
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Ding, Jianqiang; Wu, Taoran; Liang, Zhen; Xue, Bai
PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python

Published in:
Formal Methods - 26th International Symposium, FM 2024, Proceedings

DOI:
10.1007/978-3-031-71177-0_10

Published: 01/01/2025

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Ding, J., Wu, T., Liang, Z., & Xue, B. (2025). PyBDR: Set-Boundary Based Reachability Analysis Toolkit
in Python. In A. Platzer, K. Y. Rozier, M. Pradella, & M. Rossi (Eds.), Formal Methods - 26th International
Symposium, FM 2024, Proceedings (pp. 140-157). (Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14934 LNCS). Springer.
https://doi.org/10.1007/978-3-031-71177-0_10

https://doi.org/10.1007/978-3-031-71177-0_10
https://doi.org/10.1007/978-3-031-71177-0_10

PyBDR: Set-Boundary Based
Reachability Analysis Toolkit in Python

Jianqiang Ding1,2(B) , Taoran Wu2,3 , Zhen Liang4 , and Bai Xue2,3

1 Aalto University, Espoo, Finland
jianqiang.ding@aalto.fi

2 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing, China
dingjianqiang0x@gmail.com, {wutr,xuebai}@ios.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China
4 National University of Defense Technology, Hunan, China

liangzhen@nudt.edu.cn

Abstract. We present PyBDR, a Python reachability analysis toolkit
based on set-boundary analysis, which centralizes on widely-adopted set
propagation techniques for formal verification, controller synthesis, state
estimation, etc. It employs boundary analysis of initial sets to mitigate
the wrapping effect during computations, thus improving the perfor-
mance of reachability analysis algorithms without significantly increasing
computational costs. Beyond offering various set representations such
as polytopes and zonotopes, our toolkit particularly excels in interval
arithmetic by extending operations to the tensor level, enabling effi-
cient parallel interval arithmetic computation and unifying vector and
matrix intervals into a single framework. Furthermore, it features sym-
bolic computation of derivatives of arbitrary order and evaluates them
as real or interval-valued functions, which is essential for approximat-
ing behaviours of nonlinear systems at specific time instants. Its modu-
lar architecture design offers a series of building blocks that facilitate
the prototype development of reachability analysis algorithms. Com-
parative studies showcase its strengths in handling verification tasks
with large initial sets or long time horizons. The toolkit is available at
https://github.com/ASAG-ISCAS/PyBDR.

1 Introduction

Reachability analysis, which mainly involves the computation of reachable sets,
is an essential tool for rigorously determining the behavior of dynamical systems
across different scenarios. It serves as the foundation for applications such as for-
mal verification [6,23,36], controller synthesis [29,34], and state estimation [1].
While the precise reachable set can be characterized using sublevel sets of solu-
tions to Hamilton-Jacobi (HJ) equations [13,27], the necessity of discretizing state

J. Ding and T. Wu—These authors contribute equally to this work.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 140–157, 2025.
https://doi.org/10.1007/978-3-031-71177-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_10&domain=pdf
http://orcid.org/0000-0003-0705-0345
http://orcid.org/0000-0003-3398-0466
http://orcid.org/0000-0002-1171-7061
http://orcid.org/0000-0001-9717-846X
https://github.com/ASAG-ISCAS/PyBDR
https://doi.org/10.1007/978-3-031-71177-0_10

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 141

Initial Set
Final Set

Target Set

Unsafe Set

Unsafe Set
Approximated Reachable Set

Trajectory

Fig. 1. Reachability analysis based on set propagation techniques.

space for numerical solving, limit their applicability to high-dimensional dynamic
systems due to the escalating computational expenses linked to dimensionality.
These limitations have led the control community to prefer using approximate
strategies for reachability analysis, such as set propagation techniques [4].

The set propagation method, depicted in Fig. 1, extends the numerical
solution of ordinary differential equations (ODEs) by using sets to represent
solutions rather than precise numerical values. This method commences from
an initial state set and iteratively computes sets to encompass all possible
system states, thus supports the verification of specific properties like safety
[3,9,12,16,17,22,30]. To expedite set operations, the method employs represen-
tations such as intervals, polytopes, and zonotopes to over-approximate the exact
reachable set. However, the cumulative error from successive iterations, known
as the wrapping effect [28], can lead to overly conservative state estimations,
particularly for large initial sets or large time periods, potentially causing ver-
ification failures. While partitioning the initial set or adjusting the step size
can mitigate wrapping effect errors, this simple strategy often incurs substantial
computational expenses, rendering it impractical for refining the conservative
estimates of existing reachability analysis algorithms. On the other hand, the
shared algorithmic structure of set-propagation methods often allows further
advancements to be built upon improving specific steps rather than overhaul-
ing the entire design. However, implementing such customized algorithms often
deviate from the primary objective of existing reachability analysis tools, which
prioritize user-friendly interfaces over the creation of developer-centric platforms
conducive to innovative algorithmic research and development.

