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There is broad agreement that context-based predictions facilitate lexical-semantic
processing. A robust index of semantic prediction during language comprehension
is an evoked response, known as the N400, whose amplitude is modulated as a
function of semantic context. However, the underlying neural mechanisms that utilize
relations of the prior context and the embedded word within it are largely unknown.
We measured magnetoencephalography (MEG) data while participants were listening
to simple German sentences in which the verbs were either highly predictive for the
occurrence of a particular noun (i.e., provided context) or not. The identical set of
nouns was presented in both conditions. Hence, differences for the evoked responses
of the nouns can only be due to differences in the earlier context. We observed a
reduction of the N400 response for highly predicted nouns. Interestingly, the opposite
pattern was observed for the preceding verbs: highly predictive (that is more informative)
verbs yielded stronger neural magnitude compared to less predictive verbs. A negative
correlation between the N400 effect of the verb and that of the noun was found
in a distributed brain network, indicating an integral relation between the predictive
power of the verb and the processing of the subsequent noun. This network consisted
of left hemispheric superior and middle temporal areas and a subcortical area; the
parahippocampus. Enhanced activity for highly predictive relative to less predictive
verbs, likely reflects establishing semantic features associated with the expected nouns,
that is a pre-activation of the expected nouns.

Keywords: semantics, prediction, language, MEG, N400

INTRODUCTION

Language comprehension is a demanding process, which requires decoding of highly structured
speech signals within very short time (Friederici, 2002; Pylkkänen and Marantz, 2003; Poeppel
et al., 2008). Success of speech perception is increased through the combination of input-driven and
prediction-based analysis (Strauß et al., 2013). Predictions are derived from both prior knowledge
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and contextual information (Rao and Ballard, 1999; Bar, 2007;
Bendixen et al., 2009; Griffiths and Tenenbaum, 2011). These
predictions are needed to achieve an optimal performance,
both in general low level sensory processing as well as in
higher cognitive processing such as speech perception. They
do not stretch into some far future, they rather concern
the present. According to predictive coding theory, our brain
continuously anticipates current sensory input by transferring
information from hierarchically higher to lower areas via
top-down processing (Engel et al., 2001; Friston, 2003; Bar, 2009;
Kiebel et al., 2009; Huang and Rao, 2011; Rauss et al., 2011).
This reduces the processing demands at lower levels of hierarchy
if the input matches expectations. If the prediction was wrong,
performance will be less than optimal, as appropriate actions
for the predicted input might have started already. However, in
the case of weak or no predictions, no negative influence on the
performance is to be expected.

Recently, modeling language processing using predictive
coding theory has gained attention (David et al., 2011; Hickok,
2012; Sohoglu et al., 2012; Jakuszeit et al., 2013; Park et al., 2015;
Lewis et al., 2016). Gagnepain et al. (2012) propose a predictive
coding model of single spoken word recognition and show that
superior temporal gyrus (STG) neurons represent the difference
between predicted and heard speech sounds. Interestingly,
instead of a direct competition between co-activated words they
claim that alternative word completions compete via eliciting
different predictions. Furthermore, researchers now also focus
on the neural mechanism related to ‘‘predictive’’ processing
itself (i.e., the context that generates the prediction). In a visual
paradigm usingmagnetoencephalography (MEG)measurements
Dikker and Pylkkänen (2013) found increased activation in left
middle temporal and left inferior frontal gyrus (IFG) to pictures
of objects (e.g., a picture of an apple) that were predictive for
a specific word (e.g., apple) compared to pictures that were
not predictive for the same word (e.g., a picture of shopping
bag full of groceries). Fruchter et al. (2015) investigated the
serial processing of adjective-nouns phrases using MEG and
observed higher activity in the left middle temporal gyrus (MTG)
in response to highly predictive adjectives in adjective-noun
phrases. Using combined eye-tracking and functional magnetic
resonance imaging (fMRI), Bonhage et al. (2015) revealed the
neural substrate for syntactic word category prediction in a
distributed network including cortical areas relevant for language
processing as well as subcortical areas.

