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Abstract
Let 𝛼 ∈ (0, 1). We show that any 𝛼-Hölder homeomor-
phism from the unit circle in the plane to the plane can
be extended to an 𝛼-Hölder homeomorphism from the
whole unit disc.
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1 INTRODUCTION

The well-known Kirszbraun extension theorem tells us that we can extend a Lipschitz mapping
from any subset of ℝ𝑛 into ℝ𝑛 into a Lipschitz mapping of the whole space. However, things get
more difficult once we ask our mapping to be injective as well. Let us denote by 𝔻 the unit disc
in ℝ2 and by 𝜕𝔻 the unit circle. The classical Schoenflies theorem [13, Theorem 10.4] tells us that
any continuous injective mapping 𝜑 ∶ 𝜕𝔻 → ℝ2 can be extended to a homeomorphism from ℝ2

onto ℝ2.
The assumption about injectivity is crucial inmany applications as it corresponds, for example,

to the “noninterpenetration of the matter” in models of nonlinear elasticity, see, for example, Ball
[2]. Similarly, it appears naturally in geometric function theory once we want our extension to be
quasi-conformal as done by Ahlfors [1] or Tukia and Väisälä [17]. Requiring the extension to be
both injective and Lipschitz complicates things even further. Such results were first obtained by
Tukia in [15] and [16].
Recently, these problems became important in the solution of the so-called Ball–Evans approx-

imation problem, that is, given a Sobolev 𝑊1,𝑝 homeomorphism the question is whether there
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exists a sequence of diffeomorphisms (or piecewise-linear homeomorphisms) that approximate
it in the Sobolev norm. This problem was solved in the planar case for 1 < 𝑝 < ∞ by Kovalev,
Iwaniec, and Onninen in [8] and the remaining case 𝑝 = 1 by Hencl and Pratelli in [6], see
also Mora-Corral [14] and Bellido and Mora-Corall [3] for some initial results in this direction
and Daneri and Pratelli [4] for some results about also approximating the inverse mapping. In
many of these results, the main crucial step is to establish some extension theorem from a given
homeomorphism 𝜑 ∶ 𝜕𝔻 → ℝ2 to the homeomorphism ℎ ∶ 𝔻 → ℝ2 (or from 𝜑 ∶ ℝ2 → 𝜕𝔻 to
ℎ ∶ ℝ2 → 𝔻 in [8]) with some control of ∫ |𝐷ℎ|𝑝 or of the Lipschitz constant, see, for example,
Hencl andPratelli [6, Theorem2.1] orDaneri andPratelli [5]. The extension of Sobolev homeomor-
phisms from the boundary attracted a lot of independent attention recently, and we recommend,
for example, [7, 9] or [10] and references given there for further reading.
The planar extension of Lipschitz homeomorphisms from the circle has been recently improved

by Kovalev in [11] and [12], where he was able to obtain a sharp dependence of both the Lipschitz-
and bilipschitz constants of the extension in terms of the constants for the original boundarymap.
Themain aim of the present paper is to study the extension of 𝛼-Hölder homeomorphisms from

the unit circle 𝜕𝔻. A mapping 𝜑 is called 𝛼-Hölder for 𝛼 ∈ (0, 1) if there is 𝐶 > 0 with

|𝜑(𝑥) − 𝜑(𝑦)| ⩽ 𝐶|𝑥 − 𝑦|𝛼 for every 𝑥, 𝑦.
Our main result is the following extension theorem from the unit circle 𝜕𝔻 in the plane.

Theorem 1.1. Let 𝛼 ∈ (0, 1) and let 𝜑 ∶ 𝜕𝔻 → ℝ2 be a homeomorphism that is 𝛼-Hölder con-
tinuous. Then, there is a homeomorphism 𝐻 ∶ 𝔻 → ℝ2 that is 𝛼-Hölder and satisfies 𝐻 = 𝜑 on
𝜕𝔻.

Let us note that it is not possible to use previously known extension procedures. One of the
main reasons is that the Lipschitz-property is local and any locally Lipschitz 𝐻 is globally Lips-
chitz. However, a locally Hölder continuous map (on small scales) might not be globally Hölder
continuous on bigger scales, and thus, we require new ideas.
In our proof, we cut 𝔻 into some dyadic parts and we define our ℎ on those parts separately.

We define images of boundaries of those dyadic parts by somehow “copying” the behavior of 𝜑 on
the boundary nearby. Then, we extend the mapping inside those images by using shortest curves
inside with the help of some ideas from [6]. Since everything is dyadic in the domain, we can
sum the local estimates using a basic geometric series estimate, and we obtain the desired global
Hölder estimate at the end.

2 EXAMPLES AND TECHNICAL LEMMA

In our extension results, we assume that we map a circle to a Jordan curve in the plane. The
following simple example shows that the circle cannot be replaced by some non-Lipschitz domain
even for a Lipschitz mapping 𝜑. We use the following simple domains with an outer and inner
cusp (see Figure 1):

Ω1 ∶= (−1, 1)2 ∪ {[𝑥, 𝑦] ∶ 𝑥 ∈ [1, 2), |𝑦| < (2 − 𝑥)2} and

Ω2 ∶= (−1, 1)2 ⧵ {[𝑥, 𝑦] ∶ 𝑥 ∈ [0, 1], |𝑦| < 𝑥2}.
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 3 of 22

F IGURE 1 Definition of Ω1, Ω2 and 𝜑 between 𝜕Ω1 and 𝜕Ω2.

Example 2.1. There is a Lipschitz homeomorphism 𝜑 ∶ 𝜕Ω1 → 𝜕Ω2 that does not admit a
Lipschitz homeomorphic extension ℎ ∶ Ω1 → Ω2.

Proof. We simply define 𝜑 as the identity map on 𝜕Ω1 ∩ 𝜕Ω2, and a simple reflection across the
line 𝑥 = 1 from the inner cusp to the outer cusp, that is, we set

𝜑(𝑥, 𝑦) =

{
[𝑥, 𝑦] for [𝑥, 𝑦] ∈ 𝜕Ω1 ∩ 𝜕(−1, 1)2,

[2 − 𝑥, 𝑦] for [𝑥, 𝑦] ∈ 𝜕Ω1 ⧵ 𝜕(−1, 1)
2.

This mapping is clearly a homeomorphism from 𝜕Ω1 to 𝜕Ω2 and it is not difficult to find out that
it is Lipschitz.
Given small 𝑡 > 0, we consider two points (see Figure 1)

𝑎𝑡 =
[
2 − 𝑡, 𝑡2

]
and 𝑏𝑡 =

[
2 − 𝑡, −𝑡2

]
,

which are mapped to

𝜑(𝑎𝑡) =
[
𝑡, 𝑡2

]
and 𝜑(𝑏𝑡) =

[
𝑡, −𝑡2

]
.

The segment 𝐿𝑡 ∶= {[2 − 𝑡, 𝑦] ∶ |𝑦| ⩽ 𝑡2} of length 2𝑡2 has to be mapped by the extension to some
continuum that connects 𝜑(𝑎𝑡) and 𝜑(𝑏𝑡) inside Ω2. However, the inner distance of 𝜑(𝑎𝑡) and
𝜑(𝑏𝑡) insideΩ2 is equal to 2

√
𝑡2 + 𝑡4, and hence, the Lipschitz constant of the extension needs to

be at least

2
√
𝑡2 + 𝑡4

2𝑡2
=

√
1 + 𝑡2

𝑡
and this tends to∞ as 𝑡 → 0 + . □

We next give a simple characterization of curves that admit a Hölder parametrization,
classifying all the Jordan curves for which our main theorem is applicable.

Definition 2.2. Let 𝑝 ∈ [1,∞). A Jordan curve Γ ⊂ ℝ2 has finite 𝑝-content if there is a constant
𝐶 such that for every finite subdivision 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ Γ, it holds that

𝑛−1∑
𝑘=1

|𝑥𝑘+1 − 𝑥𝑘|𝑝 ⩽ 𝐶.

The smallest such 𝐶 is denoted as |Γ|𝑝.
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4 of 22 HENCL and KOSKI

Theorem 2.3. Let 𝛼 ∈ (0, 1). A Jordan curve Γ admits an 𝛼-Hölder parametrization 𝜑 ∶ [0, 1] → Γ

if and only if it has finite 1

𝛼
-content.

Proof. The “only if” part of this statement is trivial, so we will only prove here that a curve with
finite 1

𝛼
-content admits such a parametrization.

Let 𝑝 = 𝛼−1. Note that any subcurve 𝛾 ⊂ Γ also has finite 𝑝-content, and it is simple to verify
that

|Γ|𝑝 ⩾ |𝛾|𝑝 + |Γ ⧵ 𝛾|𝑝. (2.1)

Hence, given an initial parametrization 𝜑0 ∶ [0, 1] → Γ, the map 𝐹(𝑡) = |𝜑0([0, 𝑡])|𝑝 defines an
increasing surjection from [0,1] to [0, |Γ|𝑝]. By setting

𝜑(𝑡) = 𝜑0
(
𝐹−1(𝑡)

)
,

we obtain a parametrization 𝜑 ∶ [0, |Γ|𝑝] → Γ that satisfies

|𝜑([0, 𝑡])|𝑝 = 𝑡. (2.2)

Moreover, by the definition of the 𝑝-content |𝜑([𝑡1, 𝑡2])|𝑝 and combining (2.1) and (2.2), we have
|𝜑(𝑡2) − 𝜑(𝑡1)| ⩽ |𝜑([𝑡1, 𝑡2])|𝛼𝑝 ⩽

(|𝜑([0, 𝑡2])|𝑝 − |𝜑([0, 𝑡1])|𝑝)𝛼 = (𝑡2 − 𝑡1)
𝛼.