In this work, we introduce PyBDR, our prototype toolkit for set-boundary-
based reachability analysis, developed in Python. PyBDR includes advanced
set-boundary propagation methods designed to enhance reachability analysis
capabilities, particularly for large initial sets and long time horizons. Based on
the homeomorphism property of the solution mapping for ODEs satisfying Lip-
schitz conditions, the set-boundary propagation method propagates only the
boundary of the initial set rather than the entire initial set itself to conduct
reachability analysis [37,38]. Because the measure (or, volume) of the bound-
ary is much smaller than the one of the entire initial set, the set-boundary

142 J. Ding et al.

propagation method will induce a smaller wrapping effect efficiently. Further-
more, to support algorithm development, we envision a paradigm where devel-
opers are empowered with a suite of accessible, modular, and versatile building
blocks, such as the design of Interval Tensors. These crafted blocks aim to facil-
itate and streamline the iterative refinement of innovative reachability analysis
algorithms. As illustrated in Fig. 2, the architecture of PyBDR features the fol-
lowing three core modules:

– geometric module: The geometric module enriches the toolkit by incor-
porating established conventional set representations such as intervals, poly-
topes, and zonotopes. It innovatively advances interval arithmetic to the ten-
sor level with the aid of a broadcasting mechanism. This advancement enables
the parallelization of operations and provides a unified framework for manip-
ulating vector intervals, matrix intervals, and interval matrices.

– dynamic module: In addition to supporting linear systems, the dynamic
module is specifically designed to manage nonlinear systems. It facilitates
arbitrary-order derivative evaluation through symbolic computation, thereby
enabling the approximation of nonlinear systems using Taylor series expan-
sions to arbitrary degrees.

– utility module: To assist in the implementation of reachability analysis
algorithms, we have encapsulated interfaces for commonly used optimiza-
tion methods and included a visualizer module for displaying computational
results.

In addition to a modular architectural design, we also conducted a compre-
hensive evaluation of potential programming languages aligned with our objec-
tives. Matlab, despite its prowess in matrix and symbolic computations, was
dismissed due to its reliance on commercial licensing conflicting with our commit-
ment to open-source principles. Similarly, while C/C++ offer high performance
exemplified by tools like HyPro [33] and Flow* [16], their limited flexibility in
supporting academic research prototypes made them less suitable for our needs.
Although Julia shows promise in scientific computation, its relatively nascent
community and ecosystem compared to Python persuaded us to explore other
options. Ultimately, Python emerged as our choice not only for its user-friendly
syntax and support for rapid prototyping but also for its extensive community
and interoperability, crucial for integrating third-party resources in the develop-
ment of reachability analysis algorithms.

Related Work. Recent developments in reachability analysis have led to a
range of tools emphasizing different strengths. C/C++-based tools such as
SpaceEx [17] and Flow* [16] excel in efficient algorithms for both linear and/or
nonlinear hybrid systems. SpaceEx integrates diverse algorithms for linear sys-
tems, while HyPro [33] focuses on convex set representation similar to LazySets.
Flow* distinguishes itself with Taylor model approximation for nonlinear dynam-
ics. However, these tools often require compilation, which can slow down rapid
prototyping cycles.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 143

In contrast, tools like CORA [3] do not require pre-run compilation, offering
a wide range of algorithms for linear and nonlinear systems, including methods
based on zonotopes and interval arithmetic. Attempts to port CORA’s capa-
bilities to C++ have resulted in tools like CORA/SX and SymReach, which
demonstrate significant speed improvements in specific scenarios.

Python has also gained popularity in reachability analysis tools. HyLAA [8]
provides discrete-time reachability algorithms for linear hybrid systems, while
CommonRoad-Reach [24] combines a Python interface with a C++ core to com-
pute reachable sets and driving corridors for autonomous vehicles in dynamic
traffic, suitable for real-time applications.

Julia, known for its prowess in scientific computing, is exemplified by tools
like JuliaReach [11], which provides efficient algorithms for sophisticated, high-
dimensional problems. Despite Julia’s performance comparable to compiled lan-
guages, its ecosystem is still developing and not as extensive as Python’s.

The shift towards JIT-compiled or interpreted languages such as CORA,
JuliaReach, and HyLAA reflects their flexibility in prototyping, crucial for the
iterative development of algorithms. This trend underscores the community’s
preference for platforms that balance ease of use with computational efficiency.

The remainder of this paper is structured as follows. We in Sect. 2 detail the
architecture and features of PyBDR. In Sect. 3, we illustrate the performance of
our tool PyBDR. Finally, we conclude this work in Sect. 4.

2 Architecture and Features

2.1 Architecture

In this section, we present an integrated framework of our prototype tool
designed to enhance the computational processes involved in reachability anal-
ysis. The framework revolves around three core modules: the geometric module,
the dynamic module, and the utility module, as illustrated in Fig. 2. By leverag-
ing the functionality of these three modules, we have integrated the implemen-
tation of several reachability analysis algorithms [2,7,37,38]. These implemen-
tations not only facilitate code reuse for the development of advanced methods
but also showcase the tool’s potential in supporting the creation of innovative
algorithms.

Geometric Module. The geometric module of PyBDR offers various set rep-
resentations, including intervals, polytopes, and zonotopes, aiming to strike a
balance between computational efficiency and the precision of reachable set com-
putations. This module provides essential operations for arithmetic operations
among sets, such as Minkowski addition [21] and linear transformations. More-
over, the module supports geometric operations for converting between different
set representations and computing their enclosures. A significant feature high-
lighted in Fig. 3 is the boundary extraction interface. This interface enables the
over-approximation of the boundary of an entire set using a collection of smaller

144 J. Ding et al.

Reachability Analysis

Geometric

Dynamic

Interval Arithmetic

Visualizer Optimizer

Symbolic
Derivation

Linerar

Nonlinear

System

Neural ODE

Utility

Interval Tensor

Polytope

Zonotope

Representation Operation

Arithmetic

Conversion

Enclosure

Boundary
Analysis

Fig. 2. Hierarchical module design in PyBDR. Solid arrows indicate functional depen-
dencies and essential modules are highlighted with a light blue fill. (Color figure online)

geometric entities, thereby facilitating set-boundary propagation based reacha-
bility analysis. To our knowledge, PyBDR is the first reachability analysis toolkit
to offer interfaces for boundary over-approximation of convex sets like zonotopes,
intervals, and polytopes.

