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A B S T R A C T

Ship trajectory data extracted from Automatic Identification System (AIS) has been extensively used for maritime
traffic analysis. Yet the enormous volume of AIS data has come with substantial challenges related to storing,
processing, analyzing, transmitting, and transferring. Trajectory compression techniques have been widely
investigated to remedy the challenge. However, conventional compression techniques such as Douglas-Peucker
(DP) algorithm mainly depend on line simplification algorithms, falling short in accurately identifying and
preserving crucial information within trajectories. Moreover, using kinematic information from AIS data has
posed difficulties associated with compression threshold determination. Hence, an adaptive method capable of
considering multiple information from AIS is required. In this paper, a Top-Down Kinematic Compression (TDKC)
algorithm aimed at adaptive trajectory compression and feature preservation is proposed. By incorporating time,
position, speed, and course attributes from AIS data, TDKC exploits a Compression Binary Tree (CBT) method to
address the recursion termination problem and determine the threshold automatically. A case study was con-
ducted to evaluate the performance of TDKC using AIS data from Gulf of Finland, where a comparison with
conventional algorithms and their improved versions based on specific performance evaluation metrics was
involved. The results demonstrate TDKC’s superiority in facilitating maritime traffic analysis.

1. Introduction

Maritime industry is committed to improving safety and security
alongside improvements in financial efficiency and greater environ-
mental protection (Tavakoli et al., 2023; EMSA, 2019). Since 2002,
Automatic Identification System (AIS) transponders have become
mandatory on all passenger and cargo ships with Gross Tonnage over
300 tons, according to the revision of SOLAS (IMO, 1974). The instal-
lation of AIS transponders enables ships to transmit own ship informa-
tion and receive similar data from nearby ships every 2–180 s, as well as
the same data transmission to the shore-based stations monitoring traffic
conditions (Yang et al., 2019). The communicated information consists
of dynamic and static types. Dynamic information includes position,
speed over ground (SOG), course over ground (COG), heading, etc.,
whilst static information includes Maritime Mobile Service Identity
(MMSI), ship type, size, draught, etc (ITU, 2014). Although AIS was
initially designed to strengthen navigational safety (Svanberg et al.,
2019), the majority of maritime traffic models have primarily utilized

AIS trajectory data (Zhou et al., 2019). The advancements in big data
analytics and artificial intelligence have empowered researchers with
the ability to explore more extensively the maritime traffic in connection
to accident prevention (Chen et al., 2019; Guo et al., 2023), environ-
mental impact (Bencs et al., 2020), shipping monitoring and manage-
ment (Li and Ren, 2022; Yin et al., 2022), automation and remote
control (Bolbot et al., 2022). Simultaneously, though, the exponential
growth in available AIS data has brought challenges in data storing,
processing, analyzing, transmitting, and transferring (Sun et al., 2020).
Considering that ship motion is often stable, redundant information can
be removed from trajectory data, which opens opportunities for AIS
trajectory data compression (Zhang et al., 2018).

Trajectory compression has been initially explored within the
Geographic Information System (GIS) field in relation to road traffic
before being extensively applied in maritime field (Sandu Popa et al.,
2015). Relevant techniques can be classified as either lossless or lossy
(Han et al., 2017). A lossless compression algorithm aims to reduce the
data size without any loss of information through meticulous
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optimization of data formats and indexing techniques (Ziv and Lempel,
1978). In contrast, a lossy compression algorithm eliminates redundant,
non-essential information to achieve higher desirable compression ra-
tios at an acceptable quality (Singh et al., 2017). In maritime research,
where the focal point of investigation always revolves around the ship
itself, lossy compression algorithms have found extensive applications
due to their flexible adjustment to achieve higher compression rates (Du
et al., 2021a; Zhang et al., 2022). Therefore, the literature review of this
study mainly concentrates on lossy compression methods, which will be
elaborated in Section 2.

Conventional trajectory compression methods predominantly
emphasize condensing the information presented by positional attri-
butes through line simplification algorithms (Bellman, 1961). They have
benefited a spectrum of applications related to data-driven analysis,
such as ship behavior analysis (Li, 2021), path planning (Du et al.,
2021b) and traffic pattern recognition (Zhao and Shi, 2019). However,
the ignorance of other kinematic attributes including ship speed and
course has posed challenges in accurately preserving essential ship tra-
jectory characteristics (Liu et al., 2023). Hence, it is essential to develop
a compression method capable of retaining key points by comprehen-
sively considering kinematic information in AIS data. This paper pro-
poses a novel trajectory compression method by leveraging multiple
kinematic attributes from AIS data. The proposed method is analytically
verified to effectively compress trajectory data while preserving key
features, outperforming previous methods applied in maritime traffic
analysis.

The remainder of this article is organized as follows. Section 2 pre-
sents a comprehensive literature review of trajectory compression
methods and their applications in maritime. Section 3 illustrates the key
characteristics of the proposed method, highlights its differences from
conventional approaches, and defines the metrics for performance
evaluation. Section 4 introduces the experimental background of a case
study using AIS data from Gulf of Finland. In Section 5, the results are
presented and analyzed, wherein the proposed algorithm is compared
against the other widely employed compression algorithms and their
improved versions. The derived results are critically discussed with the
support of a scoring system. Finally, Section 6 summarizes the main
research findings and limitations.

2. Literature review

To identify redundant information within trajectory points, trajec-
tory compression algorithms commonly comprise two steps: traversal
and simplification (Amigo et al., 2021). The traversal step determines
how points in the trajectory are examined (Sun et al., 2016) and the
information difference between points is evaluated using specific mea-
surement methods in the simplification step (Ke et al., 2016). Informa-
tion difference refers to dynamic changes in the spatiotemporal
characteristics of the moving object (Zhong et al., 2022). In practice, the
high sampling rate of trajectory data usually renders the information
difference between consecutive points unapparent (Tang et al., 2019).
Similarly, the information in stationary points also remains relatively
unchanged (Liu et al., 2021). Therefore, a trajectory point that manifests
significant information changes is designated as a key point containing
indispensable information that ought to be preserved; otherwise, it can
be disregarded (Amigo et al., 2022).

As shown in Fig. 1, compression algorithms are categorized into
three types based on traversal search methods: top-down, bottom-up,
and sliding window. A top-down algorithm is typically designed to run
in an offline mode, which is also known as batch mode, requiring the
entire trajectory as input for execution (Meratnia and de By, 2003). It
identifies one or several key points necessary to split the trajectory, and
for each segment repeats the process until no further key points are
found. Well-known top-down algorithms include Douglas-Peucker (DP)
algorithm (Douglas and Peucker, 1973) and its improved version
Top-Down Time-Ratio (TD-TR) algorithm (Meratnia and de By, 2004).

However, the recursive nature renders top-down algorithms
time-consuming. Hence, the optimization of top-down algorithms in
terms of traversal has primarily concentrated on reducing the number of
recursions required (Zhao and Shi, 2018).

Conversely, bottom-up and sliding window algorithms are recog-
nized as operating online since they analyze points sequentially and
handle incoming data progressively (Makris et al., 2021b). A bottom-up
algorithm considers an initial segment as a reference, continuously
processes subsequent points to merge the segments and updates the
reference segment until all points are examined. The representative al-
gorithms include Spatiotemporal Trace (STTrace) algorithm, Spatial
Quality Simplification Heuristic (SQUISH) algorithm and Dead Reck-
oning algorithm (Potamias et al., 2006; Muckell et al., 2011, 2014;
Trajcevski et al., 2006). Since conventional bottom-up algorithms utilize
local features of the entire trajectory, the enhancement of their global
view was implemented by graph-based traverse strategies proposed in
Multiresolution Polygonal Approximation (MRPA) and Directed acyclic
graph based Online Trajectory Simplification (DOTS) algorithms (Chen
et al., 2012; Cao and Li, 2017). Moreover, in a sliding window algorithm,
a window with a certain size is maintained to seamlessly traverse the
entire trajectory. For each sliding, only points in the window are
handled to identify key points. A classical sliding window algorithm can
be found in (Keogh et al., 2004). Instead of setting a constant value,
dynamic window size configuration has demonstrated an evolutionary
improvement flexible to the trajectory motion characteristics. This
technique is often referred to as Opening Window (Meratnia and de By,
2004).

Conventional algorithms primarily measure information differences
based on positional data during the simplification step (Liu et al., 2024).
Their intuitiveness and ease of implementation render themselves
applicable to various maritime research studies (Lee et al., 2022; Rong
et al., 2020). With advancements in modern sensing and processing
technologies enabling the capture of motion data such as speed and
course, improvements are allowed in information difference measure-
ment compared to traditional methods (Qian and Lu, 2017). Examples
include the measurement of speed and course changes in online algo-
rithms (Zhu and Ma, 2021; Zhang et al., 2020). Meanwhile, since
top-down algorithms gradually measure information differences from
larger to smaller temporal scales, emphasis is not only on changes in
speed or course (De Vries and Van Someren, 2012), but also on
discerning shape variations within trajectories. For instance, transitions
in distinct segments were identified in (Wu and Pelot, 2007). Besides, in
some studies, attributes were also aggregated to provide more accurate
information difference measurement instead of independent assessment
(Shi and Liu, 2022). The perspectives of criteria for simplification are

Fig. 1. Categories of compression algorithms.
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shown in Fig. 1.
Traditional algorithms inherently encounter difficulties in setting

thresholds for key point identification, which are further compounded
by the incorporation of multi-dimensional measurements in advancing
algorithms (Sanchez-Heres, 2019). For example, position, speed, and
course thresholds were manually configured with a diversity of values in
different studies (Wang, 2013). In addition, aggregated measurement
necessitates proper normalization of the attributes and determination of
their respective weights (Zhou et al., 2023b). Investigation has also
revealed that using identical thresholds across different trajectories will
discard or maintain features inappropriately (Liu et al., 2019). Within
this context, adaptive threshold setting has emerged as a promising
alternative as demonstrated in (Ji et al., 2022), where a dynamic grating
algorithm was developed for AIS data compression purposes.