So far, predictions in language processing have been reported
for many linguistic levels such as lexical, syntactic and sentential
semantics (Kutas and Federmeier, 2000; DeLong et al., 2005;
Bonte et al., 2006; Dambacher et al., 2006; Federmeier, 2007;
Dikker and Pylkkanen, 2011; Obleser and Kotz, 2011; Van Petten
and Luka, 2012; Brusini et al., 2015; Lewis and Bastiaansen,
2015). Previous findings suggest that all contextual information
have an immediate impact on linguistic predictions (Hale,
2001; Demberg and Keller, 2008; Levy, 2008; Smith and Levy,
2013). Particularly, N400 responses were robustly found as being
sensitive to variations in lexical-semantic prediction (Kutas and
Hillyard, 1980, 1989; Federmeier, 2007; Lau et al., 2009, 2013a,b).
It has been reliably observed that N400 amplitude is reduced

following a predictive or supportive context (Kutas and Hillyard,
1984; Federmeier et al., 2007; Kutas and Federmeier, 2011;
Wlotko and Federmeier, 2012).

The goal of the current study was the investigation of
semantic context building during sentence processing. The
main idea is that highly predictive verbs contribute more than
average information towards the overall sentence meaning while
the less predictive verbs provide less than average and keep
a lot of options open. Consequently, the processing of the
predicted nouns mainly constitutes of a confirmation whereas
the processing of the less predicted nouns still involves at
least the retrieval of semantic information and integration into
the preceding context. While prediction formation has been
investigated in the context of reading, thus far evidence from
speech is less well-established. For this aim, we designed an
MEG study based on a sentential N400 paradigm. In simple,
spoken subject-verb-object sentences of German, we varied
the predictability relation between the context (verb) and a
sentence’s final word (noun) as being high (e.g., He drives the
car) or low (e.g., He gets the car). We used identical final
determiner-noun phrases together in both contexts. Following
highly predictive verbs, the presented noun is the one with
highest cloze probability (Taylor, 1953). Following less predictive
verbs, the (same) noun is one of many alternatives, however, all
alternatives had equally low (or even lower) cloze probabilities.
Consequently, none of our nouns is violating a prediction from
the preceding context.

So far, using MEG, several approaches were taken in
identifying the brain network underlying the N400m. In
summary, the results suggest a left hemispheric dominance
and the involvement of temporal and inferior frontal sources
(Halgren et al., 2002; Marinkovic et al., 2003; Pulvermüller
et al., 2005; Maess et al., 2006; Pylkkänen and McElree, 2007;
Salmelin, 2007; Dikker and Pylkkänen, 2013). In addition,
previous N400 studies also reported activity of deeper structures
during the processing of semantics; these were perirhinal and
inferior temporal structures active in semantic aspects of word
recognition (Halgren et al., 2006) as well as thalamic nuclei
responding specifically to semantic violations (Wahl et al.,
2008).

We hypothesize that the previously shown reduction of the
N400 for the highly expected words is mostly a consequence of
the prior prediction formation during the processing of earlier
presented semantic context. Less expected words need more
processing effort and therefore produce a larger evoked response,
because, more semantic information needs to be retrieved.
Violations of the preceding context are not discussed here as such
words may cause a more or less extensive error handling which
are special cases in speech processing.

MATERIALS AND METHODS

Stimuli
We selected short German sentences in which the verb was either
highly predictive (e.g., he drives the car, German: Er fährt das
Auto) or less predictive (e.g., he gets the car, German: Er kriegt
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FIGURE 1 | Distribution of the word frequency and word length values
for the verbs in both conditions. Both differences are small and therefore
considered irrelevant for the effects discussed here. For more details see
“Materials and Methods” Section—Stimuli. The white area marks the centered
95% percentile.