Dynamic Module. The dynamic module of PyBDR supports the definition of
various types of systems, including continuous time-invariant linear systems, con-
tinuous nonlinear systems, and network-structured nonlinear systems. A notable
capability of this module is its ability to analyze the behavior of Neural Ordi-
nary Differential Equations (Neural ODEs) [14]. These systems adhere to home-
omorphic mappings and can incorporate control inputs, expanding the scope of
traditional reachability analysis methods.

Utility Module. The design of the utility module in PyBDR aims to offer inter-
faces for convex optimization problems tailored to diverse algorithmic require-
ments. Additionally, this module provides visualization functionalities that allow
for graphical display of computed reachable sets. These visualizations enable
users to intuitively analyze and evaluate the performance of the algorithm.

To provide a comprehensive overview of the advancements introduced by
our tool PyBDR in reachability analysis, we present a comparative summary in
Table 1. This table outlines the key characteristics of state-of-the-art reachability
analysis tools alongside those of PyBDR, emphasizing the unique features and
capabilities of our toolkit.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 145

Table 1. Comparison of reachability analysis tools

Tool Supported
Systems

Principal
Set Repre-
sentation

Language Additional
Features

License Latest Release

PyBDR Linear
ODEs
Nonlinear
ODEs
Neural
ODEs

Interval,
Polytopes,
Zonotopes

Python Boundary
Analysis,
Interval
Tensor,
Symbolic
differentia-
tion

GPLv3 2024/04/14

CORA Linear
ODEs
Nonlinear
ODEs
Hybrid
Systems
Neural
Netoworks

Intervals,
Polytopes,
Zonotopes,
Taylor
Models,
Polynomial
Zonotopes

MATLAB Conversion
Interfaces
with Other
Tools

GPLv3 2024/07/01

JuliaReach Linear
ODEs
Nonliear
ODEs
Hybrid
Systems

Zonotopes,
Polyhedra,
Taylor
Models

Julia Lazy Sets MIT 2023/08/30

HyLAA Hybrid
Systems
with Linear
ODEs

Generalized
Star Repre-
sentation

Python Simulation
Equivalent

GPLv3 2019/08/01

HyPro Nonlinear
Hybrid
Systems

Box,
Polytope,
Zonotope

C++ Inexact and
Exact Com-
putation

MIT 2023/09/06

Flow* Nonlinear
Hybrid
Systems

Taylor
Model

C++ Adaptive
Technique

GPLv3 2017/03/09

2.2 Features

Boundary Analysis. ODEs satisfying Lipschitz conditions ensure the unique-
ness of evolutionary trajectories from initial states. This property, illustrated
in Fig. 3, guarantees a boundary correspondence between the initial set and its
reachable set throughout the system’s evolution [37–39]. That is, the set reach-
able from the initial set’s boundary is equal to the boundary of the initial set’s
reachable set. Therefore, the boundary of the reachable set is determined by
the boundary of the initial set. A significant feature of our tool is its capability
to enhance existing reachability analysis methods by focusing on the boundary

https://github.com/ASAG-ISCAS/PyBDR
https://tumcps.github.io/CORA/
https://juliareach.github.io
https://github.com/stanleybak/hylaa
https://hypro.github.io/hypro/
https://flowstar.org

146 J. Ding et al.

analysis of the initial set. To support this capability, we have developed boundary
extraction features for various common set representations.

Initial Set Reachable Set

Boundary-inclusive Boxes

Trajectory

Fig. 3. Illustration of reachability analysis utilizing boundary analysis.

We offer two methods for boundary extraction, one of which utilizes the
intrinsic boundary solving algorithms internally to handle the extraction of
intrinsic boundaries for intervals and zonotopes [31], such as extracting 4 edges
of a rectangle characterizing a two-dimensional interval.

Additionally, we incorporate the method in Realpaver [18] for boundary
extraction. This method can construct a series of smaller boxes to closely enclose
the exact boundary of the initial set, as depicted in Fig. 3. By strategically reduc-
ing the size of these boxes, we aim to minimize errors introduced by the wrapping
effect. This meticulous selection of smaller boxes allows for a higher precision
characterization of the reachable set’s boundary, thereby reducing discrepancies
between the computed reachable set and the actual evolution of the system.
Figure 4c demonstrates that computing the reachable set using these smaller
entities provides a more precise boundary approximation compared to results
obtained from analyzing the entire initial set directly. This approach offers a
more accurate solution for verification problems.

