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Abstract. Drug-induced liver injury (DILI) presents a multifaceted
challenge, influenced by interconnected biological mechanisms. Current
DILI datasets are characterized by small sizes and high imbalance, pos-
ing difficulties in learning robust representations and accurate modeling.
To address these challenges, we trained a multi-modal multi-task model
integrating preclinical histopathologies, biochemistry (blood markers),
and clinical DILI-related adverse drug reactions (ADRs). Leveraging pre-
trained BERT models, we extracted representations covering a broad
chemical space, facilitating robust learning in both frozen and fine-
tuned settings. To address imbalanced data, we explored weighted Binary
Cross-Entropy (w-BCE) and weighted Focal Loss (w-FL) . Our results
demonstrate that the frozen BERT model consistently enhances perfor-
mance across all metrics and modalities with weighted loss functions
compared to their non-weighted counterparts. However, the efficacy of
fine-tuning BERT varies across modalities, yielding inconclusive results.
In summary, the incorporation of BERT features with weighted loss func-
tions demonstrates advantages, while the efficacy of fine-tuning remains
uncertain.

Keywords: Toxicity · DILI · BERT · Focal loss

1 Introduction and Background

Thalidomide, the tragedy of birth defects led the foundation of systematic testing
of drugs safety prior to marketing (Kim and Scialli, 2011). Pharmacovigilance
efforts start with in-vitro and in-vivo studies during the drug development stage,
continue through clinical trial and post-marketing surveillance.
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The liver, as the primary organ affected by xenobiotics, plays a crucial role in
drug metabolism (Stanley, 2017). Drug-induced liver injury (DILI) stands as a
significant cause of late-stage drug failure and post-marketing drug withdrawal
(Watkins, 2011; Parasrampuria et al., 2018). Toxic compounds can be catego-
rized into intrinsic toxins, whose toxicity can be modeled based on chemical
information, and idiosyncratic toxins, which pose challenges in both preclinical
and clinical modeling due to their unpredictable effects influenced by genetic
variations (Lancaster et al., 2015; Parasrampuria et al., 2018). Over the years,
several methods have been developed to model DILI using molecular structure
and various fingerprints (Cruz-Monteagudo et al., 2008; Chen et al., 2013b; Xu
et al., 2015; Ai et al., 2018; Wang et al., 2019; Asilar et al., 2020). Combin-
ing other modalities with molecular features, such as transcriptomics (Wang et
al., 2019a), physicochemical properties (Ekins et al., 2010; Chen et al., 2013a),
and selected in-vitro assays (Williams et al., 2020), has been shown to pro-
vide robust DILI models. During the drug design process, toxicity assessment
spans multiple stages, encompassing in-vitro assays, preclinical investigations,
and clinical trials. Toxicity presents across diverse endpoints and species, thus
prompting a multitask approach for data integration and cross-modality learn-
ing. This strategy has demonstrated promise in extracting toxicity patterns by
jointly considering various dose administration methods, endpoints, and species,
particularly in acute toxicity modeling (Sosnin et al., 2019; Jain et al., 2021).
Moreover, extending this approach to incorporate joint learning from in-vitro,
in-vivo, and clinical data has improved balanced accuracy (as defined in Eq. 7)
of the ClinTox dataset. (Sharma et al., 2023).

Class imbalance is a prevalent issue in toxicity datasets, where negative
instances vastly outnumber positive ones. This disparity makes machine learning
models inaccurate, as classifiers trained on imbalanced data tend to prioritize the
majority class, leading to ineffective performance on the minority class (Rawat
and Mishra, 2022). To address this, various strategies are employed, includ-
ing resampling techniques like oversampling and undersampling. Oversampling
methods such as Synthetic Minority Oversampling Technique (SMOTE) arti-
ficially increase the number of minority instances (Chawla et al., 2002), while
undersampling involves reducing the number of majority instances (Laveti et
al., 2021; Lee and Seo, 2022). However, both approaches have drawbacks; under-
sampling may lead to loss of valuable data, while oversampling can be computa-
tionally intensive (Rawat and Mishra, 2022). Cost-Sensitive Learning (CSL) can
also be used as this method assigns higher costs to samples from the minority
class (Elkan, 2001; López et al., 2012). Unlike resampling techniques, CSL main-
tains the original data distribution while enhancing computational efficiency.
CSL, coupled with traditional machine learning algorithms such as Random
Forest (RF) and Support Vector Machine (SVM), has been used for drug dis-
covery application, including compound activity estimation (Alashwal and Luc-
man, 2020), CYP450 modeling (Eitrich et al., 2007), and Drug-Induced Liver
Injury (DILI) modeling (Moein et al., 2023), demonstrating improvements in
some cases. In the realm of deep learning, binary-cross-entropy loss serves as a
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Fig. 1. Mean performance across all tasks was evaluated using multiple metrics. Solid
lines represent Frozen-BERT, while dotted lines indicate fine-tuned BERT. Perfor-
mance improved from BCE to weighted-BCE, Focal loss, and weighted Focal loss for
the Frozen-BERT model. However, this trend is inconsistent for fine-tuned BERT. In
certain tasks, such as pathological ones, the fine-tuned model outperformed Frozen-
BERT. In other cases, negative transfer is observed.

