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COMPUTATIONAL NEUROSCIENCE

Effects of spatial smoothing on functional brain networks
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Abstract

Graph-theoretical methods have rapidly become a standard tool in studies of the structure and function of the human brain.
Whereas the structural connectome can be fairly straightforwardly mapped onto a complex network, there are more degrees of
freedom in constructing networks that represent functional connections between brain areas. For functional magnetic resonance
imaging (fMRI) data, such networks are typically built by aggregating the blood-oxygen-level dependent signal time series of vox-
els into larger entities (such as Regions of Interest in some brain atlas) and determining their connection strengths from some
measure of time-series correlations. Although it is evident that the outcome must be affected by how the voxel-level time series
are treated at the preprocessing stage, there is a lack of systematic studies of the effects of preprocessing on network structure.
Here, we focus on the effects of spatial smoothing, a standard preprocessing method for fMRI. We apply various levels of spatial
smoothing to resting-state fMRI data and measure the changes induced in functional networks. We show that the level of spatial
smoothing clearly affects the degrees and other centrality measures of functional network nodes; these changes are non-uniform,
systematic, and depend on the geometry of the brain. The composition of the largest connected network component is also
affected in a way that artificially increases the similarity of the networks of different subjects. Our conclusion is that wherever
possible, spatial smoothing should be avoided when preprocessing fMRI data for network analysis.

Introduction

It is broadly accepted in the neuroscience community that the
human brain consists of interconnected, functionally specialized
areas. Thus, the brain can be naturally modeled as a complex net-
work (Wig et al., 2011; Sporns, 2013a,b). In the network approach,
nodes of the network represent brain areas, and links depict their
structural or functional connections. The structural features of the
network may then help to understand the function of the brain.
Network analysis of functional magnetic resonance imaging

(fMRI) data has revealed that the brain has a non-random, hierarchi-
cal core-periphery structure; network studies have also helped to
identify hubs, that is, central areas of the brain. Functional brain net-
works have been reported to change with age, between health and
disease, and between different cognitive tasks. For reviews, see Papo
et al. (2014), Bassett & Bullmore (2009), and Sporns (2013b).

It has been criticized that in fMRI studies in general, the choice
of analysis parameters is often justified insufficiently and reported
incompletely (Carp, 2012). This includes functional brain network
studies. There are fundamental gaps in understanding: the effects of
different data acquisition and preprocessing methods on the structure
of functional networks are not well understood. Indeed, factors that
affect the reliability of the fMRI network studies have lately become
a subject of discussion (Shehzad et al., 2009; Telesford et al., 2010;
Braun et al., 2012; Hayasaka, 2013; Andellini et al., 2015; Aurich
et al., 2015; Shirer et al., 2015).
In this study, we concentrate on spatial smoothing, a commonly

applied preprocessing method that may affect network properties
(Fornito et al., 2013; Stanley et al., 2013). In the smoothing pro-
cess, the signal from each measurement voxel is redefined as the
average of the signals of the voxel itself and its neighbors; typically,
a smoothing kernel is applied when averaging. Spatial smoothing
belongs to the standard set of fMRI preprocessing methods when
the general linear model (GLM) is used as the analysis paradigm:
smoothing by a Gaussian kernel ensures that data fulfill the Gaus-
sianity assumption of the model (Mikl et al., 2008). Spatial smooth-
ing also increases the signal-to-noise ratio (SNR), compensates for
inaccuracies in spatial registration, and decreases inter-subject vari-
ability (Hopfinger et al., 2000; Triantafyllou et al., 2006; Mikl
et al., 2008; Bennett & Miller, 2010; Pajula & Tohka, 2014). Spa-
tial smoothing is often applied outside the GLM paradigm as well;
in this case, the justification for using it is less evident.

Correspondence: Onerva Korhonen, 1Department of Computer Science, as above.
E-mail: onerva.korhonen@aalto.fi

Received 24 April 2017, revised 22 August 2017, accepted 13 September 2017

Edited by Susan Rossell

Reviewed by Omar Dekhil, University of Louisville, USA; and Marwa Ismail, Case
Western Reserve University, USA

The associated peer review process communications can be found in the online version
of this article.