Given the capability of top-down algorithms to consider trajectory
information from a global perspective, numerous adaptive threshold
setting strategies have been proposed within the context of these algo-
rithms (Zhang et al., 2016). However, they lack robustness and face
various challenges. To illustrate, statistical methods have been proposed
to support the threshold determination (Huang et al., 2020), yet, they
are complicated and require adaptation to the traffic area change. The
selection of threshold candidates for testing in statistical analysis also
suffers from discreteness, which fails to guarantee that the chosen
thresholds are necessarily optimal (Gao and Shi, 2019). In other ap-
proaches, additional data not included in the trajectory such as ship size,
engine emissions, obstacles presence, and coastline information has
supported the thresholds setting (Gao et al., 2023; Gu et al., 2023; Lee
and Cho, 2022; Wei et al., 2020), but these kinds of information are not
always available, leading to their limited applicability. Moreover,
algorithmic instability can arise from the utilization of different coor-
dinate systems as in (Li et al., 2022) for example, where the slope is used
to adaptively calculate the threshold without specifying a certain coor-
dinate system. When different coordinate systems are utilized, the
compression results are not identical. Finally, the recursion termination
problem that commonly exists in top-down algorithms still remains
unresolved, resulting in the premature ending of the compression pro-
cess due to inappropriate threshold settings (Tang et al., 2021).

Meanwhile, the employment of multiple attributes has rendered
performance evaluation lacking in comprehensiveness (Makris et al.,
2021a). According to previous studies, the predominant performance
metrics include running time (RT), compression rate (CR), and length
loss rate (LLR) (Yan et al., 2022). These metrics serve as key indicators
for evaluating the efficiency and effectiveness of AIS compression al-
gorithms. In addition, distance-based similarity (SMD) measurement
method functions as another important metric for evaluating compres-
sion performance (Sousa et al., 2021). However, the absence of metrics
related to speed and course hinders the comprehensive assessment of
algorithm performance. Although a speed preservation metric was
proposed in (Leichsenring and Baldo, 2020), utilizing average speed as a
metric overlooks speed variations and distributions, leading to poten-
tially inaccurate evaluations. Therefore, to provide a more holistic
evaluation, it is imperative to introduce metrics concerning speed and
course.

In this study, we have summarized advanced compression algorithms
proposed in maritime field as presented in Table 1. It is evident that top-
down algorithm has become the prevailing approach. However, recent
studies have rarely considered time, position, speed, and course simul-
taneously during compression. The one considering them was proposed
by Zhou et al. (2023b) without adaptive threshold determination.
Meanwhile, advancing trajectory compression research mainly focuses
on the comparison with traditional algorithms, while comparative
studies among emerging algorithms remain relatively limited (Yan et al.,
2022). Therefore, in this paper, we propose a novel kinematic-based
approach named Top-Down Kinematic Compression (TDKC) and
compare it with various compression techniques that consider different
attributes from AIS data. In contrast to the previous top-down

Table 1
Trajectory compression methods in the maritime field.

Literature Type of
approach

Attribute in
trajectories
considered

Threshold
determination

Additional
information
required for
threshold
determination

De Vries and
Van Someren
(2012)

Top-
down

Time,
position,
speed

Manual /

Du et al.
(2021b)

Top-
down

Position / Obstacle

Gao et al.
(2023)

Top-
down

Time,
position,
speed

Manual Engine,
emission

Gu et al. (2023) Top-
down

Position Adaptive Obstacle

Lee and Cho
(2022)

Top-
down

Position Statistical Coastline

Li et al. (2022) Top-
down

Time,
position,
speed

Adaptive /

Liu et al. (2023) Top-
down

Position,
speed,
course

Statistical /

Liu et al. (2019) Top-
down

Position Adaptive /

Sanchez-Heres
(2019)

Top-
down

Time,
position

/ /

Shi and Liu
(2022)

Top-
down

Time,
position,
speed

Manual,
statistical

/

Tang et al.
(2021)

Top-
down

Position Adaptive /

Wu and Pelot
(2007)

Top-
down

Position Manual /

Zhang et al.
(2016)

Top-
down

Position Adaptive Ship length

Zhao and Shi
(2019)

Top-
down

Position Statistical /

Zhao and Shi
(2018)

Top-
down

Time,
position,
course

Statistical,
manual

Ship length

Zhou et al.
(2023b)

Top-
down

Time,
position,
speed,
course

Manual /

Ji et al. (2022) Bottom-
up

Position Statistical /

Ma et al. (2022) Bottom-
up

Position / /

Zhang et al.
(2020)

Bottom-
up

Time,
position,
speed,
course

Manual /

Gao and Shi
(2019)

Sliding
window

Time,
position,
course

Statistical Ship width

Li and Ren
(2022)

Sliding
window

Position Manual /

Liu et al. (2024) Sliding
window

Time,
position

Statistical /

Sun et al.
(2020)

Sliding
window

Position Statistical /

Zhu and Ma
(2021)

Sliding
window

Time, speed,
course

Manual /

Wei et al.
(2020)

Top-
down and
sliding
window

Position,
speed,
course

Statistical Ship length

Yan et al.
(2022)

Sliding
window
and
bottom-
up

Time,
position

Statistical Coastline
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approaches, TDKC incorporates the kinematic information in AIS
including timestamp, longitude, latitude, SOG, and COG to compress the
ship trajectory data. Additional novel contributions include solving the
recursion termination problem through a Compression Binary Tree
(CBT) and an adaptive threshold setting strategy development, which
balances between compression rate and feature preservation, avoiding
inappropriate threshold configurations. To accelerate the processing
speed of CBT construction, a new running time optimization strategy is
further proposed. Along with common metrics, a new metric indicating
velocity-based similarity (SMV) using Dynamic Time Warping (DTW)
method is proposed. Furthermore, the metrics adopted in this paper are
converted into semi-quantitative measures to establish a scoring system
that facilitates the comparison of different algorithms.

3. Methods

TDKC algorithm is a typical top-down algorithm which improves
from Douglas-Peucker (DP) algorithm as presented in (Douglas and
Peucker, 1973). In this section, we first introduce the basic DP algo-
rithm. Then, the procedure of TDKC algorithm is outlined, followed by
an introduction of its improvements. To evaluate the performance of the
proposed algorithm and compare it with other well-known algorithms,
the performance evaluation metrics and scoring system for algorithm
comparison are further elaborated.

3.1. DP algorithm

DP algorithm is notable for the ease of implementation. It effectively
reduces the number of points in a trajectory while maintaining its
overall shape, which simplifies data processing and visualization
significantly (Bai et al., 2023). The algorithm adapts to different levels of
detail by setting a tolerance parameter, providing adaptability and
versatility across various applications (Xin et al., 2021). It also serves as
a foundation for advanced techniques in trajectory data simplification
(Tang et al., 2021).

In DP algorithm, a point is identified as a key point if it has an
obvious deviation that exceeds a distance threshold. The algorithm
continues execution on the sub-trajectories split by the identified key
point until no further key point is found. If a trajectory is denoted by

T={p1, p2,…, pi,…, pn− 1, pn} (1)

where pi is the i th trajectory point in T, and n is the number of points. pi
is a quintuple in the format of

pi=(ti, xi, yi, si, ci) (2)

with xi and yi representing position information, si and ci representing
speed and course information at timestamp ti respectively. Then for an
input trajectory T, the flowchart of DP algorithm is presented in Fig. 2.

Algorithmically, Fig. 2 is elaborated below.

Fig. 2. DP algorithm procedure.
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Step 1: Initiate compressed trajectory by Tʹ = {p1,pn}. If T has more
than two points, go to Step 2, otherwise, the algorithm ends.
Step 2: Connect the start point ps and end point pe of current tra-
jectory to obtain a baseline l.
Step 3: For each intermediate point pi, calculate its distance di to the
baseline l, and denote the maximum distance by dmax, the relevant
point is then marked by pmax.
Step 4: When dmax is greater than the pre-defined threshold dε, add
pmax to Tʹ, and split current trajectory into two sub-trajectories by
pmax. Otherwise, the process ends.
Step 5: For each sub-trajectory re-execute Step 2 to Step 4 until the
algorithm finally ends. Then Tʹ is the compressed trajectory of T.

The pseudocode of DP algorithm is presented in Algorithm 1. An
example in Fig. 3 depicts how DP algorithm compresses a trajectory T =

{p1, p2, p3, p4, p5, p6, p7, p8} to Tʹ = {p1,p3,p6,p8}. Fig. 3(a) presents the
entire trajectory, the algorithm first connects p1 and p8 to calculate
distance of all intermediate points to the baseline p1p8, where p3 is found
to have the maximum distance dmax and marked as the key point as
depicted in Fig. 3(b). Then split by p3, the algorithm continues to
calculate the dmax in sub-trajectories. In Fig. 3(c), dmax is found related to
p2 in sub-trajectory SubT1 = {p1,p2,p3}, However, since dmax in SubT1 is
smaller than the preset threshold dε, the process in SubT1 halts. Mean-
while, in SubT2 = {p3,p4,p5,p6,p7,p8}, p6 is identified as the key point.
Because no additional key points exist in sub-trajectories of SubT2, the
process stops. Finally, by removing all non-key points, the compressed
trajectory Tʹ is obtained and shown in Fig. 3(d).