Hence,𝜑 is 𝛼-Hölder continuous. Themap 𝑡 → 𝜑(𝑡|Γ|𝑝) also gives such a parametrization on [0,1]
instead with Hölder-constant at most |Γ|𝛼𝑝. □

3 PROOF OF THE HÖLDER EXTENSION RESULT

Proof of Theorem 1.1. We are hence given an𝛼-Hölder parametrization𝜑 ∶ 𝜕𝔻 → 𝜕𝕐 of the bound-
ary of a Jordan domain 𝕐, and we want to extend it to a Hölder-continuous homeomorphism
𝐻 ∶ 𝔻 → 𝕐.
Step 1. Suitable decomposition of the domain and target. To construct the extension, we

will employ a suitable decomposition of the target and domain sides. We will split the unit disk
𝔻 into dyadic regions 𝑈𝑛,𝑘, each with diameter at most 2−𝑛, and also split the domain side into
appropriate regions𝑉𝑛,𝑘 depending on the behavior of the boundarymap𝜑. The aim is to define an
extension ℎ ∶ 𝑈𝑛,𝑘 → 𝑉𝑛,𝑘 in each region and to show that it is Hölder-continuous with uniform
constant 𝐶 in each region.
At a later stage of the proof, we will be able to use the dyadic structure of the sets 𝑈𝑛,𝑘 to con-

clude that the extension ℎ will, in fact, be Hölder-continuous in the whole unit disk. The initial
extension ℎ will not be a homeomorphism as it will map some open sets onto curves and map
some of the interior of 𝜕𝔻 onto the boundary 𝜕𝕐, but it will define a monotone map (preimage
of each point is connected), and we will take care in the construction in order for there to be an
injectification process at the end where ℎ may be modified in an arbitrarily small way to give
a homeomorphic extension 𝐻 ∶ 𝔻 → 𝕐 of 𝜑. The fact that this modification is as small as we
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 5 of 22

wish (on each dyadic level as well) is going to let us argue that 𝐻 inherits the Hölder-continuity
estimates from ℎ.
We start by constructing the dyadic sets 𝑈𝑛,𝑘. We first split the unit circle 𝜕𝔻 into dyadic arcs

𝐼𝑛,𝑘, 𝑛 = 1, 2, … and 𝑘 = 1,… , 2𝑛. The amount of initial arcs or their position does not matter.
For the purposes of simplifying the notation here, we may suppose that the arcs 𝐼𝑛,𝑘 are instead
intervals on the real line by flattening out the circle locally. The disk 𝔻may be locally interpreted
as the upper half space for this purpose.
We now let 𝑇𝑛,𝑘 be the isosceles triangle in the upper half space with base 𝐼𝑛,𝑘 and two equal

angles of size 𝜋∕4 + 100−𝑛 against the base. The apex vertex of 𝑇𝑛,𝑘 is denoted as 𝑝𝑛,𝑘 and the
endpoints of 𝐼𝑛,𝑘 are denoted by 𝑎𝑛,𝑘 and 𝑏𝑛,𝑘. If we suppose that 𝐼𝑛+1,𝑘′ and 𝐼𝑛+1,𝑘′+1 are the two
dyadic children of 𝐼𝑛,𝑘, then we let 𝑈𝑛,𝑘 = 𝑇𝑛,𝑘 ⧵ (𝐼𝑛+1,𝑘′ ∪ 𝐼𝑛+1,𝑘′+1) denote the region between
each successive dyadic parent triangle and its children (see Figure 8 for the idea how 𝑈 = 𝑈𝑛,𝑘

looks like).
We now wish to explain how the sets 𝑉𝑛,𝑘 will be defined. Given the boundary map 𝜑, we let

𝐴𝑛,𝑘 = 𝜑(𝑎𝑛,𝑘) and𝐵𝑛,𝑘 = 𝜑(𝑏𝑛,𝑘).Moreover, let𝐶𝑛,𝑘 be the image of themiddle point of 𝐼𝑛,𝑘 under
𝜑. We now may need to make a certain adjustment to this construction.
Let us call a point 𝜔 ∈ 𝜕𝕐 a good point if there exists a line segment inside 𝕐 with endpoint 𝜔.

We wish to assume that the dyadic image points given by 𝐴𝑛,𝑘 are good points for all 𝑛, 𝑘. If this
is not the case, we argue as follows. For every point 𝜔 ∈ 𝜕𝕐, it is possible to choose a good point
𝜔′ ∈ 𝜕𝕐 arbitrarily close to 𝜔 by considering a point 𝑃 ∈ 𝕐 very close to 𝜔, considering the largest
disk of center 𝑃 that lies entirely within 𝕐, and picking 𝜔′ as an intersection point of 𝜕𝕐 with the
boundary of this disk. This way of defining 𝜔′ guarantees that it is a good point. As 𝑃 approaches
𝜔, it can be shown that 𝜔′ approaches 𝜔 as well.
By appropriately using this observation inductively, wemay replace each point𝐴𝑛,𝑘 with a good

point 𝐴′
𝑛,𝑘

so that the preimages of 𝐴′
𝑛,𝑘

under 𝜑 form another decomposition of the unit circle
into intervals 𝐼′

𝑛,𝑘
that have length uniformly comparable to the length of 𝐼𝑛,𝑘 for all 𝑛, 𝑘. If this is

the case, it is not difficult to construct a self-map of the unit disk that is bilipschitz and maps each
𝐼𝑛,𝑘 to 𝐼′

𝑛,𝑘
. Since composition by bilipschitz-maps does not affect Hölder-continuity estimates,

we may as well suppose that the points 𝐴𝑛,𝑘 were good points to begin with and not deal with
additional notation.
Let Γ𝑛,𝑘 denote the unique shortest curve from𝐴𝑛,𝑘 to 𝐵𝑛,𝑘 inside 𝕐. Moreover, let Γ+𝑛,𝑘 and Γ

−
𝑛,𝑘

denote the corresponding curves for the dyadic children in this case. The curves Γ𝑛,𝑘, Γ+𝑛,𝑘, and
Γ−
𝑛,𝑘

may overlap each other and the boundary 𝜕𝕐 but not cross each other. The region 𝑉𝑛,𝑘 will
be defined as a set bounded by these three curves, but let us first fix a parametrization for each
of them.
Step 2. Fixing a parametrization. Let us now define a parametrization of the curve Γ𝑛,𝑘 that

will be used later to define the values of the extension ℎ of 𝜑 in part of the boundary of 𝑈𝑛,𝑘. The
main goal here is to define this parametrization as a Hölder-continuous map from the interval
𝐼𝑛,𝑘 to Γ𝑛,𝑘.
For purposes of easier presentation, let us drop subscripts for a moment and denote 𝐼 = 𝐼𝑛,𝑘 =

[𝑎, 𝑏]. Let Γ ∈ 𝕐 be the shortest curve between𝜑(𝑎) and𝜑(𝑏). Wewish to define a parametrization
𝜏 ∶ 𝐼 → Γ by “projecting” the parametrization given by 𝜑 on the boundary. Given a point 𝑧 ∈ 𝐼,
we let 𝜏(𝑧) be the point on Γ that is closest to 𝜑(𝑧) with respect to the internal distance in 𝕐

(see Figure 2). Such a point is determined uniquely since the connected components of Γ that
do not touch 𝜑(𝐼) must be locally concave toward 𝜑(𝐼) due to Γ being a shortest curve (see, e.g.,
[6, Step 5 of the proof of Theorem 2.1] for the properties of the shortest curves). This defines the
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6 of 22 HENCL and KOSKI

F IGURE 2 Definition of the curve Γ and its parametrization 𝜏. The whole part between 𝑧1 and 𝑧2 is mapped
to the same point 𝜏(𝑧).

parametrization 𝜏 as a monotone map from 𝐼 to Γ, with loss of injectivity being possible since the
preimage of a single point on Γmay be an interval in 𝐼 (e.g., points between 𝑧1 and 𝑧2 in Figure 2
are all mapped to the same points 𝜏(𝑧)). We will now show that 𝜏 inherits the Hölder-continuity
of 𝜑. The lack of injectivity of 𝜏 will not pose a problem later as we can eventually injectify this
map with an arbitrarily small change to the Hölder-constant.
Let 𝑥, 𝑦 ∈ 𝐼 and let 𝛽𝑥𝑦 denote the part of 𝜑(𝐼) between 𝜑(𝑥) and 𝜑(𝑦). It will be enough to show

that the inequality

|𝜏(𝑥) − 𝜏(𝑦)| ⩽ 𝐶 diam(𝛽𝑥𝑦) (3.1)

holds, since the diameter of 𝛽𝑥𝑦 satisfies diam(𝛽𝑥𝑦) ⩽ 𝐶|𝑥 − 𝑦|𝛼 due to the Hölder-continuity of
𝜑 on all subintervals.
We may suppose that the shortest curves 𝛾𝑥 and 𝛾𝑦 that connect 𝜑(𝑥) to 𝜏(𝑥) and 𝜑(𝑦) to 𝜏(𝑦),

respectively, within 𝕐 are, in fact, straight line segments. This is due to the following fact. Let 𝐼𝑥
denote the preimage of 𝜏(𝑥) under 𝜏, which is either a single point or a closed interval containing
𝑥. Since the closest point onΓwith respect to the internal distance from𝜑(𝑥′) is 𝜏(𝑥) for all𝑥′ ∈ 𝐼𝑥,
by geometry, we see that if 𝑥′ is one of the endpoints of 𝐼𝑥, such a shortest curve must be a straight
line segment between 𝜑(𝑥′) and 𝜏(𝑥) (e.g., in Figure 2, our 𝐼𝑧 is between 𝑧1 and 𝑧2 and shortest
line between 𝜑(𝑧1) and 𝜏(𝑧1) or 𝜑(𝑧2) and 𝜏(𝑧2) is a segment). Let 𝑥′ be the endpoint of 𝐼𝑥 that is
closest to 𝑦. Since 𝛽𝑥′𝑦 ⊂ 𝛽𝑥𝑦 , it is enough to prove (3.1) for 𝑥′ instead of 𝑥 because 𝜏(𝑥′) = 𝜏(𝑥).
Hence, we suppose that 𝛾𝑥 and 𝛾𝑦 are straight line segments.
Let Γ′ denote the part of Γ between 𝜏(𝑥) and 𝜏(𝑦). We claim that it is enough to prove (3.1) when