© 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.

European Journal of Neuroscience, Vol. 46, pp. 2471–2480, 2017 doi:10.1111/ejn.13717

http://orcid.org/0000-0001-5033-4824
http://orcid.org/0000-0001-5033-4824
http://orcid.org/0000-0001-5033-4824
http://creativecommons.org/licenses/by/4.0/


In seed-based functional connectivity studies, spatial smoothing
has been reported to increase the connection strength between vox-
els, measured in terms of the correlation coefficient, leading to
detection of larger clusters of voxels connected with the seed (Wu
et al., 2011; Molloy et al., 2014). Meanwhile, smoothing decreased
the differences in connectivity between different spatial resolutions
(Molloy et al., 2014). Scheinost et al. (2014) found that image
smoothness correlates with seed-based connectivity and with the
degree measured in networks where nodes represent measurement
voxels. Although the different image smoothness values at different
voxels are mostly caused by motion artefacts (Scheinost et al.,
2014), one may expect to see similar effects if spatial smoothing
applied at the preprocessing stage leads to differences in image
smoothness in different parts of the brain. In the case of Regional
Homogeneity that measures local connectivity, spatial smoothing
decreased test–retest reliability (Zuo et al., 2013).
The above results indicate that spatial smoothing may affect the

properties of functional brain networks. However, to the best of our
knowledge, the effects of spatial smoothing on the structure and
properties of region-level functional brain networks have not been
investigated in detail.
In this study, we investigate how spatial smoothing affects the

structure of functional brain networks. To this end, we use two
independent datasets: resting-state fRMI data of 13 subjects mea-
sured in-house as well as 28 subjects from the Autism Brain Imag-
ing Data Exhange I (ABIDE I) initiative. For each of these subjects,
we construct the resting-state functional network using anatomically
defined Regions of Interest (ROIs) as network nodes. We investigate
the effects of spatial smoothing on several aspects of network struc-
ture, including the distribution of link lengths, the identity of the
most central hubs of the network, and the structure of the largest
connected component (LCC) that forms the core of the network.

Methods

Subjects

The in-house data used in this study are from 13 healthy, right-
handed subjects (11 females, 2 males, age 25.1 � 3.9, mean � SD).
They all had normal or corrected-to-normal vision, and none of
them reported a history of neurological or psychiatric disease. All
subjects volunteered for the study and gave a written, informed con-
sent according to the Declaration of Helsinki. Subjects were com-
pensated for their participation. This study was approved by the
Research Ethics Committee of Aalto University.

Data acquisition

Functional magnetic resonance imaging data were acquired with a
3T Siemens Magnetom Skyra scanner in the AMI Centre (Aalto
Neuroimaging, Aalto University, Espoo, Finland). A whole-brain
T2*-weighted EPI sequence was collected with the following
parameters: TR = 1.7 s, 33 axial slices, TE = 24 ms, flip
angle = 70, voxel size = 3.1 9 3.1 9 4.0 mm, matrix size
64 9 64 9 33, FOV 198.4 9 198.4 mm. Data from an approxi-
mately 6 min (215 time points) resting-state session were used in
this study. In the resting-state condition, subjects were instructed
to lay still with their eyes open, gaze fixated to a gray background
image, and avoid falling asleep.
Structural MR images with isotropic 1 9 1 9 1 mm voxel size

were acquired using a T1-weighted MP-RAGE sequence.

Preprocessing of the fMRI data

For preprocessing, we used FSL (Smith et al., 2004; Woolrich
et al., 2004; Jenkinson et al., 2012) and an in-house MATLAB
toolbox, BraMiLa (https://version.aalto.fi/gitlab/BML/bramila). First,
the three-first frames of each subject’s data were removed to mini-
mize the error caused by the scanner transient effect. This left a
time series of 212 time points for further analysis. The preprocess-
ing pipeline continued with slice timing correction, motion correc-
tion by MCFLIRT (Jenkinson et al., 2002), and extraction of
white matter and cerebrospinal fluid (CSF). Functional data were
co-registered to the anatomical image with FLIRT (7 degrees of
freedom), registered to MNI152 template (12 degrees of freedom),
and downsampled to voxels of 4 9 4 9 4 mm. Signals were lin-
early detrended, and signals from white matter and CSF were
regressed out from the data.
Expansion of motion parameters was extracted from the data with

