same data, Khavarian et al. (2024) compare the outputs of
multinomial Logit models and random parameter Logit models for regular
and electric bike users’ route choices. Their findings imply that the SP data
captures the preferences of the individuals, so the IID assumption is held. This
suggests that using multinomial Logit can lead to similar outputs with random
parameter Logit, without increasing the complexity of the estimation process.

To incorporate the cyclists’ route choice model into Helmet, first,
network attributes should be inspected to reveal the existing and suit-
able data to be available for the study factors. After network modi-
fications, utilities have to be assigned to links through an expression
formulation that describes relative utility 𝑈 for link 𝑙, concerning the
study factors. The utilities will be used as a generalized cost in the
traffic assignment model of RTDM, meaning that the proposed models
are only implemented in the route choice stage.

After the link utilities are computed, the standard traffic assign-
ment of Emme, i.e., based on a linear approximation method, can be
performed.3 Various link expression permutations are tested during
the traffic assignment with new coefficients being estimated for each
permutation. Models that are considered to reflect the best cyclists’
behaviour are further used. The cycling assignment results are, then,
validated against two sets of external data. The first set of valida-
tion data uses quantitative cyclists’ counterpoints for comparison with
current cyclists’ demand of Helmet. The second set of data makes
comparisons between route choices. In the second case, the function-
ality of route choice modelling as a part of TDM is validated by
observing whether the modelled route is realistic, and how much the
modelled results overlap with actual cyclists’ choices and the outputs
of the existing RTDM, which is already applied in regional forecasts for
transport and land use impact assessments.

3. Results

3.1. Sample description

1069 participants partook in the survey and after data cleaning,
the final sample consists of 1029 participants. Most responses are, by
far, received from Helsinki cyclists as it is the largest municipality
in the region. Although numerous cycling route choice studies have
shown males as the clear dominant gender group (Hood et al., 2011;
González et al., 2016; Chen et al., 2018; Ghanayim and Bekhor, 2018;
Hardinghaus and Papantoniou, 2020), the gender distribution of our
sample shows a very good balance between male (47.2%) and female
(49.3%) respondents. The shape of the results, as shown in Fig. 4,
presents how the sample contains a relatively equal amount of both
women and men among all age groups. This figure resembles normal
distribution with the working class in the middle and teen and elderly
groups being at the tail ends.

Based on a simple qualitative self-judgment, the overall cycling
experience distribution is evaluated. Half of the respondents considered
themselves very experienced cyclists and 43% of participants are at
least somewhat experienced, which is in line with the study’s goal
to reduce inconsistent results that are more likely to emerge among
those who are inexperienced or cycle infrequently. On average, survey
participants cycle 4 to 5 days a week between 5 to 10 km. Regarding
the purposes of cycling, respondents are allowed to choose up to three
choices that best describe their cycling purpose. Leisure is found to be
the most popular cycling activity as, on average, four out of five people
claimed to often ride for leisure purposes. Commuting to work and
exercising are found to be other frequent answers among respondents.

3.2. Route choice estimation results

In this study, two models defined as M1 and M2 are formulated in
a way to cover all the study factors and their levels. The expressions
for the deterministic part of the utility of a link in M1 and M2 follow
the linear function in Eq. (1). Both models integrate trip length into
road class and bike facility to make link attributes addable over links

3 Note that we also tested a stochastic assignment method for this
task, without observing any significant difference compared to the (simpler)
standard traffic assignment model.
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Fig. 4. The distribution between gender and age of participants (n = 1029).

with different characteristics. The difference between the two models is
that M2 includes an interaction effect between trip length and gradient
while M1 excludes it.