Listing 1. Third order Lagrange remainder calculation in PyBDR

1 # calculate the Lagrange remainder term of the thrid order in PyBDR

2 xx = Interval.sum((ihx @ tx @ ihx) * ihx, axis=1)

3 uu = Interval.sum((ihu @ tu @ ihu) * ihu, axis=1)

4 err_lagr = (xx + uu) / 6

Listing 2. Third order Lagrange remainder calculation in CORA

1 % calculate the Lagrange remainder term of third order in ←↩
CORA

2 error_thirdOrder_dyn = interval(zeros(obj.dim,1),zeros(obj.←↩
dim,1));

3 for i=1:length(ind)

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 147

4 error_sum = interval(0,0);
5 for j=1:length(ind{i})
6 error_sum = error_sum + (dz.'*T{i,ind{i}(j)}*dz) * dz←↩

(ind{i}(j));
7 end
8 error_thirdOrder_dyn(i,1) = 1/6*error_sum;
9 end

Interval Tensors. Interval arithmetic is an important tool in many reachability
analysis algorithms to incorporate considerations for errors during calculations.
Traditionally applied to intervals, it has been extended to handle more com-
plex data structures such as interval matrices, which represent linear systems
with parametric uncertainties. This extension requires the ability to perform
interval arithmetic operations in a broader context when computing reachable
sets. To address this need, we have developed the Interval Tensor data structure
in PyBDR. Built upon NumPy’s broadcasting mechanism [19], Interval Tensor
provides a versatile representation that seamlessly integrates various interval
computations within a unified framework. This includes operations on interval
vectors, vector intervals, interval matrices, and matrix intervals.

The Interval Tensor in PyBDR is designed to optimize computational effi-
ciency by leveraging vectorized operations that are executed at a lower level in
C, thereby minimizing the use of Python’s for loops. This approach significantly
enhances computational efficiency. Moreover, Interval Tensor relaxes strict shape
requirements on data during computations, allowing for operations like simul-
taneous interval matrix multiplication with scalar matrices, as demonstrated
in Listing 3. By harnessing NumPy’s broadcasting mechanism, Interval Ten-
sor improves ease of programming and enhances code readability. Compared to
traditional approaches that rely heavily on explicit loops, PyBDR’s implemen-
tation, as illustrated in Listings 1 and 2, demonstrates efficient computation
of complex tasks such as computing the Lagrange remainder term of the third
order [2]. This showcases the practical advantages of Interval Tensor in managing
intricate calculations while bolstering code readability and maintainability.

In summary, Interval Tensor not only optimizes computational efficiency
through vectorization but also enhances the clarity and maintainability of algo-
rithms in PyBDR.

Listing 3. Interval tensor matrix multiplication in PyBDR

1 # interval matrix multiplication simultaneously in PyBDR

2 a = Interval.rand(100, 2, 5, 4)

3 b = np.random.rand(4, 9)

4 c = a @ b

5 print(c.shape) # (100, 2, 5, 9)

In addition to enhancing code writing and readability, we compare the per-
formance of PyBDR and CORA in different computational tasks to examine the
average time consumption and accuracy of Interval Tensor in performing interval

148 J. Ding et al.

Table 2. Comparative evaluation of PyBDR and CORA for interval arithmetic oper-
ations.

Operator Functionality ε Avg. Time [s] Input Intervals

CORA PyBDR I I Iδ Iδ

+ addition 0 1.01e−8 4.68e−9 −100 100 0 100

− subtraction 0 4.02e−8 7.28e−9 −100 100 0 100

∗ multiplication 0 1.96e−5 1.54e−8 −100 100 0 100

/ division 0 3.22e−5 4.60e−8 −100 100 0 100

∗∗ power 1.08e−15 1.74e−5 2.93e−8 −100 100 0 100

| | absolute 0 1.30e−8 2.30e−8 −100 100 0 100

@ left matrix multiplication 0 5.74e−5 1.15e−6 −100 100 0 100

right matrix multiplication 0 6.05e−5 1.16e−6 −100 100 0 100

exp exponential 2.15e−16 2.08e−8 1.07e−8 −100 100 0 100

log logarithm 1.99e−14 4.36e−8 8.41e−9 0 100 0 100

sqrt square root 0 2.87e−8 4.17e−9 0 100 0 100

sin sine 1.66e−14 3.69e−7 4.47e−8 −100 100 0 100

cos cosine 6.21e−15 4.26e−8 3.85e−8 −100 100 0 100

tan tangent 1.25e−14 4.03e−8 1.90e−8 −π
2

+ 0.01 0 0 π
2

− 0.01

cot cotangent N/A N/A 4.02e−8 0.01 π
2

0 π
2

− 0.01

arcsin inverse sine 9.78e−16 3.70e−8 2.07e−8 −1 0 0 1

arccos inverse cosine 8.13e−15 3.89e−8 1.73e−8 −1 0 0 1

arctan inverse tangent 3.19e−14 1.61e−8 1.04e−8 −100 100 0 100

sinh hyperbolic sine 2.19e−16 3.72e−9 1.73e−8 −100 100 0 100

cosh hyperbolic cosine 2.20e−16 5.43e−8 5.18e−8 −100 100 0 100

tanh hyperbolic tangent 9.58e−15 1.09e−8 9.19e−9 −1 1 0 1

arcsinh inverse hyperbolic sine 9.29e−15 1.87e−8 2.51e−8 −100 100 0 100

arccosh inverse hyperbolic cosine 1.60e−14 2.72e−8 2.32e−8 1 10 0 10

arctanh inverse hyperbolic tangent 2.82e−15 4.02e−8 2.39e−8 −1 0 0 1
Note: N/A – not available due to the absence of cot implementation in CORA; ε – see (1);

arithmetic operations. CORA was specifically chosen as a baseline due to its use
of MATLAB, an interpretive language, and its focus on supporting reachabil-
ity analysis. It’s important to note that INTLAB [32], a closed-source interval
arithmetic library, was not included in our comparison. Benchmarking CORA
against INTLAB can be found in [5]. All tests were conducted within the identi-
cal physical environment as described in Sect. 3. The time consumption for each
operation was measured by averaging the processing time for N = 104 sets of
data randomly sampled from uniform distributions. The interval data used in the
tests were defined as [I, I + Iδ], where I and Iδ are sampled from intervals [I, I]
and [Iδ, Iδ], respectively. Both PyBDR and CORA utilized the double-precision
data type compliant with the IEEE 754 standard [41]. The experimental set-
tings and test results for all supported interval arithmetic operations by Interval