the interior of Γ′ does not touch the curve 𝜑(𝐼). Indeed, if the interior does touch 𝜑(𝐼), then it must
be at a point on 𝛽𝑥𝑦 as the part of 𝜑(𝐼) not equal to 𝛽𝑥𝑦 cannot cross 𝛾𝑥, 𝛾𝑦 or Γ and hence has no
access to Γ′. Supposing that (3.1) has been provenwhen the interior of Γ′ does not intersect 𝛽𝑥𝑦 , we
explain now how the general case would follow. For this, note that if 𝑢, 𝑣 ∈ Γ′ ∩ 𝛽𝑥𝑦 , then trivially|𝑢 − 𝑣| ⩽ diam(𝛽𝑥𝑦). Hence, by picking 𝑢, 𝑣 on Γ′ as close to the endpoints 𝜏(𝑥) and 𝜏(𝑦) as possi-
ble (with respect to parametrization), wemay split Γ′ into three parts: One part from 𝜏(𝑥) to 𝑢, one
part from 𝑢 to 𝑣, and one part from 𝑣 to 𝜏(𝑦). For clarification, it is possible for any of these parts
to be a singleton as well. If 𝜏(𝑥) and 𝑢 are not equal, by definition of 𝑢, there cannot be a point on
𝛽𝑥𝑦 intersecting the part of Γ′ between 𝜏(𝑥) and 𝑢. But now by assumption, we can apply (3.1) in
this part and obtain that |𝜏(𝑥) − 𝑢| ⩽ 𝐶 diam(𝛽𝑥𝑦). Similarly, |𝑣 − 𝜏(𝑦)| ⩽ 𝐶 diam(𝛽𝑥𝑦), and com-
bining these estimates with the one for |𝑢 − 𝑣| gives (3.1) while only increasing the constant by a
factor 3.
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 7 of 22

F IGURE 3 Two situations that both lead to a contradiction.

Hence, wemay suppose that the interior of Γ′ does not intersect 𝛽𝑥𝑦 . Since Γ′ is a shortest curve
and does not intersect 𝛾𝑥 or 𝛾𝑦 beside the mutual endpoints, this means that Γ′ is locally concave
toward the interior of the region Ω bounded by the four curves 𝛽𝑥𝑦, 𝛾𝑥, Γ′, and 𝛾𝑦 (see, e.g., [6,
Step 5 of the proof of Theorem 2.1]). For the sake of contradiction in proving (3.1), let us suppose
that |𝜏(𝑥) − 𝜏(𝑦)| > 100 diam(𝛽𝑥𝑦). Now if both |𝜏(𝑥) − 𝜑(𝑥)| and |𝜏(𝑦) − 𝜑(𝑦)| are smaller than
40 diam(𝛽𝑥𝑦), then

|𝜏(𝑥) − 𝜏(𝑦)| ⩽ |𝜏(𝑥) − 𝜑(𝑥)| + |𝜑(𝑥) − 𝜑(𝑦)| + |𝜏(𝑦) − 𝜑(𝑦)| ⩽ 81 diam(𝛽𝑥𝑦),

a contradiction. Hence, we may suppose without loss of generality that |𝜏(𝑥) − 𝜑(𝑥)| >
40 diam(𝛽𝑥𝑦).
Let us cover 𝛽𝑥𝑦 by a ball 𝐵 of radius 2 diam(𝛽𝑥𝑦) (exact positioning does not matter here).

Hence, the line segment 𝛾𝑥 starts inside of 𝐵 and ends outside of 𝐵. We now note that 𝛾𝑦 must
also do the same, as otherwise 𝛾𝑦 would have no intersection point with 𝜕𝐵 and Γ′ would have to
intersect 𝜕𝐵 somewhere. This would give a contradiction with the definition of 𝜏(𝑥): To connect
𝜑(𝑥) with Γ, it would be shorter to go from 𝑥 to a point in 𝛾𝑥 ∩ 𝜕𝐵 and then along 𝜕𝐵 to the point
in Γ′ ∩ 𝜕𝐵 and the total length would be shorter than 40 diam(𝛽𝑥𝑦), giving us a contradiction with
the definition of 𝜏(𝑥) and |𝜏(𝑥) − 𝜑(𝑥)| > 40 diam(𝛽𝑥𝑦).
Consider now a line 𝓁 picked so that it passes through 𝜏(𝑥) but the sets 𝛾𝑥, 𝛾𝑦 , and 𝐵 all lie on

one (closed) side of 𝓁 (e.g., in Figure 3, our 𝓁 could be between 𝜏(𝑥) and 𝜏(𝑦) on the first picture
and between 𝜏(𝑥) and 𝑃 on the second picture). We call this side the “good side” just to have a
name for it. It is not difficult to see that Γ′ also lies inside this good side of 𝓁 since Γ′ is concave
toward 𝛽𝑥𝑦 by the property of minimal curves. Of course, it could happen that Γ′ contains both
𝜏(𝑥) and 𝜏(𝑦) and Γ′ is a straight segment and then it lies inside 𝛾.
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8 of 22 HENCL and KOSKI

F IGURE 4 The domain and target for the initial case.

Thus, any line that passes through 𝜏(𝑥) (or 𝜏(𝑦)) and contains the sets 𝛾𝑥, 𝛾𝑦 , and 𝐵 on one side
of it automatically also contains Γ′ on that side, we call this property (∗). Now the claim (3.1) will
be fairly easy to prove. If the line segment 𝐿𝑥𝑦 from 𝜏(𝑥) to 𝜏(𝑦) does not intersect 𝐵, then due
to property (∗), the curve Γ′ must lie within a region bounded by 𝐿𝑥𝑦, 𝛾𝑥, 𝛾𝑦 , and the part of 𝜕𝐵
between 𝛾𝑥 and 𝛾𝑦 . Hence, 𝐿𝑥𝑦 must form an angle greater or equal to 𝜋∕2 with respect to both
𝛾𝑥 and 𝛾𝑦 due to the fact that 𝜏(𝑥) and 𝜏(𝑦) are the closest points on Γ′ from points on 𝛾𝑥 and 𝛾𝑦 ,
as otherwise we could find closer points on Γ′ (e.g., in the situation of Figure 3 on the left close
to 𝜏(𝑥), we could slightly cut the corner and we would go from 𝛾𝑥 to Γ′ in a shorter way). This
automatically shows (3.1) as then |𝜏(𝑥) − 𝜏(𝑦)| must be less than the diameter of 𝐵. If the line
segment from 𝜏(𝑥) to 𝜏(𝑦) does intersect 𝐵, then we can find another point 𝑃 so that the segments
𝜏(𝑥)𝑃 and 𝑃𝜏(𝑦) form acute angles with 𝛾𝑥 and 𝛾𝑦 , respectively, and by property (∗), they must
contain Γ′ on the side with acute angles, see Figure 3. This is a contradiction as then there must
be points on Γ′ besides 𝜏(𝑥) that are closer to points on 𝛾𝑥 than 𝜏(𝑥) is (in the situation of Figure 3
on the right close to 𝜏(𝑥), we could again slightly cut the corner). This proves the claim and hence
the Hölder-continuity of 𝜏.
Step 3. The initial case.We detail here the first step of the construction of the extension ℎ by

giving an initial set 𝑇 ⊂ 𝔻 in which we define the map ℎ on. The rest of the construction will be
a repetition of this idea with respect to each dyadic interval.
Let us start the dyadic decomposition of 𝜕𝔻 by fixing three initial arcs 𝐼0,1, 𝐼0,2, and 𝐼0,3 of length

2𝜋∕3whose union is the whole circle. Hence, we have an equilateral triangle 𝑇 in 𝔻with vertices
𝑎𝑖, 𝑖 = 1, 2, 3 given by the endpoints of these three arcs.
On the target side, there are corresponding curves Γ0,𝑖 , 𝑖 = 1, 2, 3 given by the shortest curves in

𝕐 between the image points 𝜑(𝑎𝑖), 𝑖 = 1, 2, 3. These curvesmay partially overlap, as the two curves
Γ0,𝑖 that share a mutual endpoint 𝜑(𝑎𝑗)may have a common part given by a curve 𝛼𝑗 (see, e.g., 𝛼𝑖
in Figure 4). In the case where there is no overlap, we simply consider 𝛼𝑗 as the singleton 𝜑(𝑎𝑗).
However, each curve Γ0,𝑖 has some part that does not overlap with any of the others, and these
three curves together define a Jordan curve that bounds a domain𝐕′. The particular thing to note
about𝐕′ is that due to the fact that its boundary consists of three nonintersecting shortest curves,
these three curves must be concave toward the interior of 𝐕′ (again by [6, Step 5 of the proof
of Theorem 2.1]), see Figure 4 and also Figure 6 for possible shapes of 𝐕′. We let 𝑉 denote the
union of 𝐕′ and the common parts 𝛼𝑗, 𝑗 = 1, 2, 3. Using the projected parametrization 𝜏 defined
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 9 of 22

F IGURE 5 Adjusting the hexagon.

in previous step, we may define a boundary map 𝜏′ ∶ 𝜕𝑇 → 𝜕𝑉 that is monotone on each of the
sides of 𝑇 and is Hölder-continuous with estimates in terms of the original boundary map 𝜑.
We now aim to extend the map 𝜏′ to the interior of the triangle 𝑇 to give a map ℎ0 ∶ 𝑇 → 𝑉.