The estimated coefficients of the two models, M1 and M2, are
shown in Table 4. Although coefficient values vary between M1 and
M2, their signs, the relative difference between values, and statistical
significance are similar. Estimation of the two models is performed in
Python with PandasBiogeme (Bierlaire, 2020). As mentioned earlier,
each participant responded to eight choice questions producing 8232
(1029 × 8) observations for estimation. Table 5 also presents MRS
and contribution of utility for M1, computed using Eqs. (4) and (5),
respectively. MRS, for route choice, is often denoted as an exchange
between two parameters with the dependent parameters being denoted
in length due to it being easier to interpret. In this study, as trip
length is integrated into road class and bike facility, separated bicycle
facility × length is served as the 𝑦 parameter in MRS formulation. Lastly,
M2 is used to estimate the interaction between main effects and so-
ciodemographics to observe whether particular factors influence certain
cycling demographics in Greater Helsinki. All interaction effects are
first estimated in M2 and then narrowed to only statistically significant
ones, as shown in Table 6.

3.2.1. Main effects
Cyclists in Greater Helsinki tend to prefer routes that traverse main

streets and arterial roads over local streets as local streets produce
higher average disutility than main streets and arterial roads. Separated
and adjacent cycling paths are the preferred bike facilities while mixed
traffic is the most disliked facility option. MRS indicates that cyclists
are willing to go around 30% out of their way in order to ride in the
vicinity of main streets and arterial roads rather than on local streets.
Local streets are observed to produce 19.8% and 22.5% higher average
disutility than main streets and arterial roads.

Mixed traffic conditions are considered to be the most disliked fa-
cility option. MRS shows cyclists’ willingness to travel 92.7% longer to
avoid riding in mixed traffic conditions. Further dislike towards mixed
traffic is indicated by the large 68.9% difference in produced average
disutility between bike lanes and mixed traffic. Riding in adjacent
facilities is, however, found to be equivalent to a 3.4% decrease in
the separated bike lane length. Traffic volume is controlled for, but
other elements of mixed-traffic streets, such as uneven pavement, road
drainages, and unavoidable intersections can also have a negative in-
fluence. The surrounding environment may also contribute to choosing
a type of facility, and the popularity of separated cycle paths might
originate from route alternatives that traverse through green areas.

Moderate traffic volume conditions are slightly preferred over other
alternatives. While MRS is unable to the explain exchange between
parameter and length due to small coefficients, utility contribution
indicates that moderate traffic conditions cause 1.3 more utility over

Table 4
Route choice model estimation results.
Factor Parameter M1 M2

Coefficient t Stat. Coefficient t Stat.

Road class × length
𝛽𝐿𝑜𝑐𝑎𝑙 −4.96*** −33.1 −3.99*** −29.6
𝛽𝑀𝑎𝑖𝑛 −4.14*** −28.7 −3.31*** −25.3
𝛽𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 −4.05*** −25.4 −3.28*** −21.8

Bike facility × length

𝛽𝑀𝑖𝑥𝑒𝑑 −5.03*** −40.1 −4.47*** −37.7
𝛽𝐿𝑎𝑛𝑒 −2.98*** −26.2 −2.56*** −22.5
𝛽𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 −2.52*** −19.8 −1.85*** −15.3
𝛽𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 −2.61*** −16.0 −1.70*** −11.4

Traffic volume
(Ref.: Light)

𝛽𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 −0.008*** −7.7 −0.005*** −5.9
𝛽𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑙 −0.008*** −16.7 −0.006*** −14.2
𝛽𝐻𝑒𝑎𝑣𝑦 −0.009*** −24.2 −0.008*** −3.0

Signalized intersections
(Ref.: No signal)

𝛽𝐹𝑒𝑤𝑆𝑖𝑔𝑛𝑎𝑙𝑠 −0.59* −1.7 −0.99*** −3.0
𝛽𝑀𝑎𝑛𝑦𝑆𝑖𝑔𝑛𝑎𝑙𝑠 −2.00*** −10.8 −1.75*** −9.9

Gradient (×length in M2)
(Ref.: No hills)

𝛽𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝐻𝑖𝑙𝑙𝑠 −2.32*** −14 −17.20*** −10.3
𝛽𝑆𝑡𝑒𝑒𝑝𝐻𝑖𝑙𝑙𝑠 −2.50*** −18.6 −23.40*** −18.4