3.2. TDKC algorithm

Top-Down Kinematic Compression (TDKC) algorithm is an advanced
version of DP algorithm. It applies Synchronous Euclidean Distance
(SED) and Synchronous Velocity Difference (SVD) to incorporate kine-
matic attributes including time, longitude, latitude, speed, and course
within AIS data for trajectory compression. In addition, TDKC algorithm
employs a Compression Binary Tree (CBT) to address the recursion
termination problem commonly encountered in top-down algorithms.
An adaptive strategy is further employed to determine the compression
thresholds automatically. The algorithm compresses a trajectory
through three steps.

Step 1: Construct a CBT by using SED and SVD as the information
measurement methods.
Step 2: Adaptively set the thresholds by calculating mean SED and
SVD values from the CBT.

Step 3: Identify the key nodes in the CBT and preserve the point in
each key node to obtain the compressed trajectory.

An overview of TDKC algorithm’s procedure is presented in Fig. 4.
Details will be elaborated in the following sections.

3.2.1. Information difference measurement

I. Spatial Distance

Spatial distance is a fundamental factor in trajectory compression
algorithms as it quantifies the physical separation between consecutive
data points in a trajectory (Li et al., 2016). In DP algorithm, the
compression can be understood as there exists an alternative point on
the baseline to represent the deleted point when the distance is incon-
spicuous and acceptable. To assess such deviation, DP algorithm adopts
the most commonly used Perpendicular Euclidean Distance (PED). In
Fig. 5, a segment within a trajectory in Cartesian coordinate system
contains pi, pi+1, and pi+2. Denote the vertical projection point of pi+1
onto the baseline pipi+2 by pi+1ʹ, the distance between pi+1 and pi+1ʹ is the
PED of pi+1 calculated by

pedi+1=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi+1 − xi+1ʹ)2 + (yi+1 − yi+1ʹ)2
√

(3)

Since only positional information is adopted in the calculation of
PED, it manifests a conspicuous limitation in effectively taking advan-
tage of the temporal information inherent in trajectory data derived
from Global Positioning System (GPS). This deficiency has been
improved by the introduction of Synchronous Euclidean Distance (SED)
in Top-Down Time-Ratio (TD-TR) algorithm, which assumes the dis-
carded point can be reconstructed by linear interpolation and has been
proved to demonstrate superior performance on temporally annotated
trajectory data (Meratnia and de By, 2004). Suppose there is a point pi+1ʹ́
on the baseline pipi+2 that satisfies

ti+1ʹ́ = ti+1 (4)

xi+1ʹ́ = xi +
ti+1 − ti
ti+2 − ti

(xi+2 − xi) (5)

yi+1ʹ́ = yi +
ti+1 − ti
ti+2 − ti

(yi+2 − yi) (6)

then the SED of pi+1 is determined by

sedi+1=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi+1 − xi+1ʹ́ )2 + (yi+1 − yi+1ʹ́ )2
√

(7)

Fig. 3. An example of DP algorithm.
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It should be highlighted that the calculation of PED and SED under
Cartesian coordinate system neglects the sphere shape of the Earth and
distorts the trajectory significantly as latitude moves farther from the
equator (Karney, 2013). In Fig. 6 an example shows how the calculation
in Cartesian coordinate system introduces the distortion.

The acceptance of distortion is predicated on the premise of calcu-
lating the distance on a small scale, yet the specific definition of a small
scale remains vague (Ma et al., 2022). For the purpose of mitigating the
introduction of significant errors, all trajectories in this study are
maintained in the geographic coordinate system. Based on spherical
trigonometry, Haversine formula provides an accurate method to
calculate distances between two points on the Earth’s surface (Sinnott,
1984). Therefore, we employ Haversine formula for spatial distance
calculations. Consider two points pi and pj, the distance between them is
calculated by

di,j =2r arcsin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2
(

Δlati,j
2

)

+ cos(lati)cos
(
latj
)
sin2

(
Δloni,j
2

)√ )

(8)

Here, di,j represents the distance between the two points, r is the radius
of the Earth in meters, Δloni,j and Δlati,j are the differences in latitude
and longitude between the two points, calculated by

Δloni,j= lonj − loni (9)

Δlati,j= latj − lati (10)

And loni, lonj, lati, and latj represent the longitudes and latitudes of the
two points.

II. Velocity Difference

Velocity difference is a supplementing factor that helps preserve
points with significant speed and course change (Liu et al., 2023). In
some studies, treating speed and course separately undeniably increases
the number of thresholds to be determined for key point identification
(Zhou et al., 2023b). Moreover, the disassociation may intensify the
difficulty of identifying truly important key points since the dimensions
and scales are different in these two attributes. In contrast, analyzing the
velocity vector offers a complete description of motion characteristics,
allowing for a more accurate and intuitive assessment of differences in a
unified manner. To illustrate, if one defines two velocity vectors that
exhibit speed and course differences greater than 1 knot and 5◦
respectively as having a significant velocity difference, then vectors
shown in Fig. 7 will be identified as non-significant. However, if we
consider the vectors directly and still apply a threshold of 1 knot, they
then demonstrate a significant velocity difference, thereby leading to a
more meaningful and accurate measurement. Hence, we use velocity
vector to consider ship’s speed and course simultaneously and introduce
a new velocity difference measurement method in this study.

For a trajectory point pi, the velocity can be represented by

vi=(vxi, vyi) (11)

where vxi and vyi denote the speed that causing changes in longitude and
latitude respectively. The value of vxi and vyi is determined by the
decomposition of SOG using COG through the following equations

vxi = si sin ci (12)
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vyi = si cos ci (13)

Then the velocity difference between pi and pj can be calculated by

Δvi,j = vj − vi (14)

In order to capitalize on temporal information, the concept of Syn-
chronous Velocity Difference (SVD) is proposed in this paper, which is a
novel contribution, compared to the other top-down algorithms. For the
segment in Fig. 5, first the speed change Δsi,i+2 and course change Δci,i+2
are assessed through

Δsi,i+2= si+2 − si (15)

Δci,i+2=((ci+2 − ci +180) mod 360) − 180 (16)

Since the course change can be either clockwise or anticlockwise, its
calculation in Eq. (16) follows the rule of shortest course change in the
consideration of a gradually decreasing time scale during the compres-
sion. Then, based on the assumption of linear change, the estimated
speed and course of pi+1ʹ́ are computed by

Fig. 4. TDKC algorithm procedure.
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si+1ʹ́ = si +
ti+1 − ti
ti+2 − ti

Δsi,i+2 (17)

ci+1ʹ́ = ci +
ti+1 − ti
ti+2 − ti

Δci,i+2 (18)

Finally, for a more intuitive representation, we take the magnitude of Δ
vi+1,i+1ʹ́ to represent the SVD of pi+1, which is derived from

svdi+1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(vxi+1ʹ́ − vxi+1)2 + (vyi+1ʹ́ − vyi+1)2
√

(19)

III. Aggregated Measurement and Split Point Determination

TDKC algorithm applies an aggregated measurement method that
integrates SED and SVD to consider kinematic attributes simultaneously.
Define sets SSED and SSVD to represent SED and SVD values of all inter-
mediate points

SSED={sedi|start< i< end} (20)

SSVD={svdi|start< i< end} (21)

where start and end are the indexes of current trajectory’s start point and
end point in a recursion step. The information difference measurement
of pi is a two-dimensional vector, which is denoted by mi = (sedi, svdi).
Then, to incorporate SED and SVDmeasurements, z-score normalization
is adopted to mitigate the influence of varying attribute scales and units:

sednormi =
sedi − μSSED

σSSED
(22)

svdnormi =
svdi − μSSVD

σSSVD
(23)

Here, μSSED , μSSVD , σSSED , and σSSVD represent the mean and standard devi-
ation of SSED and SSVD respectively. The normalized aggregated mea-
surement mi is represented by mnorm

i =
(
sednormi , svdnormi

)
. As shown in

Fig. 8, z-score transformation shifts the distribution of mi towards the

center of the origin. Since we consider sednormi and svdnormi to reflect equal
importance in information difference measurement, we define the
magnitude of mnorm

i by
⃒
⃒mnorm

i

⃒
⃒= sednormi + svdnormi (24)

The example in Fig. 8(b) demonstrates that a higher
⃒
⃒mnorm

i

⃒
⃒ signifies

a point either concurrently possesses larger SED and SVD values, or
exhibits one of themwith an exceptionally high value compared to other
points within this recursion. Therefore, the split point pmax in each
recursion of TDKC is the point with the maximum normalized aggre-
gated measurement value denoted by

⃒
⃒mnorm

max

⃒
⃒. The pseudocode of the

process to determine the split point in a recursion is illustrated in Al-
gorithm 2.

3.2.2. Compression Binary Tree
The recursive nature of top-down algorithms inevitably results in the

recursion termination problem. The problem determines that when the
terminating condition is met, the algorithm will stop splitting current
trajectory without examining the sub-trajectory in next recursion, even
if the point with maximum distance still satisfies the criteria for being
identified as a key point. Suppose there is a trajectory T = {p1, p2, p3, p4,
p5, p6, p7} in Fig. 9, in the first recursion, p5 is found the point with the
maximum distance along the trajectory. If d5 > dε, T will be split into
subT1 = {p1, p2, p3, p4, p5} and subT2 = {p5, p6, p7}. Then in the subse-
quent recursion process for subT1, p3 is identified to be preserved with
the maximum distance d3. However, if d5 ⩽ dε, the process will
terminate immediately in the first recursion, regardless of whether d3 >
dε or not. In this situation, p3 will never be preserved though d3 > dε.