das Auto) of the following noun. Stimuli were taken partially
from an earlier study (Gunter et al., 2000) and an additional
behavioral pre-study. In both cases participants had to fill in
a printed form which provided a personal pronoun (Er/Sie
[he/she]) followed by a verb. Participants were asked to complete
the sentence beginnings in a simple way by providing just a
determiner and a noun. During the analysis, we identified pairs of
verbs falling in either of the two classes—highly predictive (cloze
probability >50%) or less predictive (cloze probability <25%)
of the following noun as previously done by Gunter et al.
(2000). For the purposes of the present study, all stimuli were
additionally controlled for their word frequencies1 and word
length (Figure 1). The complete set of stimuli consists of
69 pairs. Sentences could be interpreted literally—a figurative
interpretation is unlikely. As we use the same noun phrase
for each of the sentence pairs—there are no stimulus driven
differences at the noun level between both conditions. The verbs,
however and intentionally, consist of two different groups. The
median word frequency between both verb groups is different
by a value of 3 which corresponds to a ratio 1:8. Halgren et al.
(2002) observed a minor influence of word frequency towards
the N400 when comparing mean word frequencies of 15 with
336 per million, which corresponds to a ratio of about 1:23.
We have analyzed a subset of 39 pairs of our stimuli, which
had no difference in the median word frequency nor in word
length. We did not observe a change in the evoked condition
differences between both stimulus sets. The set with 69 pairs
had a higher signal-to-noise ratio though; hence we based the
following analysis on the complete set of stimuli. Sentences were
spoken by a trained female speaker at natural speed. Loudness
was adjusted so that all sentences were at the same perceived
level.

Participants
In total, 21 German native speakers (11 female) took part in
an MEG experiment (age range: 20–32 years, median: 27).
All were right-handed according to the Edinburgh Handedness

1http://wortschatz.uni-leipzig.de/

Inventory (Oldfield, 1971). None of them had a hearing deficit or
neurological diseases. Participants gave written informed consent
prior to the experiment and were paid for their participation. The
study follows the guidelines of the declaration of Helsinki and has
an ethical approval of the ethics commission of the University of
Leipzig.

Design and Procedure
Participants were seated in a dimly lit shielding room
(Vacuumschmelze Hanau, Germany). MEG data was recorded
with a 306 channel Vectorview device (Elekta Oy, Helsinki,
Finland) at 500 Hz sampling rate utilizing a bandwidth of 160 Hz.
Additionally, three bipolar channels were recorded to monitor
eye and cardiac activity. Electrooculogram (EOG) electrodes
were attached to the outer canthi and above and below the left
eye. Electrocardiogram (ECG) electrodes were placed at the right
clavicle and the left ribs. The experiment was conducted in one
session with five recording blocks. First, participants’ individual
hearing thresholds were determined for both ears separately.
Stimuli were presented at 48 dB SL (sensation level, i.e., above
the individually determined hearing threshold). Sensation levels
were estimated using a subpart of one sentence. Stimuli were
randomized and presented once over two blocks, thereafter
presentation of all stimuli was repeated in two further blocks
using a different randomization. The onsets of all sentences, as
well as the onsets of the verbs and the nouns in each sentence
were specifically marked (Figure 2). During the fifth block
participants heard a sequence of sinusoidal tones. Data of this
block are not presented here.

Participants were instructed to listen carefully to the presented
sentences and not to move during a block. They were asked
to fixate their view at a cross at the center of the screen
while listening to the auditory stimulation. Fixation crosses were
presented from 700 ms before onset until 700 ms after the offset
of each sentence. Fifteen percent of the sentences were followed
by either the same or an alternative sentence spoken by a different
voice (male). Participants’ (incidental) task was to judge whether
the two succeeding sentences (female and male voice) were the
same. Participants responded by a button press following the cue.
The cue also informed participants of the response-to-button-
alignment: it comprised of one happy and one sad symbolic face

FIGURE 2 | Experimental design. The left part shows two exemplary
sentences out of the set of 69 pairs. Vertical lines mark the acoustic onsets of
the verbs and nouns as used for the analysis. The histogram at the right shows
the distribution of the cloze probability values for the nouns in both conditions.
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(smiley), one presented on either side of the screen. Participants
had to use their thumbs to press either the left or the right side
button, i.e., giving the answer ‘‘yes’’ with the button at the side of
the happy face and ‘‘no’’ with the other. The arrangement of the
faces on the screen was randomized and counterbalanced over all
stimuli in each block.