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 149

Tensor in PyBDR are summarized in Table 2, with the maximum relative error
ε for each test defined as:

ε = max(μ1, . . . , μN), μj =
max |IP,j − IC,j |, |IP,j − IC,j |

IP,j − IP,j

(1)

where [IP,j , IP,j] and [IC,j , IC,j] refer to the bounds for the jth test in PyBDR
and CORA, respectively.

Symbolic Derivatives. Many continuous dynamical systems are typically
described by Ordinary Differential Equations (ODEs), which depict their evo-
lution within a state space [20,40]. Higher-order derivatives are frequently
employed to provide more accurate approximations of system behaviors within
local state neighborhoods. These derivatives often manifest as high-dimensional
data structures. For instance, for a vector-valued function f : Rn → R

m, the
second-order derivatives of f involve tensors of size m×n×n. As many set-based
reachability analysis algorithms strive to approximate system behaviors, com-
puting derivatives at specific time points becomes crucial for accurate approxi-
mations. Higher-order derivatives play a significant role in this process, allowing
for more accurate approximations within local state neighborhoods. However,
the computational overhead associated with calculating derivatives increases
exponentially with their order, necessitating careful consideration in practical
implementations. Unlike real-valued derivative evaluations, reachability analysis
algorithms often rely on interval arithmetic. This approach is essential for esti-
mating bounds that encompass exact values, accommodating potential errors
inherent in real-world systems, and ensuring rigorous formal guarantees in anal-
ysis. Existing reachability analysis tools typically provide limited data structures
for managing these complex operations efficiently. This limitation can lead to
challenges in implementing theoretically straightforward operations, introduc-
ing unnecessary complexity and potentially compromising code readability and
maintainability.

In response to the computational challenges posed by reachability analysis
and the limitations of existing tools, our toolkit PyBDR integrates SymPy [26],
providing a streamlined interface for evaluating and differentiating vector-valued
functions effortlessly. This integration allows for precise handling of higher-order
derivatives essential for accurate system behavior approximation. Moreover, our
methodology leverages the interval tensor discussed earlier, enabling evaluations
and derivatives within the framework of interval arithmetic, thereby enhancing
operational convenience and adaptability. To assess the effectiveness of our app-
roach, we provide detailed performance evaluations in Table 3 when handling
data of varying scales across different systems.

150 J. Ding et al.

Table 3. Performance evaluation of derivative computations in PyBDR.

System Dimension Mode Run Order Avg. Time [s]

Input X Input U Output w.r.t. X w.r.t. U

ltv [16] 3 4 3 REL 1 0 5.58e−3 1.83e−3

2+ 0 7.56e−6 5.33e−6

1 1 1.02e−2 2.61e−3

2+ 1 5.42e−6 4.63e−6

1 3 3.03e−2 6.21e−2

2+ 3 1.17e−5 1.83e−5

INT 1 0 2.26e−3 2.05e−3

2+ 0 2.01e−4 2.30e−4

1 1 2.47e−3 9.17e−4

2+ 1 1.56e−4 2.75e−5

1 3 1.48e−2 2.38e−2

2+ 3 1.64e−4 2.07e−4

Tank6eq [7] 6 1 6 REL 1 0 8.87e−3 3.49e−3

2+ 0 1.06e−5 1.04e−5

1 1 2.81e−2 1.82e−3

2+ 1 1.10e−5 4.84e−6

1 3 3.56e−1 4.44e−3

2+ 3 9.55e−5 6.22e−6

INT 1 0 4.94e−3 4.97e−3

2+ 0 3.98e−4 4.35e−4

1 1 6.70e−3 6.80e−4

2+ 1 5.31e−4 2.19e−5

1 3 1.68e−1 2.40e−3

2+ 3 2.03e−3 3.37e−5

Quadrocopter [10] 12 3 12 REL 1 0 1.49e−2 9.01e−3

2+ 0 2.57e−5 2.66e−5

1 1 9.49e−2 6.49e−3

2+ 1 6.72e−5 7.16e−6

1 3 5.28 1.05e−1

2+ 3 4.01e−3 3.36e−5

INT 1 0 1.76e−2 1.48e−2

2+ 0 2.51e−3 2.51e−3

1 1 2.40e−2 3.10e−3

2+ 1 5.69e−3 6.03e−5

1 3 2.67 4.98e−2

2+ 3 7.29e−2 3.95e−4

Lac Operon [15] 2 0 2 REL 1 0 9.66e−3 −
2+ 0 7.61e−6 −
1 1 4.71e−2 −
2+ 1 1.44e−5 −
1 3 2.82 −
2+ 3 1.09e−4 −

INT 1 0 5.80e−3 −
2+ 0 4.32e−4 −
1 1 1.88e−2 −
2+ 1 1.81e−3 −
1 3 1.02e−1 −
2+ 3 1.63e−2 −

Note: X – states of the systems; U – control inputs of the systems; INT
– interval arithmetic; REL – real number arithmetic; 2+ – second run
and all subsequent runs.