linear regression (36 Volterra expansion based signals) (Power
et al., 2014) to control for motion artifacts. As head motion is a
possible source of artifacts in connectivity studies (Power et al.,
2012), the framewise displacement was calculated for each subject,
but its values were under the suggested threshold of 0.5 mm. There-
fore, no scrubbing was performed.
To eliminate further artifacts, voxels that were located at the

boundary of the brain and the skull with a mean signal power less
than 2% of the individual’s mean signal power were excluded from
the analysis.

Spatial smoothing

In spatial smoothing, the time series of each voxel is redefined as an
average of the time series of neighboring voxels, weighted by a
smoothing kernel:

xi ¼
P

j GiðjÞxjP
j GiðjÞ ; ð1Þ

where xi denotes the time series of voxel i, Gi(j) is the value at
voxel j of the smoothing kernel Gi centered at voxel i, and the sum-
mation is over all voxels. For the majority of these voxels,
Gi(j) � 0.
Spatial smoothing was always applied as the last preprocessing

step before network extraction. We used three Gaussian kernels with
different full width at half maximum (FWHM): 5, 8, and 12 mm.
As a reference, we used non-smoothed data (FWHM 0 mm).
The chosen kernel sizes are commonly used among the fMRI

community and have been recommended in the literature. Some
researchers have suggested that kernel size ‘should approximate the
size of the underlying signal or evoked response’ that would be
approximately 3–5 mm on the cortex (Hopfinger et al., 2000).
Others have argued that kernel size should be 2–3 times the voxel
size (Mikl et al., 2008; Pajula & Tohka, 2014).

Regions of interest

We divided the cortex into 96 anatomical ROIs. The ROIs were
from the HarvardOxford (HO) atlas (http://neuro.debian.net/pkgs/fsl-
harvard-oxford-atlases.html) (Desikan et al., 2006) at 30% probabil-
ity level (i.e., in the group used to create the parcellation, a voxel
belongs to the ROI that it is associated with in 30% or more of the
subjects). The ROIs did not overlap; each voxel belonged to one
ROI only.
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We deliberately chose to follow the pipelines that are commonly
adopted in connectomics. These pipelines often exclude the cerebel-
lum and subcortical areas. Therefore, these areas were not included
in our analysis, despite the important role that the cerebellum and
subcortical areas have in brain function (for an extensive review, see
Koziol & Budding, 2009).
The ROI time series were defined as the average over the time

series of the voxels in the focal ROI:

XI ¼ 1
NI

X
i2I xi; ð2Þ

where I is the focal ROI, NI is the size of the ROI I measured in
voxels, and xi is the time series of voxel i. The sizes of the ROIs
varied between 5 and 857 with the mean ROI size being
141.58 � 147.46 (mean � SD). The median ROI size was 88, and
the majority of the ROIs consisted of approximately 100 voxels. For
details on ROI sizes, see Supporting Information Table S1.

Network extraction

We used the ROIs as the nodes of the functional brain network of
each subject. The link weights between each pair of ROIs were
defined as the Pearson correlation coefficient of their time series.
This resulted in a symmetrical adjacency matrix A, where the ele-
ment AI,J indicated the strength of correlation between ROIs I and J.
We set the diagonal to AI,I = 0 to exclude self-links that contain no
useful information.
We used the full adjacency matrix that contains the correlations

between all pairs of ROIs to investigate if spatial smoothing has dif-
ferent effects on links of different weight and physical length. To
this end, we defined the physical length of a link as the Euclidean
distance between the centroids of the ROIs connected by the link.
For further analysis, we thresholded the adjacency matrix to