Data Preprocessing
MEG data were corrected for head movements and external
interferences by the Signal Space Separation (SSS)method (Taulu
et al., 2005) implemented in MaxFilterTM software (Elekta Oy).
Additionally, a recently developed SSS-based method (Taulu
et al., 2012) for suppression of the uncorrelated sensor noise
and artifacts was applied prior to SSS-processing to further
enhance the signal-to-noise ratio. The MEG signals were filtered
(0.2–9 Hz) to focus on the evoked, broad N400 deflection, as
similarly done in e.g., (Maess et al., 2006; David et al., 2011).
The high-pass filter (4367 points FIR, hamming window) was
specifically designed for a strong DC suppression (>125 dB at
DC) to replace the baseline correction. High-pass filtering was
used instead of the classical baseline correction, because there is
no ‘‘clean’’ time interval in the middle of a sentence when using
normal connected speech as stimulus. Data was subjected to a
spatial independent component analysis (ICA) decomposition
using MNE python (Gramfort et al., 2013). ICA components,
which showed a high temporal correlation with EOG or ECG
channels and with a typical topography, were manually identified
and removed before reconstructing the MEG signals. Two to
five ICA components were excluded with a median of 3 over
all subjects and blocks. Subsequently, epochs were selected as
1500 ms intervals (from −300 ms to 1200 ms with respect
to the onset of verbs or nouns, respectively). Epochs during
which the standard deviation of signal channels within a sliding
200 ms time window exceeded either 200 pT/m, 5 pT or 150 µV
(for gradiometers, magnetometers and EOG, respectively) were
excluded from further analysis. Epochs were averaged into four
categories: highly predictive verbs, less predictive verbs, highly
predicted nouns and less predicted nouns. For simplicity, we use
the same acronyms when labeling verb and noun conditions: HP
means either highly predictive or highly predicted when used as
either verb or noun condition label. LP (less predictive/predicted)
is the counterpart. Preprocessing was performed using the MNE
toolbox (Gramfort et al., 2014) and own Matlab2 routines.
Evoked fields were subjected to source localization using
the MNE toolbox (Gramfort et al., 2014) and finally mean
sLORETA estimates of a total of nine selected cortical regions
were estimated. Cluster analyses (Maris and Oostenveld, 2007)
were conducted to justify the selections of the channels and
the interval in time (see Figure 3). Evoked responses for
the verbs and the nouns over all magnetometers and over
the complete time interval from −300 ms to 1200 ms were
subjected to two cluster analyses comparing HP vs. LP. Since
condition (HP/LP) is a within-subjects-variable—a two-sided
paired t-test (‘‘depsamplesT’’) was used for the generation of
clusters (α-threshold = 5%). Clusters ‘‘clusterstatistic = maxsum;

2http://www.mathworks.com/

FIGURE 3 | Grand averaged root mean squared (RMS) signals of two
fronto-temporal magnetometer sensor groups averaged over all
participants. The upper row shows left hemisphere data and the lower row
right hemisphere data. Note, that each red dot in the channel layout
represents the location of the selected magnetometers. The time interval of
interest is marked by the gray area. Left and right channels show a similar
pattern, namely that the HP (red) over LP (blue) effect for verbs is reversed for
nouns LP (blue) over HP (red). This difference appears to be more expressed
over the left hemisphere. The color-shaded areas around the time courses
represent the standard-error-of-the-mean as determined by the across
subjects averaging.

minnbchan = 2’’ were statistically tested using Monte-Carlo-
randomizations (N = 5000, ‘‘correctm = cluster’’) and a statistical
threshold of 1%.