Model fit

No. of estimated
parameters

14 14

Sample size 8232 8232
Initial likelihood −5706.0 −5706.0
Final likelihood −4031.4 −4076.1
Initial likelihood ratio test 3349.1 3259.7
Rho squared 0.293 0.286
AIC 8090.8 8180.2
BIC 8189.1 8278.4

* Significant at 10% (𝑝 ≤ 0.10).
*** Significant at 1% (𝑝 ≤ 0.01).

heavy volume. Still, moderate, substantial, and heavy volumes make
relatively similar impacts, indicating that additional levels of traffic
volume do not cause significantly more disutility.

Routes with few or many signalized intersections are less favourable
compared to those with no signal. Still, the impact of many signals is
stronger than alternatives with a few traffic signals along the way. As
disutility contribution shows, routes with many signals are found to
cause almost 3 times higher disutility than routes having few signals.
Average disutility results indicate signalized intersections have the
smallest influence on cyclists’ route choice preference among studied
factors in Greater Helsinki. This is in line with the literature in Table 2
where signalized intersections are shown to be quite often insignificant.

Moderate and steep hills are found to be quite evenly disliked. MRS
describes distance travelled on the separated cycle path to decrease by
11.1% and 4.2% for moderate and steep hills, respectively. Similarly,
average utility contribution shows little difference between moderate
and steep hills. The small differences between moderate and steep hills
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Table 5
Parameter unit effects of M1.
Factor Parameter MRS Disutility contribution

Distance value in aseparated bike lane (%) Avg. coding value Avg. disutility

Road class × length
𝛽𝐿𝑜𝑐𝑎𝑙 90.0 5.6 km −27.8
𝛽𝑀𝑎𝑖𝑛 58.6 5.6 km −23.2
𝛽𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 55.2 5.6 km −22.7

Bike facility × length
𝛽𝑀𝑖𝑥𝑒𝑑 92.7 5.6 km −28.2
𝛽𝐿𝑎𝑛𝑒 14.2 5.6 km −16.7
𝛽𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 −3.4 5.6 km −14.1

Traffic volume
𝛽𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 −99.7 838 veh −6.4
𝛽𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑙 −99.7 838 veh −6.9
𝛽𝐻𝑒𝑎𝑣𝑦 −99.7 838 veh −7.7

Signalized intersections 𝛽𝐹𝑒𝑤𝑆𝑖𝑔𝑛𝑎𝑙𝑠 −77.4 1.5 signals −0.9
𝛽𝑀𝑎𝑛𝑦𝑆𝑖𝑔𝑛𝑎𝑙𝑠 −23.4 1.5 signals −2.9

Gradient 𝛽𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝐻𝑖𝑙𝑙𝑠 −11.1 2.8% elevation −6.5
𝛽𝑆𝑡𝑒𝑒𝑝𝐻𝑖𝑙𝑙𝑠 −4.2 2.8% elevation −7.0

Table 6
The relative utility of interaction effects between main effects and
sociodemographics.
Factor M2

Parameter Coefficient t Stat.

Road class 𝛽𝐿𝑜𝑐𝑎𝑙 −2.45*** −24.6
Leisure 0.39* 1.9
E-bike 1.04*** 3.9

𝛽𝑀𝑎𝑖𝑛 −1.50*** −17.2
Leisure 0.56** 2.3
E-bike 0.74** 2.4

𝛽𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 −1.16*** −12.5

Bike facility 𝛽𝑀𝑖𝑥𝑒𝑑 −2.87*** −17.0
Female −1.07*** −6.3

𝛽𝐿𝑎𝑛𝑒 −1.30*** −8.7
E-bike 0.75*** 2.6

𝛽𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 −0.81*** −4.9
𝛽𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 −0.14 −0.4
Female 0.87*** 4.7