The preimages of the curves 𝛼𝑖 ⊂ 𝑉, 𝑖 = 1, 2, 3 are fairly easy to choose. For each 𝑖, we look at
the two preimages 𝑙1

𝑖
and 𝑙2

𝑖
of 𝛼𝑖 under 𝜏′, which are line segments starting from 𝑎𝑖 on the two

sides of 𝜕𝑇, see Figure 4. Now for each point 𝑃 ∈ 𝛼𝑖 , we look at the preimages 𝑝1 ∈ 𝑙1
𝑖
and 𝑝2 ∈ 𝑙2

𝑖
under 𝜏′ and connect 𝑝1 and 𝑝2 via a line segment 𝐿. Then, for each 𝑧 ∈ 𝐿, we simply define that
ℎ0(𝑧) = 𝑃. This effectively defines the map ℎ0 on the triangle bounded by 𝑙1𝑖 and 𝑙2

𝑖
. The map is

Hölder-continuous as it is simply a linear interpolation of the twoHölder-continuousmaps (given
by 𝜏′) on 𝑙1

𝑖
and 𝑙2

𝑖
.

This leaves a convex hexagonal region𝐻 ⊂ 𝑇 on the interior of which the map ℎ0 has not been
defined yet. The boundary values of ℎ0 on 𝜕𝐻 are already determined, and three of the sides 𝑆1, 𝑆3,
and 𝑆5 of 𝐻 are mapped to single points under ℎ0, while the three other sides are mapped to
concave curves (the boundary of𝐕′). To define ℎ0, we will employ a direct version of the shortest
curve extension method. For clarity, let us denote by 𝜑0 = ℎ0|𝜕𝐻 the already defined boundary
values of ℎ0.
Let us start by fixing a “horizontal” direction given by a line 𝓁, and we consider the “vertical”

direction to be the one orthogonal to 𝓁. There are a few additional requirements we are able to
impose. First, we may assume that any two points in 𝐻 can be connected by a curve consisting
of at most five line segments that are either horizontal or vertical. This is due to the fact that 𝐻
is convex and the practical idea here is that if 𝐻 is very thin, then we should choose the vertical
direction to be parallel to the “direction of thinness” of 𝐻.
Moreover, wemay suppose that the angle between the horizontal direction 𝓁 and all of the sides

of 𝐻 is controlled from below by some absolute constant 𝑐 > 0. This is not immediately possible
if 𝐻 is very thin and it has two sides that are close to being parallel to the horizontal direction
we need to impose for the previous requirement, see Figure 5. But in this case, we make a small
adjustment to these sides to replace them with two line segments that have a large angle toward
the horizontal direction. Such an adjustment can be realized as a bilipschitz transformation of
𝐻 with absolute control on the constant, so it does not affect future estimates, although it does
transform the hexagon 𝐻 into an octagon. But we will later only use the fact that 𝐻 has a fixed
finite amount of sides, so this does not matter.
With these assumptions, 𝐻 may be written as the union of line segments parallel to 𝓁, the

first and last of which consist of simply a single vertex of 𝐻. We call these segments horizontal
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10 of 22 HENCL and KOSKI

F IGURE 6 Shortest curves 𝐒′ and 𝐒̃′ and related objects within the region 𝐕′.

segments on 𝐻. For each such segment 𝑆 having endpoints 𝑠1 and 𝑠2, we define the map ℎ0 on 𝑆

by defining ℎ0 to map 𝑆 onto the shortest curve 𝐒′ in 𝐕′ between the points 𝜑0(𝑠1) and 𝜑0(𝑠2) on
𝜕𝐕′, parametrized at constant speed, see Figure 6. This defines a monotone map ℎ0 ∶ 𝐻 → 𝐕′,
but it can be injectified with an arbitrarily small modification. Hence, it remains to verify the
Hölder-continuity of such a map ℎ0. It is enough to verify the required estimates separately for
the horizontal and the vertical directions, since we assumed that any two points can be connected
by at most five horizontal/vertical segments (the lengths of such segments may also be chosen to
be less than the distance of those two points).
First of all, if two points 𝑥1, 𝑥2 belong to a commonhorizontal segment 𝑆, thenwemay compute

due to the choice of constant speed parametrization that

|ℎ0(𝑥1) − ℎ0(𝑥2)| ⩽ |𝑥1 − 𝑥2| |𝐒′||𝑆| .
Note now that due to the fact that𝐕′ had the special structure of being bounded by three concave
curves, any shortest curve 𝐒′ within 𝐕′ must satisfy |𝐒′| ⩽ 𝐶 diam(𝐒′) for some absolute constant
𝐶. Moreover, due to the Hölder-estimates for the boundary values 𝜑0, we obtain that diam(𝐒′) ⩽

𝐶|𝑠1 − 𝑠2|𝛼. Combining these gives
|ℎ0(𝑥1) − ℎ0(𝑥2)| ⩽ 𝐶|𝑥1 − 𝑥2| |𝑠1 − 𝑠2|𝛼|𝑠1 − 𝑠2| ⩽ 𝐶|𝑥1 − 𝑥2|𝛼.

Let now 𝑥 and 𝑥̃ belong to different horizontal segments 𝑆 and 𝑆 but be on the same vertical line.
Due to the fact that𝐻 only has six sides, we may assume that the left and right endpoints of 𝑆 and
𝑆 belong to the same sides of 𝐻, respectively. We may also assume that

|𝑆| ⩽ |𝑆|, |𝑥 − 𝑥̃| ⩽ |𝑆|, (3.2)
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 11 of 22

the second part being because if this was not the case, we could connect 𝑥 to 𝑥̃with two horizontal
segments along 𝑆 and 𝑆 and one boundary curve between 𝑠1 and 𝑆, each of whose length is less
than a constant times |𝑥 − 𝑥̃|. In this case, we could conclude the Hölder-continuity estimate
simply from the previous estimate for the horizontal direction and the Hölder-continuity of the
boundary map.
Now due to the concavity of the boundary curves in 𝐕′, the shortest curves 𝐒′ = ℎ0(𝑆) and

𝐒̃′ = ℎ0(𝑆) on the target side in 𝐕′ must behave in a specific way. We aim to use this to put the
possible shortest curves 𝐒′ into a finite amount of different categories in order to be able to assume
that 𝐒′ and 𝐒̃′ belong to the same category. We do this as follows.
Due to the fact that 𝐕′ is bounded by three concave curves, a shortest curve 𝐒′ in 𝐕′ may only

intersect at most one of these concave curves at points different from the endpoints of 𝐒′. Thus,
such a curve 𝐒′ consists of up to two line segments starting from either endpoint of 𝐒′ and possibly
a middle section that goes along one of the boundary curves of 𝐕′. We can categorize each such
curve by whether it is just a simple segment, a segment combined with a concave part, and so on.
We also put curves in a different category depending on which of the three boundary curves of
𝐕′ they intersect with. Finally, we may also do the following: If one of the boundary curves of 𝐕′

is “too curved,” meaning the angle of its tangent changes by over 𝜋∕2 (in fact, at most one of the
three curves may be like this as the total angular change of all three is bounded by 𝜋), then we
split it into two halves on which the angle stays below 𝜋∕2. We then also categorize the shortest
curves 𝑆′ into different categories if they start or end on different halves of such a “too curved”
boundary part.
As we move the horizontal segment 𝑆 vertically in the domain, the category of 𝑆′ can only

change a finite amount of times. Note that at the point where a category changes from one to
another, there is always one curve 𝐒′ that lies at the edge of these two categories and where one
or more of its parts (segments or convex part) may be just singletons. We will say that such a
curve 𝐒′ belongs to both categories to avoid technicalities. In any case, the whole point of putting
these curves into categories is that since there are only a finite number of categories and a finite
number of ways such categories can appear in order, we may assume that 𝐒′ and 𝐒̃′ belong to the
same category. Note that the bounds for the finite numbers that appear here are absolute.
Let 𝛽1 denote the part of 𝜕𝐕′ between 𝜑0(𝑠1) and 𝜑0(𝑠1) that does not contain 𝜑0(𝑠2), and define

𝛽2 analogously, see Figure 6. Note that due to the fact that 𝐒′ and 𝐒̃′ belong to the same category
and the fact thatwemade sure not to include the casewhere, say, 𝑠1 and 𝑠1 belong to a “too curved”
boundary part, we must actually have the length estimate

|𝛽1| ⩽ 2|𝜑0(𝑠1) − 𝜑0(𝑠1)| (3.3)

and the same for 𝛽2 as these are convex curves where the angular change is less than 𝜋∕2. There
are now a few cases to consider depending on which category 𝐒′ and 𝐒̃′ belong to, but they are
handled very similarly, so we only consider the most complicated one.
Let us thus consider the case where 𝐒′ and 𝐒̃′ both consist of a line segment, a middle part, and

another line segment. We denote this by 𝐒′ = 𝐿1 ∪ 𝑀 ∪ 𝐿2 and 𝐒̃′ = 𝐿̃1 ∪ 𝑀̃ ∪ 𝐿̃2. By geometry,
one of the inclusions𝑀 ⊂ 𝑀̃ or 𝑀̃ ⊂ 𝑀 must hold. Since we assumed that |𝑆| ⩽ |𝑆| in (3.2), we
should treat these cases separately, but they are similar enough that we will only consider the case
𝑀 ⊂ 𝑀̃. The situation is now as in Figure 6.
Given the pointℎ0(𝑥) ∈ 𝐒′, we let𝑃 denote the point on 𝐒̃′ that is obtained fromℎ0(𝑥) as follows.