Source Localization
Source localization of the evoked responses was performed
using sLORETA minimum-norm estimation (Hämäläinen and
Ilmoniemi, 1994; Pascual-Marqui, 2002), implemented in MNE
Software3. sLORETA for cortically constrained surfaces results
in noise-normalized activity values (z-values). The sign of
this sLORETA solution equals the sign of the current density
estimated as minimum norm estimate at the same vertex.
sLORETA regularization was set to an SNR value of 3.
Co-registration was based on the digitized head shape and
the fiducial points. Individual anatomical T1 weighted MR
images were segmented using Freesurfer 5.1.04. Based on this
segmentation, single compartment boundary element models
(BEM) were constructed and source spaces were provided as a
set of current dipoles located within and mostly perpendicular
to the cortical surfaces (loose value = 0.2, which means that
the source covariance matrix entries which correspond to the
current surface normal are set equal to one and the two others are
set equal to 0.2). Furthermore, individual cortical surfaces were

3www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE_register
4surfer.nmr.mgh.harvard.edu
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morphed onto the cortical surface of one participant to allow
group averaging of the sLORETA estimates (Dale et al., 1999).
ROIs were selected as subparts of regions defined by a Freesurfer
parcellation (Destrieux et al., 2010). We selected nine regions per
hemisphere known as parts of the network for semantic language
processing (Lau et al., 2008; Price, 2010; Friederici, 2011),
namely the primary auditory cortex (PAC), the planum polare
(PP), the planum temporale (PT), the anterior and posterior
parts of the MTG (aMTG and pMTG), the temporal pole
(TP), the IFG including Brodmann areas BA44 and BA45 and
the parahippocampal gyrus aPH and pPH. ROI magnitudes
were computed as the mean of the absolute sLORETA values
within each of the pre-selected ROIs. Two-way ANOVAs were
conducted for each of the nine ROIs with the factors HEM
(hemisphere) and PRED (predictability).

RESULTS

Sensor-Level Analysis of The N400 Effects
For sensor-level group analysis, the root mean squared (RMS)
signal of a group of channels over left and right fronto-
temporal regions was computed (see Figure 3). RMS signals
were estimated for gradiometers and magnetometers and for
the verbs and the nouns, separately. Time range and channel

selection were made in accordance with current literature which
identified early, fronto-temporal N400 components when using
MEG, see for instance (Pylkkänen et al., 2002; Maess et al.,
2006). Analysis of the responses to the nouns (see Figure 3,
right column) showed, as expected, a significant N400m effect
observed for both sensor types—we present the values for the
magnetometers only (LP-HP Left: p< 0.001, t(20) =−4.25; Right:
p < 0.05, t(20) = −2.07) in the time window 200–350 ms with
a larger amplitude for less predicted nouns. Most interestingly,
at the preceding verbs (see Figure 3, left column) a significantly
larger amplitude was observed for highly predictive compared to
less predictive verbs (Left: p< 0.001, t(20) = 4.26; Right: p = 0.005,
t(20) = 3.15) in the time window 250–400 ms. Note that the time
intervals, represented as gray areas in the figures, for the verb and
noun tests were equal in length, but shifted by 50 ms towards
earlier latencies for the nouns.

Cluster analyses were conducted for an independent
justification of the selection of channels and time interval
(Maris and Oostenveld, 2007). For the verbs, significant positive
magnetic field differences were observed for two intervals
in time—the first roughly located between 1000 ms and
1200 ms and the second between 250 ms and 400 ms. The
average length of the verbs is about 900 ms (see Figure 1),
therefore only the earlier interval is relevant for the processing
of verbs. This cluster mainly included left fronto-temporal

FIGURE 4 | Results of the cluster analysis. (A) Spatio-temporal extent of the three clusters for verbs (left) and nouns (right). The gray bar in the background
marks the temporal intervals which were used throughout this article. The inserts show topographically the full number of samples in a cluster. Channels which had
50 or more cluster samples within the gray intervals were marked by crosses. (B) Average time courses of left hemispheric magnetometers in clusters for verbs and
nouns and both conditions LP and HP. The shaded area around the solid lines displays the standard error of the mean. The inserts show topographically the
magnetic field difference LP-HP averaged over the time interval marked in gray. Marked channels have 50 or more cluster samples within the gray interval.
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channels (see Figure 4A left). No significant effect for negative
differences (right hemisphere) were observed. For the nouns,
a positive and a negative cluster were observed both stretching
in time from about 200 ms–500 ms (see Figure 4A right).
Clusters included both left and right fronto-temporal channels.
Therefore, the selection of channels and time interval in the RMS
signal t-tests was highly overlapping with the cluster analyses
results. Average time courses of significant channels within
a cluster in the left hemisphere as well as the magnetic field
difference (LP-HP) topography for verbs and nouns is shown in
Figure 4B.