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 151

3 Evaluation

To illustrate the advancements facilitated by the set-boundary propagation tech-
nique implemented in PyBDR for reachability analysis, we conducted two sets
of case studies. In the first category of case studies, we compared the perfor-
mance of PyBDR when computing reachable sets using the set-boundary prop-
agation technique against a baseline method employing a simple partitioning
on the entire initial set. This comparison aimed to demonstrate the efficiency
gains and accuracy improvements achieved through the set-boundary propaga-
tion technique. In the second category of case studies, we benchmarked PyBDR
against CORA, a tool developed in MATLAB that also utilizes set propagation
techniques for reachability analysis. This benchmarking focused on scenarios
involving large initial sets and long time horizons, specifically in the context of
safety verification for nonlinear systems. We ensured experimental fairness and
parameter consistency by employing conservative linearization method [7] across
all computations.

All experiments were performed on a Windows system equipped with an i7-
13700H 2.1 GHz CPU with 32 GB RAM. Parallel operations were performed
using 4 cores.

3.1 Comparative Studies on the Use of Boundary Analysis

Consider a Lotka-Volterra model of 2 variables [15] as follows,

ẋ0 = 1.5x0 − x0x1 (2)
ẋ1 = −3x1 + x0x1 (3)

Fig. 4. Reachable sets via simple partition (blue), boundary analysis (green), and base-
line method without partition or boundary analysis (orange); N–number of cells, T–
runtime in seconds. (Color figure online)

When starting with an initial set [2.5, 3.5] × [2.5, 3.5] and step size 0.005,
the reachable set over time horizon [0, 2.2] using different levels of partitioning

152 J. Ding et al.

over the initial set and based on boundary analysis is illustrated in Fig. 4. It
is evident that as the simple partitioning method is applied to the initial set
with increasing precision, smaller subsets are used for reachability analysis. This
reduction in volume effectively reduces the error introduced by the wrapping
effect, thereby mitigating the divergence of the reachable set over the speci-
fied time horizon. In contrast, the set-boundary propagation technique achieves
a comparable improvement in the conservatism of reachability analysis using
a limited number of cells that specifically enclose the boundary of the initial
set. This approach provides a computationally efficient alternative to simple
partitioning, demonstrating its effectiveness in advancing reachability analysis
methods.

3.2 Comparative Studies on Reachability Analysis

Fig. 5. Reachable sets obtained with CORA (orange) and PyBDR (blue). (Color figure
online)

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 153

We benchmarked our performance against CORA on various continuous non-
linear dynamic systems, including Neural ODEs (NODEs), as listed in Table 4.
Similarly, we applied the simple partition technique as in Subsect. 3.1 to improve
the performance of CORA in reachability analysis. In our setup, PyBDR runs
on 4 cores in parallel for specific operations, while CORA is single-threaded by
its design. The runtimes in Table 4 refer to wall time, including I/O and other
overheads, to compare overall performance in reachable set computation. For

Table 4. Reachability analysis comparison on continuous benchmarks

System δ X0 T ε Fig. PyBDR CORA

Cells Time [s] Cells Time [s]

Vanderpol 0.01 [0.9, 1.9] × [1.9, 2.9] 5.00 0.50 — 2 × 4 N/A 2 × 2 N/A

0.33 — 3 × 4 44.80 3 × 3 N/A

0.25 5a 4 × 4 47.98 4 × 4 44.30

[0.9, 1.9] × [1.9, 2.9] 9.00 0.20 — 5 × 4 N/A 5 × 5 N/A

0.17 — 6 × 4 193.24 6 × 6 N/A

0.14 — 7 × 4 237.23 7 × 7 N/A

0.12 — 8 × 4 239.25 8 × 8 N/A

0.11 5b 9 × 4 243.09 9 × 9 614.03

[1.0, 1.8] × [2.0, 2.8] 7.00 0.27 — 3 × 4 N/A 3 × 3 N/A

0.20 — 4 × 4 108.98 4 × 4 N/A

0.16 5c 5 × 4 114.80 5 × 5 174.66

[0.8, 2.0] × [1.8, 3.0] 7.00 0.24 — 5 × 4 N/A 5 × 5 N/A

0.20 — 6 × 4 155.25 6 × 6 N/A

0.17 — 7 × 4 164.23 7 × 7 N/A

0.15 — 8 × 4 180.60 8 × 8 N/A

0.13 5d 9 × 4 183.96 9 × 9 470.03

Brusselator [15] 0.01 [−0.1, 0.1] × [3.9, 4.1] 5.00 0.07 — 3 × 4 N/A 3 × 3 N/A

0.05 — 4 × 4 81.70 4 × 4 N/A

0.04 5e 5 × 4 91.96 5 × 5 166.42

Synchronous Machine [35] 0.01 [−0.7, 0.7] × [2.3, 3.7] 7.00 0.33 — 3 × 4 N/A 3 × 3 N/A

0.25 — 4 × 4 99.73 4 × 4 N/A

0.20 — 5 × 4 153.37 5 × 5 N/A

0.17 5f 6 × 4 159.76 6 × 6 262.63

Lorenz [15] 0.02 [−11, 3] × [−3, 11] × [−3, 11] 1.00 2.33 — 6 × 6 × 6 N/A 6 × 6 × 6 N/A