common choice for training binary classification models, often augmented with a
weighting factor to elevate the cost of positive instances, thus ensuring a balanced
contribution from both classes in the overall loss function. Focal loss represents
a refinement of BCE loss, introducing a modulating factor that aids in distin-
guishing between easy and difficult examples naturally favours minority class
Lin et al. (2018).

One method for representing three-dimensional chemical structures as text
strings is the Simplified Molecular Input Line Entry System (SMILES), which
employs a defined set of ordered rules and specific syntax Weininger (1988).
The chemical characteristics of a compound xc can be described through vari-
ous modalities. Encoding schemes like Mold, PaDel, RDF, ECFC, and Marvin
molecular descriptors have been developed to capture molecular structural prop-
erties. Despite their individual successes, there’s no universal encoding scheme
or algorithm to rule them all (Gao et al., 2020). In drug development, small-
scale datasets often fail to adequately represent the vast chemical space, leading
to models trained on handcrafted features that struggle to generalize to unseen
chemical spaces (Moein et al., 2023). To address this limitation, researchers lever-
age representations derived from large amounts of unlabeled data (Harnik and
Milo, 2024). Various models such as Variational Autoencoders (VAEs) (Kingma
and Welling, 2013), Normalizing Flows (NFs) (Rezende and Mohamed, 2015),
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and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) aim to
uncover low-dimensional latent representations φ(x) ∈ R

d of complex, high-
dimensional objects x ∈ R

D, where d � D (Ruthotto and Haber, 2021). These
models transform data into a vectorized space, generating concise and well-
structured representations that encompass broader chemical space (Li et al.,
2022). To facilitate learning of underlying chemistry, various pretext tasks are
carefully designed, including input translation between modalities (Winter et
al., 2019; Yang et al., 2019), input reconstruction (Wang et al., 2019b; Li and
Fourches, 2020; Maziarka et al., 2020), and recovering masked or corrupted input
(Liu et al., 2023).

In recent years, various transformer-based models have been applied to molec-
ular representation learning (Chithrananda et al., 2020; Li and Jiang, 2021;
Ahmad et al., 2022; Irwin et al., 2022) with many studies opted for transformer
based BERT architecture (Li and Jiang, 2021; Liu et al., 2023; Shermukhame-
dov et al., 2023). BERT (Bidirectional Encoder Representations from Trans-
formers) is pre-trained on large text corpora using two objectives, defined by
Devlin et al. (2019) as the “masked language model” (MLM) and “next sentence
prediction” (NSP) task. During pre-training, BERT learns bidirectional contex-
tual embeddings for each token, capturing nuanced word meanings within the
sentence context. Utilizing the Transformer architecture, BERT employs self-
attention mechanisms to dynamically weigh word importance. By fine-tuning
on task-specific labeled data, BERT adapts its learned representations to var-
ious downstream natural language processing tasks, achieving state-of-the-art
performance. BERT can learn molecular representations by treating molecular
structures as token sequences. Pre-training BERT on large molecular datasets
with appropriate objectives, such as incorporating physicochemical properties
or molecule relationships, enables it to learn robust chemical representations
(Fabian et al., 2020). Fine-tuning the pre-trained BERT model on small task-
specific labeled data can provide improved performance in some drug discovery
applications (Liu et al., 2023).