Sensor analysis in general is prone to a head-position bias: if
heads were systematically closer to the left side of the dewar then
sensors at this side also showed stronger responses. We therefore
refrain from formulating arguments concerning the left-right
differences of the above analysis and rather refer to source
space analysis instead. Source analysis included the complete
set of MEG sensors (gradiometers and magnetometers) and
is therefore independent of the RMS channel selection or the
channels in clusters, respectively.

Source Localization of The N400 Effects
To compare the spatial distributions of the sLORETA estimates
for both the verb and the noun time intervals, the signed
sLORETA estimate was additionally computed: here the
projection to the surface normals of the folded cortex replaces
the magnitudes. Individual estimates were then morphed onto
the cortex of one of our participants. Figure 5 displays the grand-
average (mean across subjects) for the two conditions (HP and
LP) at two latencies (350 ms for verbs, 300 ms for nouns).
Three of the four panels show larger, left temporal estimates.
Note, that the polarity and the location of the estimates are
very comparable between all three panels. These single condition

FIGURE 5 | Grand average sLORETA minimum norm source
localization results projected to surface normals for both conditions
(HP and LP) and both word classes (verb and noun) computed for
latencies of 350 ms or 300 ms, respectively. Note, that the distribution of
estimates is spatially very equivalent although it differs in strength. Interestingly,
there is a reversal between conditions: highly predictive verbs (HP) elicit
stronger responses than less predictive verbs (LP), but less predicted nouns
(LP) elicit a stronger response than highly predicted nouns (HP).

panels demonstrate that conditions mainly differ in strength,
but not in spatial distribution. Computing the difference LP-HP
(not displayed in the figure), which is the classical N400 in
case of the nouns, leads to a similar picture as shown in the
lower right panel. Computing LP-HP for the verbs, leads to a
polarity reversal as HP has the stronger estimates compared to
LP but otherwise very similar spatial distribution. We interpret
this observation such that sentence processing asks for a certain
amount of computational demands, which can be delivered
at either the verb level, when the verb is highly predictive,
or at the noun level, at the latest. Since the activity at the
verb level is overall stronger than activity at the noun level,
we would argue that recognizing a verb and setting up a
meaningful context for it, needs some extra processing demands
not needed at the following noun level. This is plausible as
verbs may additionally generate specific syntactic restrictions,
i.e., objects with special case markings. Less predictive verbs
must provide less information than highly predictive verbs as the
first do not allow specifying the next word. Lesser information,
lesser processing demands, hence we expect a smaller evoked
response for them. The same holds for highly predicted nouns
which do not add much new information, because they are
predicted—therefore their processing is finished early by about
250 ms.

Mean sLORETA estimates were computed for each of the
nine regions in both hemispheres as the mean over all estimates
within a region. Figure 6 left panels (bar graphs) display the
sLORETA estimates for those regions which showed a significant
main effect of the condition (HP vs. LP) for both word classes
(verb, noun). The bar graphs also show the standard error of
the mean as a short black line at the top of each bar. Note that
the sign of the difference always reverses when comparing the
verb and the noun condition difference. Figure 6 right panels
visualize the location and extent of each region with a significant
effect overlaid of lateral or medial views of the inflated left
hemisphere.

Figure 7 visualizes the across-participants correlation
between the verb and the noun effect, that is difference LP-HP
for both intervals. The dots in the scatter plots in the two left
columns present single participant data. The line is estimated
via linear regression of the verb and the noun effect. We have
computed the regression for each of the nine cortical regions
separately and in Figure 7, we show the data of those six regions
in which a significant correlation was observable. Raw p-values
are given within each of the panels. All regions, but pMTG and
PAC are significant when correcting for multiple comparisons
by factor of 18 (Bonferroni). pMTG and PAC have p-values of
0.14 and 0.11 after correction, respectively.