Ifℎ0(𝑥) ∈ 𝐿1, we traverse fromℎ0(𝑥) in the direction of the vector𝜑(𝑠1) − 𝜑(𝑠1)until we hit a point
on 𝐒′ which is defined as 𝑃. If ℎ0(𝑥) ∈ 𝑀, then 𝑃 = ℎ0(𝑥), and if ℎ0(𝑥) ∈ 𝐿2, we traverse in the
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12 of 22 HENCL and KOSKI

direction of the vector 𝜑(𝑠2) − 𝜑(𝑠2) to hit a point 𝑃 ∈ 𝐒′. We may suppose that we are in the case
ℎ0(𝑥) ∈ 𝐿1, as the case ℎ0(𝑥) ∈ 𝐿2 is purely analogous and the case ℎ0(𝑥) ∈ 𝑀 is considered very
similarly. Due to the concavity of the curve 𝑀̃, it is geometrically clear that we have the internal
distance estimate 𝑑𝐕′(ℎ0(𝑥), 𝑃) ⩽ |𝛽1| and therefore also |ℎ0(𝑥) − 𝑃| ⩽ |𝛽1|. It remains to estimate|𝑃 − ℎ0(𝑥̃)|.
Denote by part𝛾(𝑎, 𝑏) the part of a curve 𝛾 between two points 𝑎, 𝑏 ∈ 𝛾. Note that since 𝐒̃′ is a

shortest curve, we must have the estimate

| part𝐒̃′ (𝜑0(𝑠1), 𝑃)| ⩽ |𝛽1| + | part𝐒′ (𝜑0(𝑠1), ℎ0(𝑥))| + 𝑑𝐕′(ℎ0(𝑥), 𝑃).

Similarly, for 𝐒′, we get

| part𝐒′ (𝜑0(𝑠1), ℎ0(𝑥))| ⩽ |𝛽1| + | part𝐒̃′ (𝜑0(𝑠1), 𝑃)| + 𝑑𝐕′(ℎ0(𝑥), 𝑃).

Since 𝑑𝐕′(ℎ0(𝑥), 𝑃) ⩽ |𝛽1|, we find the comparison estimate| | part𝐒′ (𝜑0(𝑠1), ℎ0(𝑥))| − | part𝐒̃′ (𝜑0(𝑠1), 𝑃)| | ⩽ 2|𝛽1|. (3.4)

A similar argument shows that

| |𝐒′| − |𝐒̃′| | ⩽ |𝛽1| + |𝛽2|. (3.5)

Note next that since 𝑥 and 𝑥̃ are on the same vertical line, since the horizontal segments 𝑆 and
𝑆 have endpoints on the same sides of 𝐻, and since the angle between the sides of 𝐻 and the
horizontal direction is bounded absolutely from below, we have that

| |𝑥 − 𝑠1| − |𝑥̃ − 𝑠1| | ⩽ 𝐶1|𝑠1 − 𝑠1| ⩽ 𝐶2|𝑥 − 𝑥̃|. (3.6)

By triangle inequality, we also have the direct estimate

| |𝑆| − |𝑆| | ⩽ |𝑠1 − 𝑠1| + |𝑠2 − 𝑠2| ⩽ 𝐶|𝑥 − 𝑥̃|. (3.7)

Due to the constant speed parametrization of the curves 𝐒′ and 𝐒′, wemaynowcombine (3.4)–(3.7)
to calculate that

|𝑃 − ℎ0(𝑥̃)| ⩽ | part𝐒̃′ (𝑃, ℎ0(𝑥̃))|
= || | part𝐒̃′ (𝜑0(𝑠1), ℎ0(𝑥̃))| − | part𝐒̃′ (𝜑0(𝑠1), 𝑃)| ||
⩽ || | part𝐒̃′ (𝜑0(𝑠1), ℎ0(𝑥̃))| − | part𝐒′ (𝜑0(𝑠1), ℎ0(𝑥))| || + 2|𝛽1|
=
|||| |𝑠1 − 𝑥̃||𝑆| |𝐒̃′| − |𝑠1 − 𝑥||𝑆| |𝐒′||||| + 2|𝛽1|

⩽
|||| |𝑠1 − 𝑥̃||𝑆| −

|𝑠1 − 𝑥||𝑆| |||||𝐒′| + 3|𝛽1| + |𝛽2|
⩽
|||| |𝑠1 − 𝑥̃| − |𝑠1 − 𝑥||𝑆| |||||𝐒′| + 𝐶

|𝐒′||𝑆| |𝑥 − 𝑥̃| + 3|𝛽1| + |𝛽2|
⩽ 𝐶2

|𝐒′||𝑆| |𝑥 − 𝑥̃| + 3|𝛽1| + |𝛽2|.
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 13 of 22

F IGURE 7 The configuration on the target side.

Note now that since the curve 𝐒′ is a shortest curve in the domain 𝐕′, by the fact that 𝐒′ may
not turn more than 𝜋 degrees, we find the estimate |𝐒′| ⩽ 𝐶 diam(𝐒′). The Hölder-continuity of
the boundary values 𝜑0 gives that diam(𝐒′) ⩽ 𝐶|𝑆|𝛼. Combining these and remembering that we
assumed |𝑥 − 𝑥̃| ⩽ |𝑆| in (3.2), for the first term above, we have the estimate

|𝐒′||𝑆| |𝑥 − 𝑥̃| ⩽ 𝐶|𝑆|1−𝛼|𝑥 − 𝑥̃| ⩽ 𝐶|𝑥 − 𝑥̃|𝛼.
Combining (3.3), (3.6), and the Hölder-continuity of 𝜑0 gives that

|𝛽𝑖| ⩽ 𝐶|𝑥 − 𝑥̃|𝛼, 𝑖 = 1, 2.

This finally yields that

|ℎ0(𝑥) − ℎ0(𝑥̃)| ⩽ |ℎ0(𝑥) − 𝑃| + |𝑃 − ℎ0(𝑥̃)| ⩽ 𝐶|𝑥 − 𝑥̃|𝛼.
Hence, the extension ℎ0 as defined is Hölder-continuous with the same exponent and comparable
constants to the original boundary map 𝜑.
Step 4. The general construction. Let us keep the indices 𝑘, 𝑛 fixed for ease of presentation

and consider the set 𝑉 = 𝑉𝑛,𝑘 defined as the union of Γ = Γ𝑛,𝑘, its two children Γ+ and Γ−, and
the region bounded by them. Note that the curves Γ+ and Γ− may overlap with Γ and also with
each other. In fact, due to the definition of, say, Γ and Γ+ being shortest curves starting at the point
𝐴, their intersection is either the single point 𝜑(𝑎) or one connected curve 𝛼+ starting from 𝜑(𝑎).
Similarly, 𝛼− is defined as the common part of Γ and Γ−, and 𝛼± as the common part of Γ+ and
Γ−. The Jordan domain 𝑉̂ is defined by removing from 𝑉 the common parts 𝛼+, 𝛼−, and 𝛼±, see
Figure 7. The boundary 𝜕𝑉̂ consists of three curves that are concave toward its interior due to the
assumption that they are nonintersecting shortest curves.
Let us now recall the set𝑈 = 𝑈𝑛,𝑘 given on the domain side as the region between the curve 𝛾 =

𝛾𝑛,𝑘 (consisting of two sides of the isosceles triangle on top of 𝐼 = 𝐼𝑛,𝑘) and its two dyadic children
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14 of 22 HENCL and KOSKI

F IGURE 8 Different configurations on the domain side.

𝛾+ and 𝛾−, see Figure 8 for the shape of𝑈. In the second step, we have defined a parametrization
𝜏 ∶ 𝐼 → Γ that is Hölder-continuous with the correct estimates. The map 𝜏 was defined for each
dyadic interval and we will sometimes distinguish this map by writing the dependence as 𝜏 = 𝜏Γ,
as opposed to 𝜏Γ+ or 𝜏Γ− that are also maps defined on subintervals of 𝐼 but not necessarily equal
to 𝜏Γ. We would like to lift the parametrization 𝜏 from the interval 𝐼 to define a parametrization
𝜏′ ∶ 𝛾 → Γ and repeat this for the children 𝛾+ and 𝛾− to define a “boundary map” 𝜏′ ∶ 𝜕𝑈 → 𝑉,
but unfortunately, this lifting process cannot be done directly as there may be issues with the
fact that the curve 𝛾 ⊂ 𝜕𝑈 has very small angles with respect to 𝛾+ and 𝛾− at the two endpoints
of 𝐼, causing possible issues with Hölder-estimates if the parametrization 𝜏Γ has some notable
difference with 𝜏Γ+ and 𝜏Γ− near these points.
Instead, we aim to split each curve 𝛾 into three parts g𝐴, g𝐿, and g𝑅. The two parts g𝐿 and g𝑅

will be line segments starting from the two endpoints 𝑎, 𝑏 of 𝐼, and they will be mapped to Γ so
that their images are very close to the endpoints 𝜑(𝑎) and 𝜑(𝑏) of Γ. In fact, at the start of the
construction (after fixing the Γ𝑛,𝑘:s), we fix a sequence (𝑑𝑛) of numbers decreasing very quickly
to zero, and on each dyadic level 𝑛, the curves g𝐿, g𝑅 will be mapped to parts of Γ that have length
𝑑𝑛. The sequence 𝑑𝑛 may be chosen to tend to zero arbitrarily fast without impacting Hölder-
continuity estimates, and we will use this fact later to be able to say that the extension map ℎ is
practically a constant map in the part of𝑈 near to the small angles at the endpoints 𝑎, 𝑏 of 𝐼, and
hence, we do not need to worry about Hölder-estimates there.
We opt to call the part g𝐴 ⊂ 𝛾 the active part of 𝛾, and its image on Γwill be most of Γ. The parts

g𝐴, g𝐿, and g𝑅 are defined as follows, see Figure 8. If the curve 𝛾 is not on the first dyadic level, it
has a parent curve 𝛾𝑃 and shares one endpoint with 𝛾𝑃, say the left endpoint 𝑎, for example. In
this case, g𝐿 will be the left line segment of 𝛾, and g𝑅 will be the part of the right line segment
of 𝛾 obtained as a line segment whose vertical projection to the 𝑥-axis is the same as the right
line segment of the rightmost child curve 𝛾−. If 𝛾 is on the first dyadic level, we do the process of
defining g𝐿 and g𝑅 via the dyadic children as outlined in the previous sentence for both sides of 𝛾.
The active part g𝐴 is what is left of 𝛾.
We may connect the active part g𝐴 with the active parts g+𝐴 and g−