As a top-down compression process can be depicted in a tree struc-
ture (Zhai et al., 2017), we introduce the concept of Compression Binary
Tree (CBT) in TDKC algorithm to address the problem. CBT is a data
structure that stores all the key points and their relevant measurements
along the recursion process. The construction of CBT necessitates a
zero-threshold setting to exhaust the recursion process. Denoted by CBT,
if it is a non-empty tree, the structure can be defined as follows:

CBT={Root} (25)

where Root is the root node of CBT acquired from the first level of

Fig. 5. PED, SED, and SVD

Fig. 6. Trajectory distortion.

Fig. 7. An example of identifying significant velocity difference.
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recursion. In each recursion, a node Ni will be created. It is structured as
follows:

Ni ={pi,mi, li, ri} (26)

Here, i indicates the order of the point, pi is the split point identified with
maximum aggregated measurement value in this recursion, andmi is the
relevant measurement vector. pi will split current trajectory into two

sub-trajectories. Then, li and ri store the nodes created in the next level of
recursion respectively. The CBT construction algorithm is detailed in
Algorithm 3.

3.2.3. Adaptive threshold determination and key node identification
In the process of CBT construction, the measurement of information

difference gradually transitions from a macro-scale to a micro-scale. As
recursion depth grows, the frequency of measurement at each depth also

Fig. 8. Example of z-score normalization.
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increases. Consequently, it can be inferred that the measured values of
information difference tend to decrease and eventually stabilize, which
has also been observed by other researchers (Tang et al., 2021).
Considering the scale of the entire trajectory, the information difference
at the micro-scale can be deemed negligible. Therefore, the average
value of SSED and SSVD is utilized as adaptive thresholds, denoted by

sedε =
1

n − 2
∑n− 1

2
sedi (27)

svdε =
1

n − 2
∑n− 1

2
svdi (28)

Since a CBT contains all points in the trajectory apart from the first
and last points, we introduce the concept of key node to preserve points.
First, pi is identified as a key point if mi satisfies

(sedi > sedε) ∨ (svdi > svdε) (29)

Here, sedε and svdε are thresholds for SED and SVD measurements
respectively. Then, a key node is defined as a node that either directly
contains a key point or possesses at least one child node with a key point.
All points residing in the key nodes are designated for retention. An
example is shown in Fig. 10. Supposem4 satisfies Eq. (29) whilem3 does
not, the recursion will stop at N3 in traditional algorithms, resulting in
the exclusion of p3 and p4. However, since N3 and N4 both satisfy the
definition of key node, p3 and p4 will be retained in TDKC. Hence, a key
node identification algorithm is presented to further solve the recursion
termination problem in Algorithm 4. In conclusion, the pseudocode of
TDKC algorithm is presented in Algorithm 5.

Fig. 9. Recursion termination problem.

Fig. 10. An example of CBT.
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3.3. Performance evaluation metrics

The performance of a compression algorithm is usually evaluated by
a variety of metrics, such as running time (RT), compression rate (CR),
length loss rate (LLR), and distance-based similarity (SMD) metrics in
previous studies (Amigo et al., 2021). RT is a general metric to assess the
efficiency of the algorithm by calculating the duration of the execution.
Others are often employed to assess the effectiveness of the compression.
In addition, a novel velocity-based similarity (SMV) metric is proposed
to evaluate the performance from the perspective of velocity. The met-
rics for compression effectiveness are specified in more detail in the
following sections.

3.3.1. Compression rate
CR is defined as the ratio between the number of eliminated points

and total points. Individual compression rate (ICR) is identified as the
ratio between the number of discarded points k and total points n of an
individual trajectory, calculated by

ICR=
k
n

(30)

Overall compression rate (OCR) is the metric to evaluate compres-
sion rate within the entire dataset that contains q trajectories, charac-
terized by

OCR=

∑q

i=1
ki

∑q

i=1
ni

(31)

3.3.2. Length loss rate
LLR evaluates the effectiveness of a compression algorithm by

measuring the difference between the length of compressed trajectory
and original trajectory. The length of a trajectory is computed by

L=
∑n− 1

i=1,j=i+1
di,j (32)

where di,j is the distance between pi and pj. Denote the length of the
compressed trajectory by Lʹ, the individual length loss rate (ILLR) is

ILLR=
L − Lʹ

L
(33)

Similarly, overall length loss rate (OLLR) is further determined by

OLLR=

∑q

i=1
(Li − Liʹ)

∑q

i=1
Li

(34)

when the dataset comprises m trajectories.

3.3.3. Similarity metrics
As for similarity metrics, Dynamic Time Wrapping (DTW) algorithm

is a useful tool to gauge the similarity between the original and com-
pressed trajectories (Toohey and Duckham, 2015). Suppose there are
two trajectories T1 and T2, the SMD can be measured by

SMD(T1,T2)=D(n1, n2) (35)

Here, n1 and n2 are the numbers of points in T1 and T2 respectively. For
point pi in T1 and point pj in T2, cumulative distance D(i, j) is defined as

D(i, j)= di,j +min{D(i, j − 1),D(i − 1, j),D(i − 1, j − 1)} (36)

The boundary conditions of Eq. (36) are D(1,1) and D(m,n). However,
conventional similarity measurement neglects the velocity information.
As a supplement, we put forward a SMV measurement depicted as
follows
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SMV(T1,T2)=V(n1, n2) (37)

where cumulative velocity difference V(i, j) is calculated by

V(i, j)=
⃒
⃒Δvi,j

⃒
⃒+min{V(i, j − 1),V(i − 1, j),V(i − 1, j − 1)} (38)

Considering different trajectories may manifest various compression
rates, cumulative distance and velocity difference can experience de-
viations due to the differing number of points before and after
compression. Thus, we adopt the normalized version of SMD and SMV,
which are employed to render them comparable among time series of
various lengths (Leodolter et al., 2021).

SMDnorm(T1,T2)=
SMD(T1,T2)
n1 + n2

(39)

SMVnorm(T1,T2)=
SMV(T1,T2)
n1 + n2

(40)

3.4. Scoring system for algorithms comparison

Each metric is used as input to a well-designed scoring system, which
is employed to illustrate the strengths and limitations of the algorithms
implemented during comparative analysis. The scoring system is rela-
tive since we only compare the performance superiority among these
algorithms. Hence, the quantification frommetrics to scores necessitates
a normalization process (Hwang and Yoon, 1981). In our proposed
scoring system, each metric is scored on a scale from 1 to 5, representing
from very poor (1) to very good performance (5). For RT, LLR, SMD, and
SMV performance metrics, lower values indicate superior performance.
Conversely, a higher CR value signifies better performance. Therefore,

the quantification contains two basic scoring functions,

scorelow(αi)=5 − 4⋅
αi − min(M)

max(M) − min(M)
(41)

scorehigh(αi)= 1+ 4⋅
αi − min(M)

max(M) − min(M)
(42)

where scorelow and scorehigh are used for negative and positive metrics
respectively. In the functions, αi ∈ M is the input metric value of i th
algorithm for quantification, where M = {α1,α2, ..., ατ} denotes the
metric value set for all algorithms and τ is the number of the algorithms
used for study. min(M) and max(M) represent the minimum and
maximum values in set M. The quantification of different metrics varies
depending on the consideration of individual trajectory and overall
trajectory evaluations. The detailed quantification is elaborated as
follows.

I. RT

It is known that a longer trajectory sequence length necessitates
more processing time for all algorithms. In practice, the trajectory
sequence lengths within the entire water area are varied. The total
running time might be affected by the lengthiest trajectory sequence
significantly, which hides the evaluation on processing trajectory with
short sequences. Therefore, we adopt a weighted quantification strategy
for RT. Suppose the trajectories are divided into λ length types by
analyzing the trajectory length distribution in the water area. The
quantification of RT related to i th algorithm is then determined by
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QRTi=
∑λ

j=1
wRT
j ⋅ scorelow

(
RTj
)

(43)

The weight wRT
j is determined by the ratio between the number of

trajectories in j th length type and the total number of all trajectories.

II. CR and LLR

Given that both CR and LLR contain individual and overall trajectory
evaluations, the quantifications of CR and LLR are considered from three
perspectives.

QCRi=wCR
1 ⋅ scorehigh(OCRi)+wCR

2 ⋅ scorehigh
(
μICRi

)
+wCR

3 ⋅scorelow
(
δICRi

)

(44)

QLLRi =wLLR
1 ⋅ scorelow(OLLRi)+wLLR

2 ⋅ scorelow
(
μILLRi

)
+wLLR

3 ⋅scorelow
(
δILLRi

)

(45)

In Eqs. (44) and (45), scorehigh(OCRi) and scorelow(OLLRi) determine the
CR score and LLR score on overall trajectories. Subsequently,
scorehigh

(
μICRi

)
and scorelow

(
μILLRi

)
use the average ICR and LLR values of

all trajectories to compute the scores. Finally, scorelow(δICRi ) and
scorelow(δILLRi ) calculate the scores by considering the Interquartile
Ranges (IQRs), which represent the range between the first quartile (Q1)
and the third quartile (Q3) of ICR and ILLR sets. Taking QCRi for
example, scorehigh(OCRi) evaluates the CR scores in terms of the overall
trajectories, while scorehigh

(
μICRi

)
and scorelow(δICRi ) emphasis on the

distribution of individual trajectory performance. Therefore, the values
of wCR1 , wCR2 , and wCR3 are set to 0.5, 0.25, and 0.25 respectively. The same
applies for wLLR1 , wLLR2 , and wLLR3 .

III. SMD and SMV

As there is no difference between using total or mean values to
compare algorithmic performances through SMD and SMV, we adopt
mean and IQR scoring for quantifying SMD and SMV.

QSMDi =wSMD
1 ⋅ scorelow

(
μSMDi

)
+wSMD

2 ⋅scorelow
(
δSMDi

)
(46)

QSMVi =wSMV
1 ⋅ scorelow

(
μSMVi

)
+wSMV

2 ⋅scorelow
(
δSMVi

)
(47)

Here, since mean and IQR scoring both consider the distribution of in-
dividual trajectory performance, they equally contribute to the quanti-
fication. Hence, wSMD1 and wSMD2 are both set to 0.5, and likewise for wSMV1
and wSMV2 .