Traffic volume 𝛽𝐿𝑖𝑔ℎ𝑡 0.01 1.3
Female 0.02*** 5.5

𝛽𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 −0.002 −0.5
Female 0.006*** 3.9

𝛽𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑙 −0.006*** −3.8
30–44 0.001** 2.2

𝛽𝐻𝑒𝑎𝑣𝑦 −0.007*** −5.4

Signalized intersections 𝛽𝑁𝑜𝑆𝑖𝑔𝑛𝑎𝑙𝑠 0
𝛽𝐹𝑒𝑤𝑆𝑖𝑔𝑛𝑎𝑙𝑠 −1.42*** −3.4
Leisure 1.96*** 2.9

𝛽𝑀𝑎𝑛𝑦𝑆𝑖𝑔𝑛𝑎𝑙𝑠 −2.16*** −8.6
30–44 −0.68** −2.3
Leisure 1.16*** 2.8

Gradient 𝛽𝑁𝑜𝐻𝑖𝑙𝑙𝑠 1.17*** 18.3
E-bike −3.15*** −3.1

𝛽𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝐻𝑖𝑙𝑙𝑠 −2.07*** −13.3
𝛽𝑆𝑡𝑒𝑒𝑝𝐻𝑖𝑙𝑙𝑠 −1.94*** −12.2
Female −0.91*** −4.2

Trip length 𝛽𝐿𝑒𝑛𝑔𝑡ℎ −5.11*** −32.0

Model fit

No. of estimated parameters 33
Sample size 8232
Initial likelihood −5706.0
Final likelihood −3955.5
Initial likelihood ratio test 3501.0
Rho squared 0.307
AIC 7977.0
BIC 8208.5

* Significant at 10% (𝑝 ≤ 0.10).
** Significant at 5% (𝑝 ≤ 0.05).
*** Significant at 1% (𝑝 ≤ 0.01).

imply that cyclists are more likely to choose their route depending on
whether there are hills or no over-elevation. This may have resulted
from asking respondents to differentiate between qualitative moderate
and steep hills. However, note that the Greater Helsinki region is flatter
than many of the other locations in literature, which may be why
cyclists have difficulties in comparing moderate and steep hills.

3.2.2. Interaction effects
The interaction effects between the main effects presented above

and the sociodemographic characteristics are also estimated and a
comparison is performed between men and women, commuters and
leisure cyclists, and non-assisted bike and e-bike users. Preferences of
the sample’s largest respondent group between 30 and 44 years old
are also estimated. Although previous studies, such as Broach et al.
(2012) and Chen et al. (2018), did not find statistical significance
between study factors and sociodemographics, this study demonstrates
sociodemographic characteristics influence cyclists’ preferences.

Women are found to dislike riding in mixed traffic conditions more
than men, probably due to different safety perceptions as studied by Xie
and Spinney (2018). Men, on the other hand, are found to dislike
riding on separate cycle paths more than women. Women are found
to also favour low-volume traffic conditions over men, which again
implies the different safety perceptions between men and women while
riding in the proximity of cars. Participants aged between 30–44 are
found to be content with a substantial amount of traffic volume; this
implies that either such cyclists have already accumulated a significant
amount of cycling experience, which might have increased their under-
standing of how to cycle safely and efficiently in the vicinity of large
traffic volumes, or they have a higher perception threshold for unsafe
situations.

Women are found to dislike routes with steep hills more than men.
In addition, e-bike users are found to greatly dislike routes without
hills over cyclists with regular bikes. An e-bike can greatly reduce the
required physical effort of climbing hills, which may also be one of
the factors that has led a person to acquire an e-bike in the first place.
To them, an electric-assisted bike can create whole new route options
where hills are not seen as obstacles anymore.

Leisure cyclists are found to prefer routes that follow local and
main streets over arterial roads with a higher preference for main
streets. Leisure cyclists, traditionally, ride out for enjoyment, and routes
following large and noisy arterial roads might not fulfil this aspect.