𝐴
of 𝛾+ and 𝛾− by taking the

convex hull of their union, which defines a hexagonal region𝐻 ⊂ 𝑈 that is uniformly bilipschitz-
equivalent to a ball of radius 2−𝑛. We now start defining the boundary map 𝜏′ ∶ 𝜕𝑈 → Γ ∪ Γ+ ∪

Γ− ⊂ 𝑉, and we will also define 𝜏′ on the whole of 𝜕𝐻.
Let us again suppose thatwe are in the situationwhere g𝐿 is thewhole left segment of 𝛾 and g𝑅 is

a part of the right segment of 𝛾. We first set aside two subcurves Γ𝐿 and Γ𝑅 of the curve Γ that begin
at each endpoint and have length 𝑑𝑛 and 𝑑𝑛+1. Note that since both of the endpoints of Γ were
assumed to be good points in the beginning, there are no technicalities here and, choosing𝑑𝑛 small
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 15 of 22

F IGURE 9 Dividing the segments g𝐿 and g𝑅 into dyadic parts on which to define 𝜏′.

enough, these partswill always be either line segments or concave curves only touching one side of
𝜕𝕐 near their endpoint. Let Γ𝑚 denote the remainingmiddle part of Γ. Wemay nowmake a linear
change of variables to transform the parametrization 𝜏 ∶ 𝜏−1(Γ𝑚) → Γ𝑚 into a parametrization
𝜏′ ∶ g𝐴 → Γ𝑚 from the active part of 𝛾 to Γ𝑚 (in the case where we are on the first dyadic level, a
minor modification to this is sufficient). The Hölder-estimates are inherited since |g𝐴| ≈ |𝐼|.
We next turn to define 𝜏′ on the curves g𝐿 and g𝑅 that will bemapped to Γ𝐿 and Γ𝑅, respectively.

We would like to impose the following rule that affects parametrizations across all dyadic levels:
If a point 𝑄 ∈ g𝐿 and a point on 𝑄+ ∈ g+

𝐿
(with g+

𝐿
denoting the part g𝐿 for the child curve 𝛾+)

have the same projection to the 𝑥-axis, then they should be mapped to points on 𝜏′(𝑄) ∈ Γ and
𝜏′(𝑄+) ∈ Γ+ that are “equally far away from 𝜑(𝑎)” meaning that

| partΓ(𝜑(𝑎), 𝜏′(𝑄))| = | partΓ+(𝜑(𝑎), 𝜏′(𝑄+))|. (3.8)

We also impose an analogous condition for pairs 𝑄 ∈ g𝑅, 𝑄− ∈ g−
𝑅
having the same projection to

the 𝑥-axis.
Note that Γ and Γ+ may be the same curve near their mutual endpoint 𝜑(𝑎), in which case this

just says that the images of the points 𝑄,𝑄+ under 𝜏′ are equal. In fact, we make the following
standing assumption here. IfΓ andΓ+ do overlap,meaning that𝛼+ is not equal to a singleton, then
we choose 𝑑𝑛 so small that 𝑑𝑛 ⩽ |𝛼+| (here 𝛼+ depends on 𝑛 but also 𝑘, so we take a minimum
over 𝑘). We also assume 𝑑𝑛 ⩽ |𝛼−| and 𝑑𝑛 ⩽ |𝛼±| as long as the curves are not singletons. This
forces us to always map g𝑅 and g𝐿 under 𝜏′ to subsets of 𝛼+ or 𝛼− if these are not singletons.
The consequence of such a rule is that to define 𝜏′ on g𝐿 and g𝑅, it is enough to define 𝜏′ on

the part of g𝐿 that does not project to any point that is also a projection from the child curve g+
𝐿
.

The definition of the map 𝜏′ on any other point of g𝐿 will be obtained inductively from successive
dyadic generations, and since wewere in the case where g𝑅 projects to the same set as g−𝑅 , we need
not define 𝜏′ on any point on g𝑅 yet. On the part of g𝐿 where 𝜏′ needs to be defined, wemay simply
set it to map this part (which is a segment) with constant speed to the part of Γ that contains the
points of length 𝑑𝑛+1 to 𝑑𝑛 from the endpoint 𝜑(𝑎). In practice, this means that on g𝐿, the map
𝜏′ will consist of maps defined on a sequence of segments (see Figure 9) tending to the endpoint
𝑎 in dyadic fashion having length comparable to 2−𝑁 , 𝑁 = 𝑛, 𝑛 + 1,…, and each such segment is
mapped with constant speed to a part of Γ with length 𝑑𝑁 − 𝑑𝑁+1.
Hence, 𝜏′ has been defined on all parts of 𝛾 (and the curves 𝛾 for successive dyadic generations).

We next define 𝜏′ on 𝜕𝐻, where we only need to define 𝜏′ on the three sides of the hexagon
𝜕𝐻 not already contained in 𝛾, 𝛾+, or 𝛾−. Let us call these segments 𝐸+, 𝐸−, and 𝐸±, and the
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16 of 22 HENCL and KOSKI

definition of 𝜏′ on each such segment is similar enough that we may only do so on 𝐸+ which
is the segment between the nonmutual endpoints 𝑎𝐿 ∈ g𝐿 and 𝑎+

𝐿
∈ g+

𝐿
, see Figure 8. To define

𝜏′ on 𝐸+, we will define an image curve 𝐹+ within 𝑉 so that 𝜏′ ∶ 𝐸+ → 𝐹+ is simply a constant
speed parametrization. The goal is simply that the length of 𝐹+ is at most 2𝑑𝑛. But since the
internal distance (meaning path distance within the closed set 𝑉 here) of the points 𝜏′(𝑎𝐿) and
𝜏′(𝑎+

𝐿
) within 𝑉 has to be at most 𝑑𝑛 + 𝑑𝑛+1 since

| partΓ(𝜑(𝑎), 𝜏′(𝑎𝐿))| = 𝑑𝑛 and | partΓ+(𝜑(𝑎), 𝜏′(𝑎+𝐿 ))| = 𝑑𝑛+1,

this choice of 𝐹+ is always possible. More precisely, we define 𝐹+ to be the shortest curve in 𝑉

between its endpoints 𝜏′(𝑎𝐿) and 𝜏′(𝑎+𝐿 ).
Note that if Γ and Γ+ overlap (so that 𝛼+ is not a singleton), then 𝐹+ may simply be chosen as

the curve part𝛼+(𝜏
′(𝑎𝐿), 𝜏

′(𝑎+
𝐿
)). Here, 𝜏′(𝑎𝐿), 𝜏′(𝑎+𝐿 ) ∈ 𝛼+ by our earlier assumption that if 𝛼+ is

not a singleton, then 𝑑𝑛 < |𝛼+|.
Thus, now 𝜏′ has been defined as a constant speedmap from 𝐸+ to 𝐹+ and since 𝑑𝑛 was chosen

small enough, we can assume to have the same Hölder-estimates for 𝜏′ on 𝐸+ as the original
boundary map.
It is now simple to also verify the Hölder-continuity of 𝜏′ on the whole of 𝜕𝑈 ∪ 𝜕𝐻. On each

of the six sides of 𝜕𝐻, the map 𝜏′ was already verified to have the correct Hölder-estimates, and
since the hexagon 𝜕𝐻 has no small angles, this holds on the whole boundary as well. All the
other parts of 𝜕𝑈 are mapped to curves where the small enough choice of the sequence (𝑑𝑛) will
guarantee Hölder-continuity.
Next, we finally define the extension ℎ by extending the map 𝜏′ to the whole of 𝑈. Let us start

with the region 𝐻 ⊂ 𝑈. We must first account for the possible overlapped parts 𝛼+, 𝛼−, and 𝛼±
in the target. Let us take the whole preimage 𝐵 of these parts under 𝜏′. Let us for now make a
standing assumption that none of these parts are singletons, andwewill cover the other case later.
We explain here how this affects things around the preimage of 𝛼+ and the cases of 𝛼− and 𝛼± are
handled very similarly. Since g𝐿 and g+𝐿 are part of this preimage 𝐵, there are also some points on
the boundary of 𝐻 that are mapped to 𝛼+: the curve 𝐸+ in particular belongs to 𝐵 but also some
part of g𝐴 and g+

𝐴
belongs to 𝐵. We may, however, assume that g𝐴 is not fully contained in the

preimage 𝐵— this may be achieved simply by choosing 𝑑𝑛 small enough so that |Γ| − |𝛼+| > 𝑑𝑛.
Similarly, we may assume that g+

𝐴
and g−

𝐴
are not contained in 𝐵. Hence, there are some subsets

(line segments) of g𝐴, g+𝐴 , and g−
𝐴
that are not in 𝐵, and these three line segments themselves

bound yet another hexagon which we denote by 𝑈̂, see Figure 8. Now 𝑈̂ is still convex but may
be fairly thin, for example.
On three of the sides of 𝑈̂ (the sides on the active parts), the map 𝜏′ was already defined. For

each of the other three sides, the map 𝜏′ has the same value on both endpoints (this value is the
endpoint of 𝛼+, 𝛼−, or 𝛼± not on 𝜕𝕐), so we extend 𝜏′ as a constant map on these three sides.
Now 𝜏′ has been defined on the whole boundary of the convex hexagon 𝑈̂, and the image of
𝜕𝑈̂ under 𝜏′ is the boundary of the region 𝑉̂ bounded by three concave curves. Hence, at this
part of the construction, we may repeat the idea of the initial case from Step 3 where exactly
the same situation was addressed to extend a boundary map from a convex hexagonal region to
a region bounded by three concave curves. The Hölder-estimates obtained there show that ℎ is
Hölder-continuous in 𝑈̂ with the correct estimates.
Now the set 𝐻 ⧵ 𝑈̂ divides into up to three convex quadrilateral regions. For simplicity, we

consider here the case of such a region 𝑄+ that has one side given by 𝐸+ and shares points with
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 17 of 22

F IGURE 10 The shortest paths from 𝑝 to 𝑞 ∈ 𝛼+. If 𝑞 is an endpoint of 𝛼+, the situation may change.

the preimage of 𝛼+. In fact, the whole boundary of 𝑄+ is mapped to 𝛼+ under 𝜏′. Let us label the
sides of 𝑄+ as 𝑆𝐿, 𝑆𝐴, 𝑆+𝐴 , and 𝐸+. Here, 𝑆𝐴 ⊂ g𝐴 and 𝑆+𝐴 ⊂ g+

𝐴
. We wish to first compare how the

map 𝜏′ behaves on the sets 𝑆𝐴 and 𝑆+𝐴 , both mapped to 𝛼+ injectively. On the respective endpoints
of 𝑆𝐴 and 𝑆+𝐴 that also belong to 𝑆𝐿, 𝜏′ attains the same value. The other endpoints of 𝑆𝐴 and 𝑆+𝐴
(which are 𝑎𝐿 and 𝑎+𝐿 ) are mapped to the curve 𝛼+ and are of curve length 𝑑𝑛 and 𝑑𝑛+1 away from
the endpoint 𝜑(𝑎), respectively. We distinguish a subsegment 𝑍 ⊂ 𝑆+

𝐴
for which 𝜏′(g+

𝐿
) ∪ 𝜏′(𝑍) =

𝜏′(g𝐿), meaning that the endpoint of 𝑍 not on 𝐸+ is also mapped to curve length 𝑑𝑛 away from
𝜑(𝑎). We then need a helpful remark.