4. Case study

In this section, a case study is presented to validate the proposed
algorithm. All experiments were conducted using Python 3.8 on a
computer equipped with a 12th Gen Intel(R) Core(TM) i7-12700KF
processor and 32 GB of RAM, running a 64-bit Windows 10 operating
system. Additionally, the algorithms chosen for comparison are intro-
duced, accompanied by the reasons for their selection and relevant
parameter settings.

4.1. Experiment data

4.1.1. Data preprocessing
The AIS data for this study was collected from Gulf of Finland, with

longitude ranging from 19 ◦E to 31 ◦E and latitude ranging from 59 ◦N to
61 ◦N. The time duration spanned from 01:00:00 on 11th to 00:59:59 on
September 18, 2021. Considering that raw AIS data inevitably contains
errors such as invalid MMSI numbers and kinematic information due to
the factors related to transmission environment, equipment, and human

input, a preprocessing procedure is required to remove these anomalies
(Guo et al., 2021b). Therefore, we first identified and removed those AIS
data with obviously incorrect information that conflicts with AIS mes-
sage definitions (ITU, 2014). Then, the original trajectory dataset was
constructed based on MMSI and the chronological order of timestamps.
Finally, to further enhance the data quality, a clustering-based anomaly
detection method proposed by Guo et al. (2021a) was used to eliminate
hidden anomalies. Consequently, an example of the preprocessed AIS
trajectory data is shown in Table 2.

After preprocessing, the dataset contained 18112237 trajectory
points. Since the comparative investigation of algorithms requires ship
size information, we excluded trajectories without valid ship size in-
formation. In addition, considering that too short trajectories exhibit
limited information, we assumed that trajectories within less than 10
points should remain unchanged for the purpose of preserving the
integrity and meaningfulness of shorter trajectories. Consequently,
18083642 trajectory points within 4285 trajectories were kept, repre-
senting 99.8% retention for the sake of the study. The trajectories are
depicted in Fig. 11.

4.1.2. Individual trajectory
To analyze the performance of the proposed algorithm comprehen-

sively, an experiment was conducted on a randomly picked trajectory to
initially reveal the algorithm’s compression ability. The information of
this trajectory is illustrated in Table 3. As portrayed in Fig. 12, the vessel
was engaged in activities in the middle of Gulf of Finland, then returning
to Paldiski South Harbor, and finally mooring at Port of Miiduranna.

4.1.3. Traffic areas
Then to ensure a more comprehensive comparative assessment and

for verification purposes, another experiment focusing on various traffic
areas was carried out. Ship navigation in open water areas tends to
exhibit a tendency towards stability, characterized by infrequent and
smooth changes in both speed and course. Conversely, in offshore and
island regions, ships often experience frequent adjustments influenced
by limited operation spaces (Zhou et al., 2023a). Hence, the dataset was
divided into five subsets based on their locations and distinct geographic
conditions to reveal the performance of the proposed algorithm in
different water areas. Specifically, as depicted in Fig. 11, Area 1 repre-
sents the Finnish coast, which contains 3703621 points (20.4% of the
total). This can be treated as a separate area in the view of multiple small
islands close to the coast. Area 2 corresponds to the Estonian coast,
consisting of 1378466 points (7.6% of the total). It is treated differently
than Area 1, since the presence of the islands is significantly reduced.
Area 3 denotes archipelago region, with 3173760 points distributed
across them (17.5% of the total). Area 4 encompasses a combination of
open water and island areas, where the open water area occupies the
majority, comprising 3808307 points (21% of the total), so it can be
treated as a mixture of Area 3 and 5. The remainder constitutes Area 5,
characterized as an open water area, with 6019364 points within its
boundaries (33% of the total). It should be noted that trajectories
located predominately located at the borders with too few points were
ignored (0.5% of the total). And algorithms were run individually in
each area.

Table 2
An example of processed AIS trajectory data.

MMSI Timestamp
(s)

Longitude
(◦)

Latitude
(◦)

SOG
(kn)

COG
(◦)

XXX136XXX 1631584513 25.017138 60.142292 7.2 133.0
XXX136XXX 1631584548 25.018911 60.141495 7.1 132.6
XXX136XXX 1631584574 25.020200 60.140915 7.1 131.5
XXX136XXX 1631584605 25.021698 60.140230 7.0 134.7
XXX136XXX 1631584631 25.022890 60.139620 7.1 133.4
XXX136XXX 1631584661 25.024382 60.138947 7.2 134.2

S. Guo et al. Ocean Engineering 312 (2024) 119189 

13 



4.2. Running time optimization

As an offline compression algorithm, TDKC algorithm shares the
drawback of being time-consuming compared to online algorithms. The
exhaustion of recursion process also necessitates additional execution
time. In light of AIS specifications, position accuracy is generally
maintained below 10 m under optimal conditions, ensuring reliable and
precise tracking of ships (ITU, 2014). During the construction of CBT, as
the recursion level increases, the time interval between successive points
diminishes correspondingly, leading to a reduction in the distance

between the points. Consequently, points separated by less than 10 m
can be considered as occupying the same location. Furthermore, AIS
messages are transmitted at specific time intervals based on the ship’s
navigation status as shown in Table 4. It can be observed that in most
cases a navigating ship equipped with Class A transponder will transmit
messages every 10 s. Albeit a Class B transponder permits a longer time
interval, navigating less than 10 m in 3 min, which equals 0.108kn, can
be another constraint that facilitates CBT construction. As such, not only
can the processing speed of TDKC be accelerated, but the omission of
data points with insignificant variations can also further optimize the
compression efficiency.

A preliminary comparative study on Area 4 was conducted to help
determine the strategy for using TDKC in subsequent experiments since
Area 4 features a variety of trajectories in hybrid waters. In Table 5,
TDKC-optimized refers to a running time optimized version of TDKC,
while TDKC-original represents the original one. Apparently, TDKC-
optimized demonstrates significant improvements in RT and OCR
evaluations. Although its performance on OLLR, SMD, and SMV exhibits
shortages compared to the original version, considering that in practice,
processing time and compression efficiency are always the primary

Fig. 11. Trajectory overview in Gulf of Finland.

Table 3
Information of selected trajectory.

Information Details

MMSI XXX035XXX
Start time 01:00:01 September 11, 2021 (UTC)
End time 05:18:01 September 13, 2021 (UTC)
Number of points 17823
Trajectory length 102.82 nm

Fig. 12. Randomly selected trajectory for analysis.
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concerns, such a sacrifice is minor enough to be acceptable. Conse-
quently, we applied a running time optimization strategy in TDKC for
the subsequent experiments.

4.3. Algorithms selected for comparison

The presented algorithm was compared to other well-known algo-
rithms and their improved versions. The algorithms and their charac-
teristics selected for comparison are listed in Table 6, whilst justification
for their selection is provided below.

DP algorithm is the basic top-down algorithm as illustrated in Sec-
tion 3.1, which requires manual threshold configuration. Since most of
advancing top-down algorithms stem from DP algorithm, it was
reasonable to be included. TD-TR algorithm is an improved version of
DP algorithm requiring manual threshold determination (Meratnia and
de By, 2004). The incorporation of time series through SED resulted in
its selection. In the experiments, the threshold for these two algorithms
was set to 100 m, consistent with another improved DP (IDP) algorithm
in (Liu et al., 2023). Besides position information, IDP algorithm also
takes speed and course information into account, enhancing its effec-
tiveness in preserving key trajectory features and rendering it a strong
candidate for comparison. Thresholds of 0.1kn and 4◦ were used in the
study as these are the recommended values by the authors for speed and
course mutation points identification.

As proposed in (Zhang et al., 2016), an adaptive threshold of 0.8
times the ship length proves to be an effective adaptive strategy for DP
algorithm enhancement. This algorithm has been selected for testing,
designated as Adaptive-DP1 (ADP1) algorithm. Moreover, a novel

DP-based compression algorithm was presented by (Tang et al., 2021),
which learns PED deviation change rate of trajectories in the water area
and determines the threshold adaptively. It was also considered for the
study and is denoted as Adaptive-DP2 (ADP2) algorithm.

Partition-DP (PDP) algorithm is another advanced version of DP al-
gorithm presented by Zhao and Shi (2018), which concentrates on
reducing the depth of recursion by considering the shape of trajectories.
Since they suggested a range from 0.1 times and 10 times the ship length
regarding position attribute, for the sake of comparison, we adopted 0.8
times as the threshold, which was the same as ADP1 algorithm. As for
transition point identification, we followed their recommendation to set
time interval to 50s and course change to 10◦ manually. Finally, we also
selected a sliding window (SW) algorithm to represent online algorithm
with reference to (Gao and Shi, 2019). SW takes both SED and course
change into account. According to their study, the threshold of SED and
course change was set to the ship width and 4.5◦ respectively.

5. Results and discussion

The case study introduced in the previous section contains experi-
ments on an individual trajectory and different traffic areas respectively.
The experimental results are presented in this section with a compre-
hensive discussion to reveal the superiority of the proposed algorithm.

5.1. Results of individual trajectory

5.1.1. Performance metric evaluation
The compression results for the illustrative trajectory are provided in

Table 7 and Fig. 13. In terms of processing time, SW emerges as the
fastest algorithm, requiring only 0.064s on the used computer.
Following closely is PDP, consuming approximately 0.119s to compress
the trajectory. DP, TD-TR, IDP, and ADP1 exhibit minimal differences in

Table 4
AIS message reporting intervals.