remove weak links. Low-weight links correspond to correlations that
are too weak to be of functional significance; further, retaining only
a small number of the strongest connections provides a view on the
most essential network structure. To obtain a network with density
d, we removed links that were weaker than the 1 � dth weight per-
centile by setting the corresponding element in the adjacency matrix
to 0. The weights of links that exceeded this threshold were set to
1, which yielded an unweighted network.
We used the unweighted networks to study how spatial smoothing

affects the degrees and eigenvector centralities of nodes, as these
measures have originally been defined for unweighted networks.
Both measures are commonly used to identify the most important,
central nodes of the network (see below). Further, we analyzed the
effects of spatial smoothing on the structure of the LCC (see below)
of the unweighted network.
It is not straightforward to choose the optimal threshold density

for functional brain network analysis (for discussion, see Kujala
et al., 2016). One alternative is to investigate a range of densities
(Alexander-Bloch et al., 2012a; Lord et al., 2012). We found that
the behavior of the centrality measures was qualitatively the same
across a range of densities from 5 to 10%; the results reported in
this article are obtained at the density of 10% (456 links). For analy-
sis of the LCC, we thresholded the network to a lower density of
3% (137 links); at this density, we observed that there is a compo-
nent that is clearly larger than all others without yet spanning the
entire network. At both densities, the network was relatively sparse
and therefore its structure was sensitive to small changes in link
weights.

Averaging and comparison of correlation coefficients

To investigate how spatial smoothing affected links of different
weight and physical length, we needed to average correlation coeffi-
cients over subjects. This averaging of ROI–ROI correlations was
done by first Fisher Z-transforming the correlation coefficients r:

Z ¼ 1
2
ln

1þ r
1� r

� �
¼ arctanh ðrÞ ð3Þ

The results were then averaged, and finally the values were inver-
sely transformed back to the interval [�1, 1]. The Z-transformation
reduces bias when averaging correlation coefficients (Silver &
Dunlap, 1987).
To measure the difference between two correlation coefficients,

they were first Z-transformed and then subtracted.

Centrality measures

We studied how spatial smoothing affects two measures of node
centrality: the degree and the eigenvector centrality. Both measures
are commonly used among neuroscientists to identify the most cen-
tral and important nodes, hubs, of functional brain networks.
The degree of a node is defined as the number of neighbors of

the node, that is, the number of other nodes it is directly connected
with. The degree provides a simple estimate of the centrality of the
node: nodes with many neighbors can be considered more central
than those with few neighbors. Therefore, the degree can be used to
define the hubs of the functional brain network (Rubinov & Sporns,
2010).
However, changes in the degree alone do not tell how spatial

smoothing has changed the centrality of the node as compared to
others. Therefore, to investigate if spatial smoothing changes the
‘hubness’ of nodes, we observed changes in both the degree and the
degree rank of each ROI. To obtain the degree rank, we ordered
ROIs in descending order by degree; changes in the degree rank of
a ROI reflect changes in its ‘hubness’ in the network.
Eigenvector centrality is a generalization of degree that also takes

into account the degrees of the node’s neighbors, their neighbors,
and so on. A high-degree node can be argued to be less central if
its neighbors have low degrees compared to another node with high-
degree neighbors. Eigenvector centrality corrects for this and mea-
sures how central the node is in this broader view. In functional
brain networks, eigenvector centrality emphasizes the central clusters
of the network (Lohmann et al., 2010).
Eigenvector centrality can be calculated iteratively from the adja-

cency matrix of the network. For details, see Appendix S1.
For investigating the centrality metrics, we wrote an in-house

Python script that utilizes the NetworkX network analysis package
for Python (Hagberg et al., 2008).

Largest connected component

For a broader picture of changes in network structure beyond the
level of nodes, we investigated how spatial smoothing affects the
LCC of the network. In a (connected) component, every node can
be reached from every other node by following links. In a sparse
network, there can be several disjoint components; if the existence
of a link is taken as indicative of functional interaction, nodes in
disjoint components cannot influence one another. The LCC, the
component with the largest number of nodes, can be seen as the
core of the network.
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First, we identified the LCC separately for the network of each
subject. Then, for each node, we calculated the fraction of subjects
that had that particular node in their LCC.
For studying changes in the LCC, we used a set of in-house

Python scripts (see above).