Leisure cyclists prefer routes with traffic signals over commuters.
Commuter cyclists may have higher pressure to be on time, which
signals can hinder, while leisure cyclists most likely do not have
similar restrictions. In particular, 30-to-44-year-old cyclists are found
to dislike having many signals along their routes, as signalized in-
tersections contribute to travel time variability, hence, they influence
travel time reliability (Zheng et al., 2017; Singh et al., 2019) and
the users’ perception of time reliability affects their route choice be-
haviour (Moghaddam et al., 2019). Many of these respondents are most
likely active commuters to whom removal of excess stops can optimize
trip-making.
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Table 7
Spearman’s rank correlation test results.
Pair Correlation Rho-square t Stat.

Counter - Helmet 4 0.551 0.304*** 3.49
Counter - M1 0.474 0.225*** 2.85
Counter - M2 0.526 0.277*** 3.28
Helmet 4 - M1 0.694 0.481*** 5.10
Helmet 4 - M2 0.772 0.596*** 6.42
M1 - M2 0.617 0.381*** 4.15

*** Significant at 1% (𝑝 ≤ 0.01).

3.3. Integration of the route choice model in Helmet 4 and validation

To integrate the route choice models, M1 and M2, into Helmet 4,
preliminary configurations are first completed. A forecast based on the
2018 Greater Helsinki land use, housing, and transportation data is run
in Helmet 4 to produce travel demand. It was also decided that testing
would focus on morning peak hours. The assignment results are, then,
validated with respect to both counter volume and OD pathing.

3.3.1. Counter volume
Models are first validated by observing cyclist volumes at different

counter locations within the capital area (Eco-Counter, 2021). These
counters collect and publish the daily activity of passing individuals.
The observed quantities are, then, compared against the route volume
results of Helmet 4 and new route choice models. Measured results
of simple descriptive statistics of the 30 chosen counters around the
capital area show that Helmet 4’s current model, M1, and M2 have
large differences compared with counter data. All three alternatives are
found to assign excessive cyclists to links, with M1 showing the best
accuracy by assigning, on average, only 180 extra cyclists over Helmet
4’s 230 and M2’s 270 cyclists.

Spearman’s rank correlation test (Fieller et al., 1957) is applied to
measure the correlation coefficient between observed quantities and
is presented in Table 7. Null hypothesis 𝐻0 claims that there is no
correlation between observed quantities. The results show a correlation
to exist among observed quantities, suggesting that the null hypothesis
𝐻0 is rejected, meaning that there exists a correlation between the
observed quantities. Still, Helmet 4 outputs have the best correlation
fit with counter data. This may be attributed to the inaccuracy of the
counter volume data,4 such as undercounting or incomplete coverage
of all cycling routes. As a result, we also employ OD pathing as
an additional validation method to further assess the accuracy and
reliability of the model results.

3.3.2. OD pathing
The second validation is performed by tracing route choices be-

tween origin–destination pairs, using aggregated RP data from Strava
(2021). This data is further referred to as Strava pathing. 17 OD pairs
are chosen among capital area districts that cyclists would likely travel
between. An example pair is shown in Fig. 5 for both M1 and M2
models.

Results show current cyclists’ route choice model of Helmet 4 to
produce the longest paths among alternatives as the produced paths
are found to be on average 200 m longer than Strava’s pathing. On
the contrary, paths that are generated with M1 and M2 are found to
have similar average route lengths, which turn out to be on average
800 m shorter than the routing of Helmet 4. Strava’s data revealed
that cyclists actually cycle longer detours to reach their destination
over modelled options as the paths are observed to detour on average
by 600 m. While bias exists in Strava’s results because it is especially

4 Proulx et al. (2016), for instance, showed that the average error rate for
automated pedestrian and bicycle counting technologies could be up to 17%.

popular among exercising cyclists, the results imply Greater Helsinki
cyclists prefer routes with better cycling facilities and seamless route
connectivity as they are willing to detour over the shortest option.