Class Mode Platform/Ship’s Condition Reporting
Interval

A SOTDMA Ship at anchor or moored and moving
slower than 3 knots

3 min

Ship at anchor or moored and moving
faster than 3 knots

10 s

Ship 0–14 knots 10 s
Ship 0–14 knots and changing course 3 1/3 s
Ship 14–23 knots 6 s
Ship 14–23 knots and changing course 2 s
Ship >23 knots 2 s
Ship >23 knots and changing course 2 s

B SOTDMA Shipborne mobile equipment moving
slower than 2 knots

3 min

Shipborne mobile equipment moving 2–14
knots

30 s

Shipborne mobile equipment moving
14–23 knots

15 s

Shipborne mobile equipment moving >23
knots

5 s

CSTDMA Shipborne mobile equipment moving
slower than 2 knots

3 min

Shipborne mobile equipment moving faster
than 2 knots

30 s

Search and rescue aircraft (airborne mobile
equipment)

10 s

Aids to navigation 3 min
AIS base station 10 s

Table 5
Comparison of TDKC-original and TDKC-optimized algorithms on Area 4.

Metric TDKC-original TDKC-optimized

RT(s) 746.982 316.814
OCR 81.915% 93.635%
OLLR 0.764% 1.564%
SMD(m) 221.874 340.175
SMV(kn) 0.208 0.231

Table 6
Characteristics of the implemented algorithms.

Algorithm Type of
approach

Attribute in
trajectories
considered

Threshold
determination

Literature

DP Top-down Position Manual Douglas and
Peucker
(1973)

TD-TR Top-down Time, position Manual Meratnia
et al. (2004)

IDP Top-down Position, speed,
course

Statistical Liu et al.
(2023)

ADP1 Top-down Position Adaptive Zhang et al.
(2016)

ADP2 Top-down Position Adaptive Tang et al.
(2021)

PDP Top-down Time, position,
course

Statistical,
manual

Zhao and Shi
(2018)

SW Sliding
window

Time, position,
course

Statistical Gao and Shi
(2019)

TDKC Top-down Time, position,
speed, course

Adaptive This paper

Table 7
Compression results of different algorithms.

Algorithm RT(s) ICR ILLR SMD(m) SMV(kn)

DP 0.718 99.551% 2.259% 637.550 0.228
TD-TR 0.836 99.551% 2.263% 637.194 0.228
IDP 0.730 61.611% 0.197% 106.086 0.057
ADP1 0.796 98.811% 1.757% 259.020 0.121
ADP2 1841.869 98.205% 1.692% 158.260 0.098
PDP 0.119 96.639% 1.511% 252.672 0.109
SW 0.064 62.543% 0.335% 374.142 0.088
TDKC 1.156 95.697% 1.607% 107.905 0.070
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Fig. 13. Compression results of different algorithms.
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time consumption around 0.750s. The proposed TDKC algorithm spends
slightly more time, which is 1.156s. Besides, due to the training pro-
cedure on the entire dataset, ADP2 noticeably consumes a substantial
amount of time.

Regarding the effectiveness of compression, all top-down algorithms
except for IDP achieve similar ICRs spanning from 95.697% to 99.551%,
whereas IDP and SW only compress 61.611% and 62.543% of the points.
Within such a low compression rate, IDP and SW achieve the minimal
ILLRs of 0.197% and 0.335% respectively, while others reach ILLRs
ranging from 1.511% to 2.263%, so outperforming the other algorithms.

As for similarity metrics, DP and TD-TR exhibit notably greater
values for SMD and SMV around 637.372m and 0.228kn, respectively.
ADP1 and PDP show comparable performance as well by reducing these
values to 255.846m and 0.115kn. ADP2 performs slightly better with

values of 158.260m and 0.098kn. It is evident that IDP demonstrates the
best performance on similarity metrics with the minimum SMD and SVD
valuing at 106.086m and 0.057kn. Although SW algorithm has a similar
ICR with IDP, it demonstrates unsatisfied performance on similarity
metrics. On the contrary, with values of 107.905m and 0.070kn, TDKC
algorithm with such a high compression rate exhibits rather close per-
formance compared to IDP.

5.1.2. Motion variation analysis
To provide additional insight into the performance of feature pres-

ervation, Figs. 14–17 depict the compression performance in terms of
position, speed variation over time, course variation over time, and
velocity distribution. Evidence in Fig. 14 indicates that all algorithms
proficiently retain the overall shape of the trajectory. However, DP, TD-

Fig. 14. Compressed trajectories of different algorithms.
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TR, and SW identified fewer key points during the straight navigation
parts compared to others. Notably, IDP, ADP2, and TDKC showcased a
good capability in preserving a greater number of key points during
these straight segments. In Fig. 15, it is observed that IDP and TDKC
effectively maintained the variation features in speed, while others
failed to preserve sudden changes of these features. Moreover, the
course variations in Fig. 16 indicated that all algorithms retained the
main changes in moving segments, while TDKC performs the most
effectively in terms of capturing and retaining course variations in these
segments.

However, in stationary segments the deviations were only well-
captured by IDP and SW algorithms. PDP also identified a substantial
number of key points in these segments. Conversely, other top-down
algorithms only preserved a few points in stationary parts. When a
ship is mooring, due to environmental forces, the course information
will fluctuate frequently, which is a common limitation in AIS data
processing. The distribution coverage portrayed in Fig. 17 shows that DP
and TD-KC preserved only a few points in polar coordinates. ADP1,
ADP2, and PDP preserved a wider range of points with speeds under 3
knots but struggled to capture trajectories with higher speeds. IDP, SW,
and TDKC maintained the original distribution well, with TDKC
achieving even better coverage while possessing a one-third higher
compression rate than IDP and SW.

It is noteworthy that excessive retention of features related to ship
stationary periods can impact the performance evaluation of compres-
sion algorithms. Although SW demonstrates strength in achieving a low
ILLR, its high SMD and SMV values compared to TDKC imply their
disregarding of global features. Additionally, IDP achieves the best
performance on ILLR, SMD, and SMV. However, the retention of
approximately one-third more points significantly widened the perfor-
mance gap compared to TDKC. Therefore, we further checked the period
when this ship was mooring at Paldiski South Harbor. As shown in
Fig. 18, the reported position exhibits deviations within an

extraordinarily small range, which is a common occurrence attributable
to environmental forces typical in AIS report messages. Despite the ship
being stationary, the phenomenon leads to a relatively lengthy trajec-
tory. Both IDP and SW demonstrate a high degree of sensitivity to such
scenarios, resulting in the retention of numerous superfluous points.
PDP exhibits comparatively less sensitivity but still retains a consider-
able number of points. Other algorithms effectively compressed these
fluctuated points to one or very few points. Though maintaining tra-
jectory length under this circumstance contributes to a lower ILLR, its
validity and necessity remain questionable since we know the ship is
stationary at a certain place. Conclusively, TDKC successfully captures
the key points of entering and exiting the stationary state.

In summary, the outperformance of TDKC demonstrates its ability to
remove redundant data while maintaining key features among the
whole trajectory. As kinematic information in trajectory data collec-
tively defines the ship’s path and behavior, analyzing preserved trajec-
tory data after applying TDKC allows for the rapid and accurate
detection of critical situations, such as near misses, that may signal
potential risks, thereby leading to better insights into ship behaviors
under risky scenarios, enhancing maritime operators’ ability to manage
and respond to potential risks effectively.

5.2. Results of various traffic areas

5.2.1. Compressed trajectories visualization
Fig. 19 compares the overall trajectories before and after applying

compression algorithms. The comparison reveals minimal distinctions in
the visualizations of the traffic flow obtained by these algorithms. Since
the shape of visualized trajectories in the traffic flow only shows the
results of positional information preserving, a comparison of all algo-
rithms regarding their abilities for speed and course preservation is
visualized in Figs. 20 and 21. Noticeably SOG and COG feature losses can
be found in DP, TD-TR, ADP1, PDP, and SW algorithms. The traffic

Fig. 15. Speed variation over time.
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patterns in the central and western regions of Gulf of Finland appear
vague in the compression results produced by these algorithms. On the
contrary, IDP, ADP2, and TDKC algorithm accurately retains both SOG
and COG features. Yet, TDKC comprehensively incorporates time, po-
sition, speed, and course information, allowing accurate featuring of
significant points of change in position, velocity, or both. The identifi-
cation of such key features can benefit subsequent ship behavior and
traffic analysis, such as elucidating more intricate interactions between
the ships concerning the risk picture in the area using relevant analysis
methods, thereby facilitating maritime practitioners to obtain better
maritime situation awareness. To further demonstrate the superiority of
our proposed algorithm, detailed discussions are elaborated in the
subsequent sections based on evaluation metrics.

5.2.2. Regional analysis
Fig. 22 shows the execution time of each algorithm in separated

areas. The overall trend depicted is consistent with the features pre-
sented in the results of individual trajectory. One can observe that SW
demonstrates minimal RTs, spending 65.109s, 13.483s, 5.046s, 11.459s,
13.658s, and 21.295s respectively. PDP necessitates a slightly longer
time, especially in overall area and Area 5 with durations of 179.635s
and 98.739s. DP, TD-TR, IDP, and ADP1 show similar processing speeds
except in Area 5, where IDP requires a significantly extended time at
389.884s. Apparently, ADP2 and TDKC appear the most time-consuming
algorithms since they both exhaust all recursions inherently, whilst
TDKC still possesses a shorter execution time than ADP2 apart from Area
5.