Remark. Given a point 𝑝 on 𝜑(𝐼) and letting 𝑞 denote the point on Γ that is the closest point to
𝑝 with respect to the internal distance in 𝕐, we have the following: If 𝑞 lies on 𝛼+ but is not an
endpoint of 𝛼+, then 𝑞 is also the closest point to 𝑝 on Γ+ with respect to the internal distance, see
Figure 10 on the left. To see this, consider the minimal boundary component of 𝜕𝕐 that contains
𝑝 and has endpoints on Γ+. Then, the part of Γ+ between these two endpoints has to be concave
toward 𝑝 and the closest point 𝑞′ on Γ+ to 𝑝 with respect to the internal distance lies on this part.
Now if 𝑞′ ≠ 𝑞, the three curves given by Γ+ and the two shortest curves Γ𝑞 from 𝑝 to 𝑞 and Γ𝑞′

from 𝑝 to 𝑞′ bound a region Δ whose three boundary curves are all concave toward the interior.
Moreover, since 𝑞′ was the closest point to 𝑝 on Γ+, it must hold that the angle between Γ𝑞′ and
Γ+ toward the interior ofΔ is at least 𝜋∕2. Since 𝑞 was not an endpoint of 𝛼+ and 𝛼+ ⊂ Γ+, it must
also hold that the angle between Γ𝑞 and Γ+ is at least 𝜋∕2. Now the sum of two interior angles
in the region Δ is at least 𝜋, which gives a contradiction as this cannot happen when each of the
boundary curves of Δ is concave toward the interior.

Note, however, that if 𝑞 is the other endpoint of 𝛼+, it is possible that 𝑞′ ≠ 𝑞 if the situation is as
in Figure 10 on the right. This is the only exceptional case, and to avoid additional consideration
of this case in the future, we will simply choose to make an arbitrarily small modification to the
parametrizationmap 𝜏 (= 𝜏Γ) in this situation that does not affect the Hölder-estimates for 𝜏 (and
by proxy 𝜏′). This modification is done in a way where the preimage of all such exceptional points
𝑝 under 𝜑 is not mapped to 𝑞 by 𝜏Γ but rather to an arbitrarily small part of the curve Γ starting
at the end of 𝛼+.
The conclusion we make from the remark in the previous two paragraphs is that the

parametrization map 𝜏 that can be defined for both the curve Γ and the curve Γ+ (we distin-
guish these maps by 𝜏 and 𝜏+) behaves exactly the same on the preimage of 𝛼+, meaning that
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18 of 22 HENCL and KOSKI

𝜏(𝑥) = 𝜏+(𝑥) for 𝑥 ∈ 𝜏−1(𝛼+). Hence, the map 𝜏′ that was obtained from the map 𝜏 by a linear
change of variables also satisfies that 𝜏′|𝑆𝐴 is simply a linear change of variables of 𝜏′|𝑍 . This lets
us divide 𝑄+ into a triangle 𝑇′ with two sides given by 𝑍 and 𝐸+ and a quadrilateral 𝑄′ with three
sides 𝑆𝐴, 𝑆𝐿, and 𝑆+𝐴 ⧵ 𝑍.
On the quadrilateral𝑄′, we simply defineℎ as a linear interpolation between themaps 𝜏′|𝑆𝐴 and

𝜏′|𝑆+
𝐴
⧵𝑍 . More precisely, since 𝑄′ may be represented as 𝑄′ = {𝑡𝑆𝐴 + (1 − 𝑡)(𝑆+

𝐴
⧵ 𝑍) ∶ 0 ⩽ 𝑡 ⩽ 1},

we define ℎ on each intermediate segment 𝑡𝑆𝐴 + (1 − 𝑡)(𝑆+
𝐴
⧵ 𝑍) as simply the map 𝜏′ composed

with the natural projection from 𝑡𝑆𝐴 + (1 − 𝑡)(𝑆+
𝐴
⧵ 𝑍) to 𝑆𝐴. This gives a Hölder-continuousmap

ℎ ∶ 𝑄′ → 𝛼+ with estimates inherited from 𝜏′ since the map is practically just 𝜏′ in one direction
and constant in the other.
On the triangle 𝑇′, the map 𝜏′ maps the two sides 𝐸+ and 𝑍 both onto the same part of

𝛼+ between 𝑑𝑛+1 and 𝑑𝑛 length from 𝜑(𝑎). The parametrizations here may be slightly dif-
ferent as the map 𝜏′ on 𝐸+ was simply defined via constant speed parametrization, while 𝑍

it is inherited from the map 𝜏. Nevertheless, since both parametrizations satisfy appropriate
Hölder-estimates, and due to 𝑑𝑛 being small enough, we may simply linearly interpolate between
these two parametrizations in 𝑇′ to define an extension map ℎ ∶ 𝑇′ → 𝜏′(𝑍) ⊂ 𝛼+ with the
correct Hölder-estimates.
This defines the map ℎ on 𝑄+, and hence, it is now defined on the whole hexagon𝐻 ⊂ 𝑈. The

same idea as in the previous paragraph may be applied to define the extension ℎ on the triangle
𝑇𝐿 with sides g𝐿 and g+

𝐿
. In fact, if we remove from g𝐿 the part that projects to the 𝑥-axis as the

same set as g+
𝐿
, this splits the triangle 𝑇𝐿 into two triangles. In one triangle, we may use the 𝑥-axis

projection property (3.8) to define the extension ℎ simply as a constant map on vertical segments,
while on the remaining triangle (whose one side is 𝑆𝐿), wemayuse the same idea as in the previous
paragraph. This defines the extension ℎ on 𝑇𝐿 and the same idea may be used to define ℎ on the
whole of 𝑈.
Let us now address the case where 𝛼+ is a singleton. Then, we would modify the above con-

struction as follows. First, we note that the curves Γ and Γ+ must be concave toward each other
near their common point 𝜑(𝑎), so we may choose the earlier curve 𝐹+ as simply a line segment
between the respective endpoints given by points at length 𝑑𝑛 and 𝑑𝑛+1 on Γ and Γ+, respectively
(if needed, we can decrease 𝑑𝑛 beforehand so that this segment 𝐹+ has no additional intersections
with other curves). We recall that 𝜏′ maps the edge 𝐸+ of the hexagon𝐻 to this segment 𝐹+, and
in this case, 𝐸+ is also an edge of the hexagon 𝑈̂mapped to 𝑉̂ previously. But in this case, wemust
instead construct the extension ℎ to map 𝑈̂ to the set𝑊 obtained by removing from 𝑉̂ the small
part𝑊+ near 𝜑(𝑎) that is cut away from it by the segment 𝐹+. If some of the curves 𝛼− or 𝛼± are
also singletons, this is reflected in the definition of𝑊 by also cutting away appropriate parts𝑊−

and/or𝑊±.
Hence, the set𝑊 consists three concave boundary curves and up to three other boundary parts

that are arbitrarily small segments between these curves. We would like to still use the idea from
the “initial case” to define an extension ℎ ∶ 𝑈̂ → 𝑊, but the argument is not applicable without
some modifications as it assumed that the target boundary did not have the additional small seg-
ments such as 𝐹+. Nevertheless, one may verify that as long as these segments are small enough,
there is no essential change to the argument or estimates. Hence, this is just a matter of choosing
the numbers 𝑑𝑛 to be appropriately small depending on the curve Γ and its children. In fact, one
may even repeat the arguments of the initial construction in this situation, and notice that the
shortest curves in𝑊 are still only consisting of at most two segments and a concave part in the
middle, so the proof of Hölder-estimates will go through similarly as well.
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 19 of 22

F IGURE 11 The two cases for positioning of 𝑥 and 𝑦. On the right, the triangular regions mapped very close
to the boundary are highlighted.