Network visualization

The HO atlas offers anatomical coordinates of the centroids of the
ROIs. We used the projection of these coordinates to the horizontal
plane to visualize the network structure and the values of network
metrics in each ROI. We made minor adjustments to the coordinates
to avoid overlap between ROIs while approximately retaining the
anatomical position of each ROI.

ABIDE data

To ensure that our results are not explained by any particular fea-
ture of our in-house dataset and can be generalized to other data-
sets, we repeated all analysis using a second, independent dataset.
This dataset, to which we will now on refer as the ABIDE data, is
part of the Autism Brain Imaging Data Exchange I (ABIDE I)
project (Di Martino et al., 2014). It contains resting-state fMRI of
28 healthy controls. Of these subjects, 19 were measured at Cali-
fornia Institute of Technology (Caltech; 4 female, age
28.9 � 11.2 years, mean � SD) and 9 subjects at Carnegie Mellon
University (CMU; all male, age 27.1 � 6.5 years, mean � SD).
Subjects from the both measurement sites were pooled to form a
single dataset.
The subjects of the ABIDE dataset were selected based on two

criteria. First, we wanted to exclude children younger than 17 years
since our in-house dataset does not contain children and the brain
networks are known to change by age. Second, to pool the subjects
together, their data needed to be acquired with the same repetition
time (TR), which in this case was 2.0 s. We picked across ABIDE I
measurement sites the maximum number of adult subjects with a
TR relatively close to the one used for collecting the in-house data-
set (1.7 s).
For further details of the ABIDE data, including the subject IDs

and detailed data acquisition parameters, see Appendix S1.

Results

Spatial smoothing increases weights of short links

As functional brain networks are commonly built using Pearson cor-
relation coefficients of ROI time series as link weights between
ROIs and then thresholded, their structure is sensitive to any prepro-
cessing method that affects link weights non-uniformly. To see if
spatial smoothing has similar effects on all links, we investigated
the weight of each link as a function of its physical length. The
strongest links of the network are physically short (Fig. 1A), as
expected on the basis of earlier studies (Alexander-Bloch et al.,
2012b; Stanley et al., 2013). The only exception to this observation
is the strong links connecting the same ROIs in opposite hemi-
spheres (say, left and right frontal poles) that have also been
reported in the literature (Anderson et al., 2010). Short links are
affected by spatial smoothing more strongly than longer links: the
weights of short links increase the most (Fig. 1B). Therefore, spatial
smoothing alters the distributions of link lengths in thresholded net-
works (Fig. 1C; d = 10%) and may change which links are
included.
The reason for the weight increase of short links is that spatial

smoothing mixes signals across ROI boundaries, between close vox-
els that belong to neighboring ROIs. This mixing is limited in range
to the kernel width, and therefore voxels that are separated by
longer distances are not directly affected.

Spatial smoothing increases the degrees of small ROIs

Next, we investigated whether the effects of smoothing on nodes are
uniform. As the ROI sizes vary widely in the HO parcellation used
here (Fig. 2A), we ask if spatial smoothing affects ROIs of different
size differently.
As stated above, smoothing increases the weights of links