Fig. 23 displays the compression rate evaluation. The overview
shows that IDP and SW continue to exhibit poor performance in effi-
ciently compressing data. The trend observed in their curves suggests
notably low OCRs in coastal and island areas, where the OCRs of SW
even fall below 30%. On the other hand, all other top-down algorithms
maintain OCRs above 90%. Among them, the consideration of

comprehensive kinematic attributes renders TDKC to preserve slightly
more points, with a value of 93.446% in overall area, and 95.136%,
95.183%, 93.294%, 93.635%, and 91.970% respectively from Area 1 to
Area 5. The boxplots and violin plots of ICR demonstrate DP and TD-TR
have rather concentrated distributions in all areas, which can be inter-
preted by their uniform and feature-agnostic threshold settings. ADP1,
ADP2, PDP, and TDKC show slightly wider distributions, which are still
relatively concentrated compared to IDP and SW. The distribution of IDP
and SW implies their instability in compression efficiency.

In terms of LLR, Fig. 24 proves that SW performs best in keeping the
length information of trajectories, demonstrating stabilized OLLR values
ranging from 0.287% to 0.669% across different areas, which is signif-
icantly lower than other algorithms. IDP fails to exhibit superiority
compared to SW in multi-trajectory analysis, but still shows improve-
ment over other top-down algorithms, with LLR values from 0.413% to
5.245%. TDKC comes right behind IDP, the LLR of which varies from
0.540% to 8.427%.

Except for SW, the curves have experienced the same trend when the
area is changed. The elevated OLLRs in Area 1, Area 2, and Area 3
validated our inference in the previous section, where we concluded that
stationary segments will affect the performance of LLR. Furthermore,
the distributions reveal that SW is more sensitive to stationary trajec-
tories and segments compared to top-down algorithms, as also revealed
during individual trajectory results analysis. IDP also exhibits relatively
concentrated LLR without losing much length information. However,
PDP no longer shows sensitivity in these areas owing to its top-down
nature, which is even worse than ADP2 and TDKC.

The boxplots and violin plots of ILLR regarding top-down algorithms
exhibit characteristics of bimodal distributions, especially in Area 2.
Although most data have relatively low ILLR values, we can still see a
considerable portion of the data distributed near 100% ILLR. Such a
phenomenon can be caused by the presence of stationary trajectories. If
the segment displayed in Fig. 18 forms a complete trajectory, it implies

Fig. 16. Course variation over time.
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Fig. 17. Speed-course data preservation.

Fig. 18. Mooring segments.
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that this trajectory does not contain any other moving segments. Fluc-
tuations occurring in place might be compressed into a single point by a
top-down algorithm. Consequently, the loss of length information for a
single point compared to trajectory amounts to 100%. However, such a
high rate does not necessarily mean poor performance since the sta-
tionary period is usually compressed and represented by few points
(Sanchez-Heres, 2019). Besides, in Area 3, Area 4, and Area 5 almost all
mean values of ILLR exceed the upper bound of the boxplots, which
implies the influence of stationary trajectories and segments is
non-negligible. Therefore, it is imperative to proceed with caution
regarding the results of LLR assessment in areas that contain numerous
stationary segments or trajectories.

Fig. 25 reveals that the proposed algorithm demonstrates significant
advantages compared to others regarding SMD. The mean value over-
view curves show that DP, TD-TR, ADP1, PDP and SW demonstrate

obviously higher SMD compared to IDP, ADP2, and TDKC. Although SW
exhibits slight advancement compared to DP, TD-TR, ADP1, and PDP in
Area 1, Area 2, and Area 3 due to its strength in identifying local features
within relatively small ranges, the great deviations in Area 4 and Area 5
lead to its SMD reaching 2575.972m, suggesting poorer performance
compared to top-down algorithms. In addition, the distribution plots
also prove this deduction, showing SW’s instability across different
areas. Despite exhibiting rather focused distribution in Area 3, the
maximum SMD of SW even reaches 19437.150m in Area 4. On the
contrary, advanced algorithms such as IDP, ADP2, and TDKC demon-
strate relatively consistent and dense distributions. Among them, TDKC
shows a lower average SMD, performing notably well in Area 4 and Area
5 with mean SMDs of 340.175m and 298.015m and being comparable to
the others in the rest areas. In addition, ADP1 and PDP demonstrate
restricted enhancements compared to DP and TD-TR.

Fig. 19. Trajectory compression results in Gulf of Finland.

Fig. 20. Spatial SOG mapping.
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Regarding SMV, the curves in Fig. 26 first illustrate that DP and TD-
TR perform the poorest in speed and course information retention, with
SMV values ranging from 0.610kn to 0.907kn. Subsequently, ADP1 and
PDP show improvements by reducing the mean SMVs approximately to
0.457kn and 0.385kn respectively. For other algorithms, it becomes
apparent that IDP exhibits the best performance with SMV spanning
from 0.098kn to 0.178kn. ADP2, SW, and TDKC come after IDP, showing

comparable results around 0.189kn. Nonetheless, TDKC demonstrates
superior performance in Area 2, Area 4, and Area 5, exhibiting a slight
inferiority to IDP. Additionally, the distributions of SMV indicate that all
other algorithms achieve profound improvements compared to tradi-
tional DP and TD-TR algorithms. However, ADP1, PDP, and SW
demonstrate limited advantages in open water areas. So, IDP, ADP2, and
TDKC emerge as the most stable algorithms in preserving velocity

Fig. 21. Spatial COG mapping.

Fig. 22. Running time evaluation for algorithms on different areas.
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information. Concluding, although TDKC shows a minor disadvantage
due to its considerably higher compression rate compared to IDP, it
slightly outperforms ADP2.

In conclusion, TDKC algorithm effectively maintains a rather low
feature error while achieving a high compression efficiency both across
the entire water area and within different types of sub-regions. In
contrast, SW and IDP algorithms sacrifice substantial compression
ability to achieve similar levels of feature preservation. Although DP,
TD-TR, and ADP1 algorithms can compress a larger volume of trajectory
data, they also lead to a corresponding loss of key features. As for ADP2,
it shows a similar balanced performance as TDKC does, yet the high

computation time renders it impractical for real-world applications,
especially when the focus is on several individual trajectories, ADP2
always requires a training process on the whole dataset. Therefore, in
maritime traffic analysis, the capability of TDKC can ensure an accurate
representation of traffic patterns and ship behaviors with a reduced data
volume, thus contributing to a more effective understanding of maritime
traffic dynamics. Since TDKC can identify key points with different ki-
nematic characteristics, further studies regarding scenario and ship
behavior analysis using data processed by TDKC can enhance maritime
situational awareness and safety management.

Fig. 23. Compression rate evaluation for algorithms in different areas.

Fig. 24. LLR evaluation for algorithms on different areas.
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5.2.3. Trajectory sequence length analysis
Trajectory sequence length appears to be another factor related to

compression performances. As shown in Fig. 27, the RT curves demon-
strate a growing trend when the sequence increases. TDKC is further
proved to be time-consuming when the sequence length exceeds 70000.
IDP and SW exhibit relatively stable curves and run the fastest. It should
be noted that ADP2 is not considered in RT plot due to its necessity to be
trained on the entire trajectory dataset before compression. As
mentioned in Fig. 22, the training time is 1842.549s, much longer than
any other algorithm. In addition, small valleys can be witnessed when
the trajectory sequence length ranges from 50000 to 70000 for

algorithms except for IDP and SW.
The ICR curves show that the majority of top-down algorithms

manifest a rather higher compression rate than IDP and SW, which is
consistent with results in the previous section. IDP and SW demonstrate
downward patterns when the sequence length is lower than 60000.
Prompted by the incomplete information represented by the limited
number of trajectory points, it is noteworthy that all algorithms exhibit
significant fluctuations at the beginning of the ICR curves. However,
obvious valleys in IDP and SW curves, alongside minor peaks observed
in other top-down algorithms emerge during the 50000-70000 interval.

Regarding ILLR, the abrupt curves for trajectories have 50000 to

Fig. 25. SMD evaluation for algorithms in different areas.

Fig. 26. SMV evaluation for algorithms in different areas.
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70000 points become more significant except for SW. Due to the fluc-
tuated compression rate, another narrow sharp part emerges at the
beginning of curves. Besides, SW exhibits a relatively low and consistent
ILLR close to 1%. In contrast, others display a diminishing trend from the

broad peak towards both ends.
The SMD plot displays that IDP, ADP2, and TDKC demonstrate su-

perior performance than others. This distinction is particularly pro-
nounced in the curve segment before 50000 trajectory points, where

Fig. 27. Relationship between performance metrics and trajectory sequence length.
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TDKC performs best. A subtle transformation occurs thereafter, where
the abrupt deviation parts in the aforementioned plots turn into small
valleys and narrow the difference between curves. However, TDKC
continues to exemplify its strength, ranking second with the curve sta-
bilized at 83.9m, close to IDP settled at 69.1m. ADP2 ranks third and
remains steady at 139.9m.

Finally, for SMV curves, it is evident that IDP and TDKC demonstrate
significant superiority with most of the curves below 0.227kn. SW and
ADP2, who rank third and fourth place, own SMV around 0.340 and
0.416 knots respectively. Additionally, the sharp deviation parts exhibit
obvious valley features, further emphasizing the performance differ-
ences among different algorithms.

Fig. 28 and Table 8 shows the distribution analysis of trajectory
sequence length, providing a reference to the RT quantification in our
scoring system. They reveal that most trajectories in the water area
contain fewer than 20000 points. For such a trajectory, the RT plot in
Fig. 27 suggests that TDKC is still capable of processing most trajectories
in a short time. Hence, we can infer that the execution time of TDKC in
practical scenarios is tolerable. In addition, all plots in Fig. 27 exhibit
fluctuations in the 50000-70000 interval. It is notable that the curves
tend to show erratic patterns before the 50000-70000 interval but they
stabilize thereafter. To explore the underlying reasons for the fluctua-
tions, we further investigated the speed distribution of trajectories
within 50000–70000 points. As shown in Fig. 29, most of the points
possess a speed lower than 1 knot, indicating that these ships were
swaying within a rather limited vicinity. Consequently, in top-down
algorithms, points with extremely small deviations will be eliminated
without being traversed, accounting for reductions in processing time as
shown in the RT plot and slightly higher rates in the ICR plot, while for
SW is the opposite. Moreover, such minimal deviations can also result in
relatively minor SMD and SMVmeasurements, depicted by valleys in the
SMD plot and SMV plot. On the other hand, reference to Fig. 18 clarifies

the elimination of redundant points in a stationary state can cause a
large LLR, which provides a clear explanation for peaks in the ILLR plot
of Fig. 27.