DISCUSSION

The neural signature of prediction during language
comprehension was investigated using MEG sensor level
analysis and sLORETA estimates. These revealed the expected
large N400 amplitude for the less predicted (unexpected)
nouns compared to predicted (expected) nouns; very
consistent with previous studies using similar sentences
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FIGURE 6 | Results of separate two-way ANOVAs testing the mean sLORETA estimate of each of the nine ROIs (HEM × PRED). Displayed are the five
ROIs which showed a significant main effect of PRED. The displayed F-values represent significant effects (p < 0.05) after Bonferroni correction.

FIGURE 7 | Correlation plots for the six ROIs which showed a
significant relation between the verb- and the noun-effect. Effect sizes
are estimated as the difference between the mean sLORETA estimates of the
two conditions: LP-HP. The underlying data (before computing the difference)
was just positive (magnitudes). The difference switches signs as HP elicited
larger amplitudes during verb processing and LP during noun processing.

and electroencephalography (EEG) or fMRI measurements
(Gunter et al., 2000; Hald et al., 2007; Obleser and Kotz, 2010;
Wang et al., 2012). Interestingly, when focusing on the prior
verb we observed a reverse pattern: stronger N400 responses
for the highly predictive (i.e., informative) vs. the less predictive
verbs. Crucially, we found a negative correlation between the
verb N400 effect and the noun N400 effect in left temporal cortex
(PAC, PP, TP and pMTG) and also left parahippocampal area,
suggesting an underlying functional relation.

The sLORETA estimates for the verbs and the nouns were
very similar (Figure 5) pointing to a similarity in the functional
domain. The classical N400 observed for unpredicted nouns and
the N400 effect for the predictive verbs are both expressions
of lexical-semantic processes indicated by a high correlation
between the two. The observed N400 effect for the verbs did not
depend on the integration of prior context, as we had provided
just a minimal context of randomly using either of two personal
pronouns (Sie vs. Er [She vs. He]). The verb N400 may thus
represent differences in the semantic retrieval accounting for
the differences in information for the two verb groups as a
function of predictive power. Magnetic field and localized source
topographies show that verbs and nouns activated a very similar
network of semantic processes. So, one functional interpretation
of the verb N400 may reflect a pre-activation of conceptual
features due to semantic relatedness (Federmeier and Kutas,
1999; Van Petten et al., 1999; Kutas and Federmeier, 2000). In
models of semantic memory, it is considered that there is a
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link between those items that share perceptual and functional
features in common (Kutas and Federmeier, 2000; Patterson
et al., 2007; Coutanche and Thompson-Schill, 2015). There is
ample empirical evidence that mental representation of the verbs
also include detailed grammatical and semantic information of
the nominal components related to the verb (e.g., object; Shapiro
et al., 1987, 1993; Friederici and Frisch, 2000; Li et al., 2006;
Thompson et al., 2007). Therefore, semantic information of
the verb impose selectional restrictions about the arguments,
such as whether the arguments are animate or inanimate,
human or nonhuman, instruments or non-instruments (Li et al.,
2006). According to high-dimensional semantic space models
derived from large-scale corpus analyses, such as Hyperspace
Analogue to Language (HAL; (Burgess and Lund, 1997) and
Latent Semantic Analysis (LSA; Landauer and Dumais, 1997), a
word is defined by reference to the other words that co-occur
with it. These co-occurrences can be encoded as a vector of
weightings. Highly predictive verbs likely have strong weightings
with a few specific co-occurrence items; consequently, less
predictive verbs should have only weak co-occurrence weightings
to other words. We assume that predictions are only made
if evidence is sufficiently high. Therefore, processing of the
predictive verbs likely lead to a co-activation of expected nouns,
however, less predictive verbs do not cause multiple predictions
for all possible continuations. Consequently, we hypothesize that
during sentence processing the benefit of a confirmed prediction
is paid earlier in time by stimulating the retrieval of semantic
information. This is supported by the inverse correlation between
the verb and the noun N400 effects. Forming predictions during
sentence comprehension should be seen as a side effect of
establishing semantic meaning while listening to the auditory
input. If the recognized words allow a more rigid setup of the
context, then this context is established immediately thereby
creating a more restrictive prediction for the words to follow and
thereby yielding an overall performance increase.