Evaluating the performance of route choice models M1 and M2
against the current route choice model of Helmet 4 reveals that both
models outperform Helmet 4 in forecasting accuracy and have higher
trip distance overlap with the actual route choice of cyclists. Exami-
nation of which route alternative has the highest overlap and, thus, is
the best representation of predicting cyclists’ routes, reveals that M1’s
shortest path overlaps 30% of the time with actual cyclists routing
between all OD pairs. Similar results are found in M2, where the
M2’s shortest path is found to overlap 31% of the time with Strava’s
path. Routes generated with the current route choice model of Helmet
4 are found to overlap with Strava’s results only 22% of the time.
These findings suggest that both exhibit analogous levels of accuracy
in predicting cycling paths, and their performance is slightly superior
to that of Helmet 4.

4. Conclusions

This study aims at improving the knowledge of cyclists’ route choice
preferences, but most importantly it pursues to connect the results
of route choice models with travel demand modelling to advance the
capabilities of modelling cycling. This enables the development of more
effective and inclusive transportation plans, allowing urban planners
and designers to create green and user-friendly cycling infrastructure
that promotes cycling and enhances safety and accessibility. To this
end, a route choice framework consisting of factor identification, data
collection, and parameter estimations is prepared, and then used to
develop a route choice model integrated with the existing RTDM and
validated.

This study, analysing SP data with over 1000 observations, finds
that bike facilities, traffic volume, and trip length influence cyclists’
route choice preferences considerably. Cyclists are found to favour ad-
jacent and separated cycle paths while avoiding routes where they have
to ride in mixed traffic. Signalized intersections show little influence
while gradient causes moderate discomfort among cyclists. Interest-
ingly, cyclists are observed to exhibit a similar level of detouring
behaviour to avoid moderate and steep hills, probably due to the rela-
tively gentle topological characteristics of the study area, where cyclists
face challenges in distinguishing between moderate and steep hills. This
study demonstrates sociodemographic characteristics influence cyclists’
preferences. Women, for example, are found to detour routes with steep
hills more frequently, seek out separated cycle paths, and avoid riding
among mixed traffic more than men.

The results also demonstrate the successful incorporation of cycling
route choice modelling into an existing RTDM (Helmet 4). The outcome
of this process is validated in two stages. First, quantitative validation
on cyclists’ volume at different points in the network presented that
modelled route choice performs slightly worse than the current cycling
model of Helmet 4, while the second validation on tracing cyclists’
chosen routing between specific origins and destinations demonstrated
route choice modelling to perform better. The study results show route
choice modelling to be an improvement over the current route choice
of Helmet 4. The improvements, however, are not significantly better
and additional actions are needed to further increase accuracy with
suggested actions being related to input value calibration, network
updates, and including costs for turn actions.

The study limitations are mostly related to how the studied factors
are chosen and which factors’ impacts are studied. The number of
factors is limited to six to reduce the SP survey’s complexity and
ease the incorporation of models into the corresponding RTDM. More
factors, such as the number of turns, street lighting, weather condi-
tions especially in Nordic countries like Finland with long and intense
winters, as well as bike-related costs, should be investigated. Besides,
recent SP studies (Vedel et al., 2017; Majumdar and Mitra, 2018;
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Fig. 5. Route tracing of various models between one OD pair: Niittykumpu and Otaniemi.

Hardinghaus and Papantoniou, 2020) applied mixed Logit over multi-
nomial Logit models to allow the existence of heterogeneity among
responses. Although SP has several advantages over RP, such as its
ability to cover several scenarios with full control over the variables, it
suffers from certain limitations including the potential for hypothetical
bias and limited behavioural realism. Thus, additional data collection
effort is recommended to strengthen the analysis. As walking is also
being promoted in urban planning, incorporating walking into RTDM
as a separate mode can be conducted through choice theory, and
combined with the information presented in this study for applying
a similar framework in Helmet. In addition, discussion surrounding
e-bike’s influence on route choice preferences is perceived to be absent.
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