2 Materials and Method

2.1 Datasets

The preclinical study integrates liver histopathology endpoints from the TG-
Gates dataset (Igarashi et al., 2015), covering 170 compounds administered to
rats across varying concentrations and exposure conditions, later expanded to
430 compounds with re-annotated INHAND labels (Moein et al., 2023). Out of 55
liver endpoints, we focus on 12 for this study. We extend preclinical tasks by
incorporating selected blood markers (ALP, AST, ALT, GTP, TC, TG, TBIL,
DBIL) from biochemistry database provided by TG-GATES converting both
histopathological and bloodmarker labels into binary labels using expert-derived
thresholds. Additionally, we enrich preclinical data with DILI related adverse
drug reactions (ADRs) extracted from the SIDER dataset , comprising 6060
ADRs associated with 1430 drugs (Kuhn et al., 2016). Further details regarding
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Fig. 2. Results from Frozen-BERT model. Top row: The log-loss analysis of positive
and negative data points is depicted in this plot, where blue and green colors represent
the training and testing data, respectively. Task-wise means are represented by small
blobs, while ellipses indicate the 95% confidence interval. This visualization revealed
that the network tends to be biased towards the majority class (negatives), leading
to significantly lower log-loss for negatives, particularly evident with Binary Cross-
Entropy (BCE). Transitioning to weighted Binary Cross-Entropy (BCE-W), the model
is forced to equally prioritize both negatives and positives, resulting in a decrease in
log-loss for positives. Focal Loss naturally emphasizes on hard examples, which, in this
context, are positive examples. Weighted Focal Loss further supported the model by
applying additional weighting to positive examples, as a result further reduced in logloss
of positive instances. Bottom row: This plot presents the ROC-AUC for the train and
test sets. Light lines represent task-wise ROC-AUC, while the thick line represents the
mean ROC-AUC across all tasks. Weighted Focal Loss provided the highest validation
ROC-AUC

task selection, binarization, and distributions are available in the supplementary
material.

2.2 Loss Functions

We consider a modeling problem from molecules x to binary toxicity profiles
y ∈ {0, 1}P of P = 50 endpoints from a dataset D = {(xn,yn)}N

n=1 of size N ≈
2000. We assume a function f(x; θ) ∈ [0, 1]P that outputs separate probabilities
for endpoints, and we use a shorthand fnp = f(xn; θ)p.
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Fig. 3. This plot shows task-wise performance, with colors representing different modal-
ities and tasks organized from lowest to highest ROC score. This plot also shows that
clinical tasks were the most challenging to model. Additionally, the model failed to
learn two tasks: Extramedullary (pathological) and 100197554 (clinical)

Binary-Cross-Entropy Loss (BCE). The binary cross-entropy (BCE) train-
ing loss is appropriate for this problem

LBCE =
P∑

p=1

N∑

n=1

ynp log σ(fnp) + (1 − ynp) log(1 − σ(fnp)) (1)

Weighted-BCE. The toxicity datasets are generally zero-inflated with nega-
tives being much more common, however, the BCE treats each observation as
equally important, and will lead the model to focus more on negatives. We can
tackle this positive-negative imbalance by overweighting the positive datapoints
within each endpoint,

Lw
BCE =

N∑

n=1

P∑

p=1

w+
p ynp log σ(fnp) + (1 − ynp) log (1 − σ(fnp)) (2)

where w+
p = Np−/Np+ ∈ R

+ is the inverse ratio of positives Np+ to negatives
Np− in endpoint p. Here we only upscale the positives while leaving negatives



88 M. A. Masood et al.

Table 1. The distribution of positive and negative samples across each modality. For
visualization purpose, a molecule is classified as positive if it is active in any task, and
negative if it is inactive in all tasks. The total represents the number of unique SMILES
in the complete dataset.

positive negative Modality Sum

Pathologies 176 234 410
Biochemistry
(blood
markers)

124 286 410

Clinical 749 470 1219
Total 1049 990 1554*

intact. This loss ensures that within-class positive and negative observations
have equal mass. Further, we can try to find the balancing, by selecting optimal
α through cross validation

w+
p = α

Np−
Np+

+ (1 − α)1 (3)

where α ∈ [0, 1] denotes the positive balancing.