between spatially adjacent ROIs. The signal of each ROI is a mix-
ture of the signals of voxels in the interior of the ROI and the mixed
voxel signals originating from the ROI boundary area (i.e., voxels
adjacent to at least one voxel in a different ROI). In small ROIs,
this boundary area is relatively large when compared to larger ROIs.
This suggests that spatial smoothing has different effects on the net-
work connectivity of small and large ROIs.
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Fig. 1. Spatial smoothing makes short and strong links stronger. (A) Regions of Interest (ROIs) that are close to each other have, on average, higher correla-
tions, as seen from the dependence of link weights on the distance of the centroids of the ROIs. Smoothing increases the majority of the correlations. ROI–ROI
correlations are averages over 13 subjects. Lines are bin averages and crosses mark correlations between the same areas in the different hemispheres. Colors
and line types indicate smoothing kernel size (see panel B for legend). (B) Link weights at each smoothing level are compared to weights obtained from non-
smoothed data as a function of distance. Intuitively, the weight of short links increases more than the weight of long-distance links. For calculating the differ-
ences in link weight, Fisher’s Z-transform has been used (see Methods section for details). (C) Distributions of link lengths in network thresholded at 10%.
[Colour figure can be viewed at wileyonlinelibrary.com].
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smoothing the voxel-level signals using kernels with different full width at half maximum (FWHM) (5, 8, and 12 mm). The degree values of the non-smoothed
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thresholded to 10% link density. All degrees are averages over the networks of 13 subjects. [Colour figure can be viewed at wileyonlinelibrary.com].
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We test this hypothesis by investigating the degrees of ROIs,
that is, their numbers of network neighbors, in networks thresh-
olded to 10% density. Because of thresholding, the degree is deter-
mined by link weights: only links with high enough weight pass
the threshold and contribute to node degree. Figure 2B displays
the degrees as a function of ROI size when different levels of spa-
tial smoothing are applied. As expected, the degrees of small ROIs
are increased: signal mixing across ROI boundaries leads to higher
weights of links of small ROIs. As the total number of links in
the thresholded network is constant, the degrees of larger ROIs
decrease as the width of the smoothing kernel increases. The Pear-
son correlation coefficient between ROI size and degree change
quantifies this observation (FWHM5: r = �0.55, p � 10�5;
FWHM8: r = �0.53, p < 10�5; FWHM12: r = �0.57, p < 10�5):
degrees of small ROIs increase, while for large ROIs the degree
change is negative.

Network centrality measures are distorted by spatial
smoothing

Many network properties of nodes are heavily affected by node
degree. Because smoothing has non-uniform effects on the degrees
of ROIs, we expect to see non-uniform changes in other network
properties as well. We focus on the relationship between network

properties and the anatomical layout of the ROI network. For each
ROI, we computed the most commonly used centrality measures:
degree as above (Fig. 3), degree rank (Fig. 4), and eigenvector cen-
trality (Fig. 5), for different levels of smoothing.
In a network thresholded to a fixed density (here, 10%), spatial

smoothing cannot change the mean degree. However, it affects the
shape of the degree distribution: while both the maximum and mini-
mum degrees increase with smoothing, the median degree decreases,
which increases the skewness of the distribution (for details, see
Appendix S2 and Table S1).
This indicates that there are more ROIs with decreasing than with

increasing degree, that is, the degree of a few ROIs increases and
the degrees of most of other ROIs decreases to compensate for this
change. Indeed, when we visualized the values of these measures at
locations corresponding to the anatomical coordinates of the ROI
centroids (Fig. 3), the largest changes were observed in some ROIs
in the temporal lobes and their vicinity. In contrast, connections
were weakened or lost between most other areas.
The degree and eigenvector centrality were strongly correlated at

all levels of smoothing (Pearson correlation coefficient FWHM0:
r = 0.91, p � 10�5; FWHM5: r = 0.91, p � 10�5; FWHM8:
r = 0.90, p � 10�5; FWHM12: r = 0.90, p � 10�5). Therefore, it
is not surprising that we obtained mostly similar results as for
degree (Fig. 5; for details, see Appendix S2 and Table S1).

Fig. 4. The ‘hubness’ of the nodes in the temporal lobes, measured in terms of their degree ranks, is increased by smoothing. The values of ranks and rank
changes are shown as node labels. The networks corresponding to smoothing kernels of full width at half maximum (FWHM) 5, 8, and 12 mm display differ-
ences as compared to the network for non-smoothed data, similarly to Fig. 3. [Colour figure can be viewed at wileyonlinelibrary.com].
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Spatial smoothing dramatically changes the ‘hubness’ of some
nodes (Fig. 4): the degree ranks of some temporal, frontal, and parietal
ROIs increased while they decreased for some occipital ROIs and mid-
line regions as well as for the frontal poles. In particular, the degree
ranks increased for the left and right superior temporal gyrus (anterior
division), left and right middle temporal gyrus, left frontal operculum
gyrus, right parietal operculum gyrus, and left and right planum
polare. Areas that decreased most in degree rank included the left and
right frontal pole, right superior frontal gyrus, superior and inferior
division of left lateral occipital cortex, inferior division of right lateral
occipital cortex, and anterior division of left and right cingulate gyrus.
Regions of interest that are hubs of the network are often

assumed to be central in the transfer and processing of information
during the given task. Because of this, the observed changes in the
degree ranks may dramatically change the interpretation of the
functional roles of different ROIs in the network.