2.00 — 7 × 7 × 6 356.75 7 × 7 × 7 N/A

1.75 5g 8 × 8 × 6 439.95 8 × 8 × 8 416.92

(NODE) Spiral 1 [25] 0.1 [0, 4] × [−2, 2] 7.00 1.00 — 4 × 4 N/A 4 × 4 N/A

0.80 — 5 × 4 857.26 5 × 5 N/A

0.67 — 6 × 4 914.38 6 × 6 N/A

0.57 — 7 × 4 1009.73 7 × 7 N/A

0.50 5h 8 × 4 1094.89 8 × 8 1080.92

(NODE) Spiral 2 [25] 0.1 [−4, −2] × [−4, −2] 7.00 0.50 — 4 × 4 N/A 4 × 4 N/A

0.40 — 5 × 4 723.42 5 × 5 N/A

0.33 — 6 × 4 885.98 6 × 6 N/A

0.29 — 7 × 4 1121.64 7 × 7 N/A

0.25 5i 8 × 4 1258.13 8 × 8 1549.61

Note: N/A – set explosion; δ – step; X0 – initial set; T – time horizon [0, T]; ε – max width of cell;
Fig. – subfigure index in Fig 4.

154 J. Ding et al.

each system, we present an initial setup that can lead to a set explosion due to
the wrapping effect during computation. On this basis, we reduce the conserva-
tiveness of the reachable set by using a more refined boundary characterization
in PyBDR, and by partitioning the initial set into smaller cells in CORA. It is
noteworthy that since the boundary of sets is dimensionally degenerate relative
to the sets themselves, we constrained cell’s maximum width in both methods
to keep the error introduced by the wrapping effect for each cell within the same
scale.

In Table 4, we observe that for systems with relatively large initial sets and
long time horizons, both PyBDR and CORA suffer from significant errors from
the wrapping effect, which leads to an overestimation of reachable sets. By reduc-
ing cell size, both tools yield more accurate over-approximations of reachable
sets within specified time horizons. Moreover, as shown in Fig. 4, we can always
obtain a more accurate estimation. Notably, despite Python’s inherent limita-
tions in iterative computations when compared to MATLAB, by processing each
cell in parallel, our toolkit still significantly outperforms CORA in terms of
overall computation time, as particularly evidenced by the results presented in
Fig. 5d. In particular, the analysis of the VanderPol system with an initial set
[0.9, 1.9]×[1.9, 2.9] indicates a requirement for finer cell granularity to accurately
approximate the reachable set as the time horizon extends. This refinement leads
to a pronounced increase in computational time for CORA compared to PyBDR.
And this trend persists across different initial set within [0, 7], where the need
for precision intensifies to maintain valid reachable set estimations.

4 Conclusion

In this paper, we presented PyBDR, a Python-based toolkit that enhances the
reachability analysis through set-boundary propagation analysis. Its key features
include advanced set-boundary analysis to mitigate the wrapping effect and the
integration of tensor-level interval arithmetic for efficient computations. Besides,
PyBDR offers a diverse range of set representations and supports symbolic com-
putation of derivatives, crucial for precise system behavior analysis. Built with
Python’s user-friendly environment in mind, PyBDR facilitates rapid prototyp-
ing and accommodates complex computational tasks effectively. Its capabilities
are demonstrated through benchmarking across various nonlinear dynamics sce-
narios.

For future development, our focus will expand to include support for addi-
tional dynamical systems, particularly hybrid systems. We also plan to incorpo-
rate a broader array of set representations, including nonconvex forms such as
polynomial zonotopes. Enhancing user interaction through a user-friendly and
interactive visualization module is another pivotal aspect of our roadmap.

Acknowledgement. This work is funded by the CAS Pioneer Hundred Talents Pro-
gram and Basic Research Program of Institute of Software, CAS (Grant No. ISCAS-
JCMS-202302).

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 155

Data Availability Statement. The artifact for this work is available at https://doi.
org/10.5281/zenodo.12206996, and PyBDR is available at https://github.com/ASAG-
ISCAS/PyBDR.

References

1. Alanwar, A., Said, H., Althoff, M.: Distributed secure state estimation using dif-
fusion Kalman filters and reachability analysis. In: 2019 IEEE 58th Conference on
Decision and Control (CDC), pp. 4133–4139. IEEE (2019)

2. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Proceedings of the 16th International Confer-
ence on Hybrid Systems: Computation and Control, pp. 173–182 (2013)

3. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the 1st and
2nd Workshop on Applied Verification for Continuous and Hybrid Systems, pp.
120–151. EasyChair (2015). https://doi.org/10.29007/zbkv, https://easychair.org/
publications/paper/xMm

4. Althoff, M., Frehse, G., Girard, A.: Set propagation techniques for reachability
analysis. Ann. Rev. Control Robot. Auton. Syst. 4, 369–395 (2021)

5. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.
In: Proceedings of the 3rd International Workshop on Applied Verification for
Continuous and Hybrid Systems, pp. 91–105 (2016)

6. Althoff, M., Rajhans, A., Krogh, B.H., Yaldiz, S., Li, X., Pileggi, L.: Formal verifica-
tion of phase-locked loops using reachability analysis and continuization. Commun.
ACM 56(10), 97–104 (2013)

7. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In: 2008 47th IEEE
Conference on Decision and Control, pp. 4042–4048. IEEE (2008)

8. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, pp. 173–178 (2017)

9. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 20

10. Beard, R.W.: Quadrotor dynamics and control. Brigham Young Univ. 19(3), 46–56
(2008)

11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

12. Bogomolov, S., et al.: Assume-guarantee abstraction refinement meets hybrid sys-
tems. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13338-6 10

13. Chen, M., Tomlin, C.J.: Hamilton-Jacobi reachability: some recent theoretical
advances and applications in unmanned airspace management. Ann. Rev. Con-
trol Robot. Auton. Syst. 1, 333–358 (2018)

14. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary dif-
ferential equations. In: Advances in Neural Information Processing Systems, vol.
31 (2018)

15. Chen, X.: Reachability analysis of non-linear hybrid systems using taylor models.
Ph.D. thesis, Fachgruppe Informatik, RWTH Aachen University (2015)

https://doi.org/10.5281/zenodo.12206996
https://doi.org/10.5281/zenodo.12206996
https://github.com/ASAG-ISCAS/PyBDR
https://github.com/ASAG-ISCAS/PyBDR
https://doi.org/10.29007/zbkv
https://easychair.org/publications/paper/xMm
https://easychair.org/publications/paper/xMm
https://doi.org/10.1007/978-3-319-63387-9_20
https://doi.org/10.1007/978-3-319-13338-6_10

156 J. Ding et al.

16. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

17. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

18. Granvilliers, L., Benhamou, F.: Algorithm 852: Realpaver: an interval solver using
constraint satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138–
156 (2006)

19. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362
(2020). https://doi.org/10.1038/s41586-020-2649-2

20. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (NJ), 3. ed.,
international ed. edn. (2000)

21. Kühn, W.: Zonotope dynamics in numerical quality control. In: Hege, HC., Polth-
ier, K. (eds.) Mathematical Visualization: Algorithms, Applications and Numer-
ics, pp. 125–134. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-
03567-2 10

22. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 40

23. Liang, Z., Ren, D., Liu, W., Wang, J., Yang, W., Xue, B.: Safety verification for
neural networks based on set-boundary analysis. In: David, C., Sun, M. (eds.) Theo-
retical Aspects of Software Engineering, pp. 248–267. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-35257-7 15

24. Liu, E.I., Würsching, G., Klischat, M., Althoff, M.: CommonRoad-Reach: a toolbox
for reachability analysis of automated vehicles. In: 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), pp. 2313–2320. IEEE
(2022)

25. Manzanas Lopez, D., Musau, P., Hamilton, N.P., Johnson, T.T.: Reachability anal-
ysis of a general class of neural ordinary differential equations. In: Bogomolov, S.,
Parker, D. (eds.) Formal Modeling and Analysis of Timed Systems. FORMATS
2022. LNCS, vol. 13465. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-15839-1 15

26. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
e103 (2017). https://doi.org/10.7717/peerj-cs.103

27. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi for-
mulation of reachable sets for continuous dynamic games. IEEE Trans. Autom.
Control 50(7), 947–957 (2005)

28. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall Englewood Cliffs (1966)
29. Park, J., Özgüner, Ü.: Model based controller synthesis using reachability analysis

that guarantees the safety of autonomous vehicles in a convoy. In: 2012 IEEE
International Conference on Vehicular Electronics and Safety (ICVES 2012), pp.
134–139. IEEE (2012)

30. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed:
accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.)
HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26287-1 1

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-662-03567-2_10
https://doi.org/10.1007/978-3-662-03567-2_10
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-031-35257-7_15
https://doi.org/10.1007/978-3-031-15839-1_15
https://doi.org/10.1007/978-3-031-15839-1_15
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-319-26287-1_1

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 157

31. Ren, D., Liang, Z., Wu, C., Ding, J., Wu, T., Xue, B.: Inner-approximate reach-
ability computation via zonotopic boundary analysis. In: To appear in Computer
Aided Verification: 36th International Conference, CAV 2024 (2024)

32. Rump, S.M. (1999). INTLAB — INTerval LABoratory. In: Csendes, T. (eds) Devel-
opments in Reliable Computing. Springer, Dordrecht (1999). https://doi.org/10.
1007/978-94-017-1247-7 7

33. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

34. Schürmann, B.: Using reachability analysis in controller synthesis for safety-critical
systems. Ph.D. thesis, Technische Universität München (2022)

35. Susuki, Y., et al.: A hybrid system approach to the analysis and design of power
grid dynamic performance. Proc. IEEE 100(1), 225–239 (2011)

36. Tang, C., Althoff, M.: Formal verification of robotic contact tasks via reachability
analysis. IFAC-PapersOnLine 56(2), 7912–7919 (2023)

37. Xue, B., Easwaran, A., Cho, N.J., Fränzle, M.: Reach-avoid verification for non-
linear systems based on boundary analysis. IEEE Trans. Autom. Control 62(7),
3518–3523 (2016)

38. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by
polytopes. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
457–476. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 25

39. Xue, B., Wang, Q., Feng, S., Zhan, N.: Over-and underapproximating reach sets
for perturbed delay differential equations. IEEE Trans. Autom. Control 66(1),
283–290 (2020)

40. Yang, B., Stipanovic, D.: Nonlinear Systems: Recent Developments and Advances
(2023)

41. Zuras, D., et al.: IEEE standard for floating-point arithmetic. IEEE Std.
754(2008), 1–70 (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-41528-4_25
http://creativecommons.org/licenses/by/4.0/