Focal Loss. In scenarios of significant class imbalance, mere weighting can be
insufficient, as it fails to discriminate between easy and challenging examples,
thereby risking the overwhelming of gradients by the dominant class. A remedy
for this issue is focal loss, initially devised for object detection within images
(Lin et al., 2018). This approach incorporates a modulating parameter alongside
cross-entropy loss, thereby decrease the influence of accurately classified exam-
ples and consequently mitigating their overall impact. This modulating factor
can be adopted and integrated into our binary cross-entropy loss framework.

LFL =
N∑

n=1

P∑

p=1

(1 − σ(fnp))
γ

ynp log σ(fnp) + σ(fnp)γ(1 − ynp) log (1 − σ(fnp))

(4)

Weighted Focal Loss. Focal loss can also be assisted by incorporating positive
weighting as described earlier.

Lw
FL =

N∑

n=1

P∑

p=1

w+
p (1− σ(fnp))

γ ynp log σ(fnp) + σ(fnp)
γ(1− ynp) log (1− σ(fnp))

(5)
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2.3 Models

Baseline. We are using Random Forest as our baseline. Random Forest is a
robust baseline as it combines decision trees through ensemble learning, reducing
overfitting and providing reliable results. Additionally, Random Forest maintains
interpretability and scales efficiently for large datasets. To optimize performance,
we conducted individual task-specific hyperparameter searches and presented the
mean results across all tasks in Table 2. The hyperparameter search space details
are provided in supplementary Table 2.

MolBERT. The MolBERT model Fabian et al. (2020), an adaptation of the
BERT architecture Devlin et al. (2019), consists of 12 attention heads, 12 layers,
and a 768-dimensional hidden layer, containing 85 million parameters. It is pri-
marily optimized for the masked token estimation, employing cross-entropy loss.
Additionally, it incorporates physicochemical properties computed via RDKit as
an auxiliary task, with optimization achieved through mean squared error. The
final loss function is determined by the arithmetic mean of all individual task
losses. This model is pretrained for 100 epochs using the Adam optimizer.

MLP Head. This MLP head consists of an input-hidden-output layers, where
x0 is initialized as the input features x, which can be either BERT features or
ECFP . We utilize dropout for regularization, batch normalization for training
stability, and the rectified linear unit (ReLU) activation function as the default
activation. Additionally, the network incorporates a skip connection, merging
the input and output of the hidden layer, enhancing information flow. Finally,
the output layer generates logits, which can be transformed into probabilities by
passing through a sigmoidal activation function.

x0 = x BERT features or ECFP

x� = Dropout(ReLU(BatchNorm(W�x0 + b�)))
x̃�+1 = BatchNorm(W�+1x� + b�+1)
x�+1 = Dropout(ReLU(x� + x̃�+1))
xout = W�+2x�+1 + b�+1

(6)

The hyper-parameters of this model are given in Table 1 in supplementary.

2.4 Feature Extraction

ECFP Fingerprints. ECFP or Extended-Connectivity Fingerprints (Rogers
and Hahn, 2010), is a method used in cheminformatics to represent molecular
structures as binary fingerprints, capturing structural information by encoding
the presence or absence of substructural features within a specified radius around
each atom. Through iterative traversal of the molecular structure, unique sub-
structural fragments are identified and hashed into a fixed-length bit vector,
generating a binary fingerprint where each bit indicates the presence or absence
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of a specific substructural fragment. We encoded each molecule into fix 1024
dimensional binary vector by using radius 6. We have compared ECFP finger-
prints with BERT features explained below.

BERT Features. We encoded preclinical and clinical SMILES into continuous
features, utilizing a large transformer model MolBERT, pretrained on 1.6 million
SMILES via masking, alongside physicochemical properties (Fabian et al., 2020).
Extracting a pooled output of dimension 764 from the pretrained model, we
employed these features to train an MLP head. This strategy allowed us to
leverage a significant volume of unlabeled data,and encapsulated the contextual
information of larger chemical space.

2.5 Evaluation

Here, we briefly sketch the evaluation metrics used in model selection and to
report final results.

Balanced Accuracy. Given the imbalance between positive and negative
instances, using accuracy as a performance metric becomes inadequate. There-
fore, we chose balanced accuracy, which represents the arithmetic mean of sen-
sitivity (true positive rate) and specificity (true negative rate). We compute the
balanced accuracy at varying thresholds for each task and select the threshold
(τmax

p ) that yields the highest balanced accuracy.