Smoothing may disconnect brain areas in the functional
networks

So far, we have investigated the effects of spatial smoothing on sin-
gle nodes and links. Next, we ask whether spatial smoothing also
changes the overall structure of the functional network. To this pur-
pose, we extracted the LCCs of the networks at low density (3%,

137 links) (Fig. 6; see Methods). The LCC forms the functional
core of the network; purely from the network point of view, all
flows of information are constrained to take place within connected
components only. Therefore, if some set of nodes drops out from
the LCC, the interpretation of its functional role changes dramati-
cally.
In particular, we investigated the probability of nodes to belong

to the LCC across subjects, that is, the fraction of subjects that have
the ROI in their LCC. Without spatial smoothing, a small number
of ROIs had a high probability of belonging to the LCC. At the
same time, many nodes had moderate probabilities only and were
spatially spread out, indicating a high level of variation in network
structure across subjects. However, spatial smoothing decreased this
variation: for a FWHM of 12 mm, the LCCs of virtually all partici-
pants comprised ROIs from the temporal lobes and neighboring
areas. To the contrary, the occipital and frontal ROIs that in the
absence of smoothing had nonzero LCC probabilities were cut out
from the LCC when smoothing was applied.
The significance of this result is that when the network is thresh-

olded to low density, retaining only the strongest connections,
smoothing can change which parts of brain networks are included in
the largest component. With higher densities, almost all nodes
belong to the LCC, and smoothing only affects how strongly differ-
ent areas are connected.

Fig. 5. Changes in eigenvector centralities of nodes due to smoothing reflect the changes in degree and degree ranks, as the largest increase is concentrated
around the temporal lobes. In contrast to Figs 3 and 4, node and link colors indicate absolute values of eigenvector centrality and link prevalence instead of
differences. [Colour figure can be viewed at wileyonlinelibrary.com].
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Discussion

Spatial smoothing changes the identity of hubs of the
functional brain network

In this study, we have investigated whether the use of spatial
smoothing alters the structure of functional brain networks. It has
been known that smoothing affects the properties of voxel-level net-
works, but these effects have been suggested to be smaller at the
ROI level (van den Heuvel et al., 2008; Zalesky et al., 2012). How-
ever, our results with two independent data sets show that spatial
smoothing has significant effects on ROI-level networks built using
the anatomical HO atlas, resulting in artefacts and network features
that depend on the parameters of the applied smoothing process.
While increased numbers of subjects or additional data sets might
reveal detailed effects of smoothing on particular nodes or links, our
results clearly point out that spatial smoothing has unwanted side
effects on functional brain networks.
Applying spatial smoothing means that voxel signals are aver-

aged, both within and across the boundaries of ROIs. Therefore,
smoothing makes the time series of ROIs more similar. However,
the effects of smoothing are not limited to increasing the correlation
between time series of physically adjacent ROIs. Rather, smoothing
has also highly nontrivial effects at the level of the whole network.
In particular, we have observed increased degree and eigenvector

centrality in small ROIs. Because the degree and eigenvector

centrality are commonly used to identify the hubs of functional
brain networks (Rubinov & Sporns, 2010; Zuo et al., 2012), this
means that different nodes may be seen as hubs depending on
whether smoothing is applied or not.
As smoothing increases the centralities of small ROIs, they are

more likely to be considered as hubs. This is at least partially
explained by their size: small ROIs have large boundary area rela-
tive to their volume, and therefore their time series are the ones that
are most affected when voxel signals originating at different ROIs
are mixed by smoothing.