On the triangle 𝑇𝐿, we define the map ℎ ∶ 𝑇𝐿 → 𝑊+ as an extension of the boundary values 𝜏′.
For such an extension, we may actually use the idea from the “initial case” since𝑊+ is bounded
by two concave curves and a segment. But any reasonable extension method here will also work
as long as the number 𝑑𝑛 is chosen small enough since any bounds obtained will get uniformly
smaller as 𝑑𝑛 tends to zero. Some care should also be taken here to respect the way 𝜏′ was defined
dyadically on the boundary curves g𝐿 and g+𝐿 of 𝑇𝐿, recall Figure 9. Each such piece of g𝐿 defines
a “dyadic slice” of 𝑇𝐿 that projects to the same region on the 𝑥-axis as g𝐿, and we may define
the extension ℎ on 𝑇𝐿 so that on the 𝑚th dyadic slice, we have estimates controlled by 𝑑𝑛+𝑚−1

instead of 𝑑𝑛. This observation is fairly trivial but necessary to get the correct global bounds as we
approach the boundary.
Step 5. Global Hölder continuity. In the previous part of the construction, we were able to

define the extension ℎ in each set 𝑈 = 𝑈𝑛,𝑘 and verified that it satisfies the appropriate Hölder-
continuity estimates locally in each such set. The fact that ℎmaps𝑈𝑛,𝑘 as amonotonemap to𝑉𝑛,𝑘

means that this already defines ℎ as a monotone map of the whole disk 𝔻 to the target domain 𝕐.
In this part of the proof, we will verify that the map ℎ is also Hölder-continuous in the whole disk
𝔻 with the appropriate estimates inherited from its local behavior.
To do this, consider two points 𝑥, 𝑦 ∈ 𝔻. Thus, 𝑥 ∈ 𝑈𝑛,𝑘 and 𝑦 ∈ 𝑈𝑛′,𝑘′ for some 𝑛, 𝑘, 𝑛′, 𝑘′,

where we may suppose that 𝑛 ⩽ 𝑛′. Let 𝑁 be such that 2−𝑁 ≈ |𝑥 − 𝑦|. We split into two cases
depending on how far 𝑥 and 𝑦 are apart compared to the level of their dyadic sets, see Figure 11.

Case 1. 𝑁 ⩽ 𝑛. In this case, wemay traverse from 𝑥 to 𝑦 via two sequences of sets𝑈𝑛
𝑥 ,𝑈

𝑛−1
𝑥 , … ,𝑈𝑁

𝑥

and𝑈𝑁
𝑦 ,𝑈

𝑁+1
𝑦 , … ,𝑈𝑛′

𝑦 . Each of these sets is one of the dyadic sets𝑈𝑚,𝑙 considered before, with 𝑥 ∈

𝑈𝑛
𝑥 , 𝑦 ∈ 𝑈𝑛′

𝑦 and the middle set 𝑈𝑁
𝑥 = 𝑈𝑁

𝑦 is from the dyadic level 𝑁 and hence having diameter
comparable to 2−𝑁 . Moreover, the dyadic level changes by at most one in each step that allows us
to use the Hölder-continuity of ℎ in each set to estimate that

|ℎ(𝑥) − ℎ(𝑦)| ⩽ 𝑁∑
𝑙=𝑛

diam
(
ℎ
(
𝑈𝑙
𝑥

))
+

𝑁∑
𝑙=𝑛′

diam
(
ℎ
(
𝑈𝑙
𝑦

))

⩽ 𝐶

𝑁∑
𝑙=𝑛

2−𝑙𝛼 + 𝐶

𝑁∑
𝑙=𝑛′

2−𝑙𝛼

⩽ 2𝐶

∞∑
𝑙=𝑁

2−𝑙𝛼

⩽ 𝐶′2−𝑁𝛼.
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20 of 22 HENCL and KOSKI

F IGURE 1 2 Points 𝑥 and 𝑦 very close to each other.

Since 2−𝑁 ≈ |𝑥 − 𝑦|, this gives the correct Hölder-continuity estimate.
Case 2. 𝑁 > 𝑛. We consider a few possibilities. If 𝑥 and 𝑦 are in the same set𝑈𝑛,𝑘 or 𝑦 is in one of
the two child sets of 𝑈𝑛,𝑘, then there is nothing to prove as we only need to use the local Hölder
estimate for ℎ at most twice to get the required estimate.

Otherwise𝑥must be in one of the triangular regions in𝑈𝑛,𝑘 thatweremapped to sets of distance
at most 𝑑𝑛 from the corresponding boundary point under ℎ, see the right part of Figure 11, as
otherwise the distance |𝑥 − 𝑦| would be too large.
If now𝑈𝑛′,𝑘′ does not share a boundary point with𝑈𝑛,𝑘 (as in the right part of Figure 11), then

we can argue using the idea from Case 1 to assume that it does. Indeed, Case 1 lets us replace 𝑦
with any point 𝑦′ belonging to a set𝑈𝑛′,𝑚 within the same generation 𝑛′ as long as |𝑦 − 𝑦′| ≈ 2−𝑁 .
Geometrically, it is simple to see that if 𝑈𝑛′,𝑘′ did not already share a boundary point with 𝑈𝑛,𝑘,
then we may pick the new point 𝑦′ from such a set instead. Hence, we are assumed to be in a
configuration similar to Figure 12.
In this case, wemust recall the construction of the map ℎ inside such triangular regions, where

it was defined dyadically by splitting the region into dyadic slices depending on their projection
to the 𝑥-axis as in Figure 9 and the discussion at the end of Step 4. Let us suppose that 𝑥 lies in
the 𝑚th dyadic slice, mapped to a small set of diameter less than 𝑑𝑛+𝑚−1. We may also suppose
that 𝑦 belongs to the corresponding dyadic slice within𝑈𝑛′,𝑘′ , as otherwise we may again replace
𝑦 by such a point while this time using the Hölder-estimates inside 𝑈𝑛′,𝑘′ .
Now both 𝑥 and 𝑦 are mapped within distance 𝑑𝑛+𝑚−1 of each other. We may now conclude by

assuming that the sequence 𝑑𝑛 was picked to be small enough so that we get the desired estimate.
To be precise, since we assumed that 𝑥 and 𝑦 belonged to corresponding dyadic slices that were
not neighbors, the distance |𝑥 − 𝑦| is bounded from below in terms of some function 𝑛 + 𝑚 − 1

(depending on our initial choice of angles for the curves 𝛾𝑛,𝑘 on the domain side). Hence, the
inequality 𝑑𝑛+𝑚−1 ⩽ 𝐶|𝑥 − 𝑦|𝛼 may be obtained by small enough choice of sequence (𝑑𝑛).
Step 6. Injectification of themap. In this part of the proof, we explain how themap ℎmay be

modified slightly to produce a homeomorphic extension𝐻 ∶ 𝔻 → 𝕐 instead. The map ℎ itself has
the potential issue of not being injective on each set𝑈𝑛,𝑘. For example, in the case where Γ = Γ𝑛,𝑘
and its child curve Γ+ intersect along a curve 𝛼+, then the preimage of 𝛼+ will be a set where we
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EXTENSION OF PLANAR HÖLDER HOMEOMORPHISMS 21 of 22

F IGURE 13 Injectification of the map.

have loss of injectivity. The curves Γ𝑛,𝑘 may also touch 𝜕𝕐 outside of their endpoints as they were
simply defined as shortest curves inside 𝕐.
But since the endpoints of each curve Γ𝑛,𝑘 were “good points” in 𝜕𝕐, it is fairly clear that wemay

move each curve slightly toward the interior of𝕐 and even replace each such curve by a piecewise
linear approximation instead. See Figure 13 for an illustration. Here, we may choose to make the
piecewise linear approximation such that it produces a finite number of pieces in each compact
subset of𝕐, possibly allowing for fine adjustments aswe near the boundary at the endpoints ofΓ𝑛,𝑘
(to account for the dyadic way themap ℎwas defined near the preimages of such endpoints, recall
again Figure 9). This may also be done in such a way that none of the curves Γ𝑛,𝑘 intersect within
the interior of 𝕐 and hence produce topologically the same configuration as the curves 𝛾𝑛,𝑘 on the
domain side. It is also clear that such modifications may be done in an arbitrarily small fashion
on each dyadic level, if necessary so that the adjustment also gets smaller and smaller as we near
an endpoint of Γ𝑛,𝑘.
The extension map ℎ will be modified a follows. First, we adjust the parametrization 𝜏′ to map

instead to the new image curves Γ∗
𝑛,𝑘

in place of Γ𝑛,𝑘. At this point, we may also injectify the
parametrization 𝜏′ in parts where it may have not been injective before (certain intervals could
be mapped into single points, recall Figure 2). This can also be done in an arbitrarily small way,
again adjusting for increasingly smaller changes as we near the boundary.
On the sets where ℎ was already injective before, it is fairly clear that the aforementioned

changes to the curves Γ𝑛,𝑘 only produce very small perturbations of the construction of ℎ. On
the preimages of the possible overlapped curves 𝛼+, 𝛼−, and 𝛼± under ℎ, we must redefine ℎ as a
map 𝐻 that now sends the preimages to an appropriate region defined by the two replacements
of such curves. For example, if originally 𝛼+ was the intersection of Γ and Γ+, then after the fact
that we have replaced Γ and Γ+ by two curves Γ∗ and Γ∗+ that do not intersect each other, there are
parts 𝛼∗ ⊂ Γ∗ and 𝛼∗+ ⊂ Γ∗+ that correspond to the part that was 𝛼+ before. Since the adjustment
may be done in an arbitrarily small way, the other endpoints of the curves 𝛼∗ and 𝛼∗+ (which are
now distinct points) may be connected by an arbitrarily small curve 𝓁∗, in fact a line segment if
the earlier perturbation is done appropriately. Furthermore, within the region defined by 𝛼∗, 𝛼∗+,
and 𝓁∗, it will be possible to define an isotopy 𝛼𝑡, 𝑡 ∈ [0, 1], between 𝛼∗ and 𝛼∗+ with the other
endpoint of 𝛼𝑡 moving on the segment 𝓁∗.
Recalling that the map ℎ was defined on all preimages of the curve 𝛼+ as some form of homo-

topy between different parametrizations of 𝛼+. For example, in the quadrilateral 𝑄′ ⊂ 𝑄+, the
map ℎ was simply defined by linear interpolation between the boundary map 𝜏′ on two opposite
sides of 𝑄′. If we now modify this linear interpolation by mapping to the curves 𝛼𝑡, where 𝑡 runs
over the whole interval [0,1], instead then this produces an injective version of the map ℎ in this
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22 of 22 HENCL and KOSKI

set. As usual, since the modifications were arbitrarily small, the change to the Hölder-constant
may also be assumed to be arbitrarily small here. □
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