In terms of the source localization, the verb induced
N400 effect demonstrated increased activation for the highly
predictive vs. the less predictive verbs in mostly left hemispheric
regions. Left hemispheric dominance was reported as well in
another MEG study focusing on reading nouns in predictive
contexts for latencies beyond 150 ms, especially for the
non-matching nouns (Dikker and Pylkkänen, 2013). More
specifically, our results demonstrated a network of temporal and
parahippocampal regions to be involved in prediction related
processing of the N400 effect. In contrast to the neural sources
found for a classical N400 effect, we did not observe left IFG to
be part of the predictive processing network. Left IFG has been
found important for selection of lexical candidates (Thompson-
Schill et al., 1997, 1999; Lau et al., 2008). Therefore, one could
have expected to observe a negative correlation between verb
and noun N400 effects in the left IFG, if the predictive process
was considered to be a controlled selection process. However,
our data did not show involvement of the left IFG for predictive
processing suggesting that the observed process was rather based
on automatic co-occurrences than on a controlled process. For
the left anterior temporal cortex, our results are consistent with
Lau et al. (2016) who found this area to be most relevant

for top-down facilitation of lexical-semantic predictions. Our
results are also in line with those of Bonhage et al. (2015)
who observed distributed temporal sources and no IFG activity
for word specific predictions using fMRI. Finally, a prominent
predictive effect was found in parahippocampal regions, which
has been reported for linguistic processing (Meyer et al., 2005;
Tracy and Boswell, 2008; Duff and Brown-Schmidt, 2012) and
for predictive processing in general (Schiffer et al., 2012). Taken
together, we interpret the fact that areas known to be involved
in the classical N400 generation were also involved in predicting
upcoming nouns as indicative for predictive coding (Bonhage
et al., 2015).

The present results may allow us to formulate a simplified
version of the predictive coding model on the N400 generation:
let’s presume that the processing of word B (e.g., car) depends on
whether the preceding context word A is highly predictive (Ap;
e.g., drive) or not (An; e.g., get). The predictive coding model
assumes that Ap (e.g., drive) generates a prediction B̃ for the
word B (e.g., car) with connections conveying B̃ from higher to
lower cortical hierarchies. Processing of word B (e.g., car) would
then require only the forward processing of the difference B-̃B
up the processing hierarchy. The smaller the difference between
prediction B̃ and actual input B (e.g., car), the lesser bottom-up
information transfer and lesser adjustment at the higher level is
required. In contrast, when word An (e.g., get) does not allow
generating predictions B̃, all information in word B (e.g., car)
has to be conveyed from lower to higher levels. In summary,
the processing of word B (e.g., car) and the internal information
transfers much depend on the processing of the preceding
context word A (e.g., drive or get), its specific information
content and its relation to the target word B (e.g., car).

CONCLUSION

In summary, in the present sentence comprehension experiment
we demonstrate that processing of predictive verbs as compared
to less predictive verbs, evokes a response which is very similar
to the classical N400 response in its temporal and distributional
parameters. The observed N400 was larger for the predictive
(i.e., informative) verbs than for the less predictive verbs. The
predictive-verb N400 and the less predicted-noun N400 was
inversely correlated which demonstrates a direct trade-off in
terms of neural expenditure between the predictive and the
predicted stage in lexical-semantic domain during language
comprehension. The finding that evoked responses by the verbs
were overall stronger than those by the nouns appears to reflect
that, in general, verbs carry more information than nouns,
thereby supporting the view that the N400 amplitude matches
the amount of processed information. Our suggestion for a
generalized functional interpretation of the N400 effect is thus
that it reflects the effort to establish semantic meaning from
perceived information.
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