5.3. Algorithms comparison using scoring system

To visually demonstrate the strengths and limitations of the algo-
rithms, we conducted a quantitative evaluation of their performances
using overall area results from Figs. 22–26 following the methodology of
Section 3.4. Each algorithm’s performance score is presented in Fig. 30.
The main findings are discussed as follows.

DP and TD-TR present almost identical performance, while TD-TR
only slightly outperforms on length information preservation.
Although they perform well on CR, the universal threshold for DP and
TD-TR causes termination during compression in advance, leading to the
poorest performance on kinematic feature preservation. Despite TD-TR
refining DP by considering time as a factor, it fails to deliver signifi-
cant improvements for the algorithm.

IDP achieves significant improvements in feature preservation by
incorporating a post-examination step that takes speed and course in-
formation into account. However, as a compression algorithm, such
improvements might be counterproductive due to the considerable
sacrifice in CR. Contrarily, the consideration of ship length enables
ADP1 to adaptively compress trajectories. While maintaining a high CR,

Fig. 28. Trajectory sequence length distribution.

Table 8
Trajectory with different sequence lengths.

Sequence length Number of trajectories

0–20000 4103
50000-70000 84
Over 70000 98
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ADP1 also enhances the compression quality compared to DP and TD-TR
algorithms. Nonetheless, the absence of velocity and ship length infor-
mation limits such enhancement.

ADP2 endeavors to determine the optimal compression threshold by
exhausting all recursions. Necessitating a training process in advance,
ADP2 even requires more time and lacks applicability on individual
trajectories. PDP demonstrates a more equitable performance, opti-
mizing both the execution time and feature preservation ability of
traditional top-down algorithms by pre-identifying key points. Yet, the
inherent characteristics of being a top-down algorithm render PDP to
demonstrate moderate performance on kinematic feature preservation.
As for SW, although it shows strengths in length and velocity informa-
tion preservation, its poor performance on CR and modest results on
SMD suggest a careful assessment of SW’s suitability for the compression
task in certain situations.

Our proposed algorithm TDKC explores the optimal threshold

without prematurely ending the recursive process, attempting to ach-
ieve high-quality results that retain as many trajectory features as
possible with minimal points. Despite the increase in time overhead,
such a trade-off enhances the accuracy and compression rate of TDKC
algorithm, emerging as a superior compression algorithm attributed to
its comprehensive consideration of time, position, speed, and course.
Such superiority facilitates TDKC to obtain the most reliable results with
commendable compression quality across diverse regions.

6. Conclusions

Research on trajectory compression techniques has facilitated the
storage, processing, analyzing, transmitting, and transferring of mari-
time AIS data. In this study, a novel adaptive trajectory compression and
feature preservation method for maritime traffic analysis was proposed.
The performance of the proposed method was validated on 7-day AIS

Fig. 29. Speed distribution of trajectories within 50000–70000 points.

Fig. 30. Algorithm performance scores.
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data from Gulf of Finland and compared to 7 other traditional and
popular advanced methods. The dataset was divided according to
various traffic areas to gain insights into the performance of each
method. In addition, a novel metric for velocity-based similarity mea-
surement was proposed. The main contributions of this study are sum-
marized as follows:

The proposed method adopts SED and SVD to thoroughly leverage
kinematic information within trajectories. The purpose of SVD is to
compensate for the shortcomings of previous methods in considering
speed and course. The construction of CBT effectively addresses the
recursion termination problem. In combination with CBT, the adaptive
threshold-setting strategy automatically selects the optimal thresholds
based on the unique characteristics of each trajectory. This approach
mitigates the inaccuracy associated with manual configuration, signifi-
cantly enhancing the algorithm’s versatility and enabling its flexible
application across various water areas. By establishing a quantitative
evaluation system, the experiment results indicate that the proposed
method outperforms others in terms of effectively preserving key in-
formation while maintaining a high compression rate. In addition, the
strengths and flaws of eachmethod employed in the case study were also
highlighted, providing insights into their respective application sce-
narios. Given its superiority over previous algorithms, TDKC is capable
of reducing data volume, facilitating faster and more efficient transfer
over networks. The preservation of essential trajectory features also al-
lows faster analysis in trajectory analysis without a loss of accuracy.
Therefore, our method is expected to significantly contribute to mari-
time traffic analysis.

The limitations of this study demonstrate the need to further enhance
the computational performance of the proposed method. Despite the
method incorporating a built-in running time optimization strategy and
it can be powered by modern hardware devices to overcome this
shortcoming, the algorithm structure is expected to be further optimized

by omitting unnecessary recursion steps. Achieving the balance between
its processing speed and commendable compression quality can be
addressed in future steps. In addition, although we divided Gulf of
Finland into five different water segments, more experimental analysis
in other research areas should be performed to examine the applicability
of the proposed method. Meanwhile, valuable research in relation to the
identified trajectory features can be conducted in future works to
facilitate the development of maritime industry.
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Appendix

Table A1
List of abbreviations.

AIS Automatic Identification System
ADP Adaptive Douglas-Peucker
CBT Compression Binary Tree
COG Course over ground
CR Compression rate
DOTS Directed acyclic graph based Online Trajectory Simplification
DP Douglas-Peucker
DTW Dynamic Time Warping
GIS Geographic Information System
GPS Global Positioning System
ICR Individual compression rate
IDP Improved Douglas-Peucker
ILLR Individual length loss rate
IQR Interquartile Range
LLR Length loss rate
MMSI Maritime Mobile Service Identity
MRPA Multiresolution Polygonal Approximation
OCR Overall compression rate
OLLR Overall length loss rate
PDP Partition Douglas-Peucker
PED Perpendicular Euclidean Distance
Q1 First quartile
Q3 Third quartile
RT Running time
SED Synchronous Euclidean Distance
SMD Distance-based similarity
SMV Velocity-based similarity
SOLAS International Convention for the Safety of Life at Sea
SOG Speed over ground

(continued on next page)
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Table A1 (continued )

SQUISH Spatial Quality Simplification Heuristic
STTrace Spatiotemporal Trace
SVD Synchronous Velocity Difference
SW Sliding window
TDKC Top-Down Kinematic Compression
TD-TR Top-Down Time-Ratio

Table A2
List of variables and symbols.

ci, ciʹ́ Course
Δci,j Course change
di Distance from the point to the baseline
dmax Maximum distance from the point to the baseline
di,j Distance between two points on the Earth’s Surface
dε Distance Threshold
end End index of current processing trajectory’s Points
i, j Index
k The number of discarded points
li Left child
l, pipj Baseline determined by pi and pj
lati Latitude
loni Longitude difference
m The number of total trajectories
mi Information difference vector
mnorm
i Normalized information difference vector

⃒
⃒mnorm

i
⃒
⃒ Magnitude of normalized information difference vector

⃒
⃒mnorm

max
⃒
⃒ Maximum magnitude of normalized information difference vector

max() The largest value in a given set
min() The smallest value in a given set
pi A ship trajectory point of T
piʹ, piʹ́ Projection points of pi on the baseline
ps Start point
pe End point
pmax Split point with maximum distance to the baseline
pedi PED
ri Right child
si, siʹ́ Speed
sedi SED
sednormi Normalized SED
sedε SED threshold
start Start index of current processing trajectory’s points
svdi SVD
svdnormi Normalized SVD
svdε SVD threshold
scorehigh() Score function for positive metric
scorelow() Score function for negative metric
Δsi,j Speed change
ti, tiʹ́ Timestamp
vi Velocity vector
vxi Velocity component in x coordinate
vyi Velocity component in y coordinate
Δvi,j Velocity change
wRTj Weight for RT quantification

wCR1 , wCR2 , wCR3 Weight for CR quantification
wLLR1 , wLLR2 , wLLR3 Weight for LLR quantification
wSMD1 , wSMD2 , wSMD3 Weight for SMD quantification
wSMV1 , wSMV2 , wSMV3 Weight for SMV quantification
xi, xiʹ, xiʹ́ x coordinate
yi, yiʹ, yiʹ́ y coordinate
CBT CBT of a trajectory
D() Cumulative distance between two trajectory sequences
ILLR ILLR of the trajectory
L, Lʹ, Li, Liʹ Trajectory length
M Metric value set
Ni Node
OCR OCR of the trajectory dataset
OLLR OLLR of the trajectory dataset
QRTi Quantified RT
QCRi Quantified CR
QLLRi Quantified LLR
QSMDi Quantified SMD

(continued on next page)
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Table A2 (continued )

QSMVi Quantified SMV
Root Root node
SSED SED set of current processing trajectory
SSVD SVD set of current processing trajectory
SubTi A sub-trajectory of T
SMD() SMD between trajectories
SMV() SMV between trajectories
SMDnorm() Normalized SMD between trajectories
SMVnorm() Normalized SMV between trajectories
T A ship trajectory
Tʹ Compressed ship trajectory of T
V() Cumulative velocity difference between two trajectory sequences
αi Metric value
μSSED Mean of SSED
μSSVD Mean of SSVD
σSSED Standard deviations of SSED
σSSVD Standard deviations of SSVD
τ The number of algorithms
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