Spatial smoothing changes the structure of functional brain
networks

Because spatial smoothing increases the correlation between the
time series of ROIs, link weights are generally increased in the
ROI network. However, this effect is not uniform across the links:
the weights of physically short links increase the most, while
longer links are less affected. Therefore, when the network is
thresholded to a constant density, smoothing increases the
proportion of short links.
Short links are typically located in tightly connected clusters of

brain areas. To adopt the terminology of Tononi et al. (1994) and
Sporns (2013b), spatial smoothing increases the segregation and
decreases the integration of functional brain networks: connectivity

Fig. 6. Spatial smoothing disconnects the frontal and occipital Regions of Interest (ROIs) from the largest connected component (LCC). Node colors indicate
how frequently a certain ROI belongs to the LCC in the networks of 13 subjects. Networks are thresholded to 3% density. [Colour figure can be viewed at
wileyonlinelibrary.com].
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within local clusters is increased whereas connections between such
clusters get weaker. Yet effective information processing in the brain
requires both integration and segregation (Sporns, 2013b), and espe-
cially the longer and weaker links between local clusters are of cru-
cial importance (Gallos et al., 2012). It is exactly these links whose
strength and importance are downplayed by spatial smoothing.

Spatial smoothing decreases inter-subject variation

The LCC presents the core of the functional brain network. In non-
smoothed data, LCCs differ between the networks of different sub-
jects, whereas after smoothing the LCCs are more similar for all
subjects. In other words, spatial smoothing reduces the diversity
between subjects. This may be a desired effect in some studies.
However, is there really a core of the functional brain network that
is universal across subjects? After spatial smoothing, ROIs may
belong to the LCC not because of their true centrality but because
of the side effects of smoothing.
The decrease of inter-subject variation raises the question whether

variation is also decreased between subject groups that are supposed
to be different, for example, patients and controls. This should be
tested in further experiments, where the differences in network struc-
ture between two groups are measured with and without spatial
smoothing. Unfortunately, a comprehensive comparison is made dif-
ficult by the lack of a general way of measuring differences between
networks; typically, they are quantified with methods that have been
tailored for each study.

Is spatial smoothing necessary for ROI-level functional
networks?

Spatial smoothing is often used as a part of the preprocessing pipe-
line prior to functional brain network analysis partly for historical
reasons: the advantages of spatial smoothing in standard GLM anal-
ysis are beyond dispute and smoothing therefore belongs to the stan-
dard set of fMRI preprocessing tools (Mikl et al., 2008). Further,
the effects of spatial smoothing, mainly the increase of SNR due to
averaging voxel signals, have been thought to be advantageous in
network neuroscience as well.
It is worth noting that in the ROI approach, a lot of signals are

averaged whether smoothing is applied or not, to form the time ser-
ies that represent ROI activity. Further, unlike spatial smoothing,
this averaging does not mix signals that belong to different ROIs.
Therefore, one may question what advantage could be gained by the
additional averaging due to spatial smoothing.

Conclusion

ROI-level resting-state functional brain networks are affected by spa-
tial smoothing. Spatial smoothing has complex effects on the struc-
ture and properties of the networks, including possible over-emphasis
of strong, short-range links, changes in the identities of hubs of the
network, and decreased inter-subject variation. The ROI approach
already includes averaging, independent of spatial smoothing. There-
fore, there is no specific reason for applying spatial smoothing.

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:

Appendix S1. Supplementary Methods: algorithm for calculating
eigenvector centrality; details of the ABIDE data.
Appendix S2. Supplementary Results: Analysis repeated for the
ABIDE data. Figures below visualize these results.
Fig. S1. Short, strong links get stronger when spatial smoothing is
applied.
Fig. S2. Spatial smoothing increases degrees of small ROIs.
Fig. S3. Spatial smoothing increases degrees of temporal and occipi-
tal ROIs.
Fig. S4. Spatial smoothing increases the “hubness”, measured by
degree rank, of ROIs in temporal and occipital lobes.
Fig. S5. Spatial smoothing changes eigenvector centrality values of
nodes.
Fig. S6. Spatial smoothing changes the structure of the LCC.
Table S1. Names and sizes of ROIs and detailed numerical results
about the effects of spatial smoothing.
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