BA(τp) =
1
2
(Sensitivity(τp) + Specificity(τp))

τmax
p = argmax

τp
BA(τp)

BA =
1
P

p∑

p=1

BA(τmax
p )p

(7)

ROC AUC. The ROC curve, generated by plotting true positive rates (TPR)
against false positive rates (FPR) at various thresholds(τp), illustrates the trade-
off in model performance. The area under this curve (ROC AUC) condenses the
curve’s information into a single value, ranging between 0.5 (no discrimination)
and 1.0 (ideal discrimination).

AUPR. The ROC-AUC curve can yield overly optimistic results with highly
imbalanced datasets, thus we used Precision-Recall (PR) curves (Davis and
Goadrich, 2006; Forman and Scholz, 2010). The Average Precision (AP) score
provides a summary of a precision-recall curve by calculating the weighted mean
of precisions achieved at each threshold, with the increase in recall from the
previous threshold used as the weight (Zhu, 2004):

AP =
∑

n

(Rn − Rn−1)Pn (8)
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where Pn and Rn denote the precision and recall at the n-th threshold, respec-
tively. We selected the optimal hyperparmeters based on AP-score

F1-score. This metric combines the precision and recall using the harmonic
mean. To select the optimal threshold, we followed the similar procedure to
balance accuracy

F1 score = 2 × Precision(τp) × Recall(τp)
Precision(τp) + Recall(τp)

(9)

Log-Loss. To compute the loss of positive and negative instances for each task,
we use the following equations:

Lp
pos =

1
Npos

N∑

n=1

(ynp log σ(fnp))

Lp
neg =

1
Nneg

N∑

n=1

((1 − ynp) log(1 − σ(fnp)))

(10)

3 Results and Discussions

Table 2. Comparison of different loss functions with ECFP and BERT features. We
also showed the effect of BERT fine-tuning

Model
Loss type Features

Finetuning
Metrics

BCE BCEw FL FLw ECFP BERT BA F1 ROC AP

RF - - - - - - - 0.67 ± 0.002 0.36 ± 0.003 0.65 ± 0.004 0.27 ± 0.003

✓ - - - ✓ - - 0.67 ± 0.004 0.34 ± 0.001 0.62 ± 0.003 0.26 ± 0.002
- ✓ - - ✓ - - 0.66 ± 0.003 0.34 ± 0.004 0.63 ± 0.002 0.26 ± 0.001
- - ✓ - ✓ - - 0.67 ± 0.004 0.37 ± 0.002 0.64 ± 0.003 0.28 ± 0.004
- - - ✓ ✓ - - 0.68 ± 0.001 0.35 ± 0.003 0.65 ± 0.002 0.26 ± 0.001

MT ✓ - - - - ✓ - 0.68 ± 0.003 0.37 ± 0.004 0.65 ± 0.001 0.28 ± 0.003
- ✓ - - - ✓ - 0.70 ± 0.002 0.38 ± 0.001 0.67 ± 0.003 0.29 ± 0.002
- - ✓ - - ✓ - 0.70 ± 0.001 0.39 ± 0.003 0.67 ± 0.004 0.31 ± 0.001
- - - ✓ - ✓ - 0.72 ± 0.004 0.40 ± 0.002 0.70 ± 0.003 0.30 ± 0.001
✓ - - - - ✓ ✓ 0.73 ± 0.001 0.37 ± 0.002 0.70 ± 0.003 0.28 ± 0.004
- ✓ - - - ✓ ✓ 0.72 ± 0.004 0.37 ± 0.001 0.70 ± 0.002 0.29 ± 0.003
- - ✓ - - ✓ ✓ 0.72 ± 0.003 0.38 ± 0.004 0.69 ± 0.001 0.30 ± 0.002
- - - ✓ - ✓ ✓ 0.72 ± 0.002 0.37 ± 0.003 0.68 ± 0.002 0.28 ± 0.001

We observed a significant performance gain when using BERT features com-
pared to ECFP, as highlighted in Table 2. Figure 1 compares weighted and non-
weighted loss functions for both frozen and fine-tuned BERT models. For the
frozen BERT model, we observed a consistent performance improvement in bal-
anced accuracy, F1-score, ROC-AUC, and average precision across all modalities
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when transitioning from Binary Cross-Entropy (BCE) to weighted Binary Cross-
Entropy (BCE-w), Focal Loss (FL), and weighted Focal Loss (FL-w). However,
this trend was not consistent in the fine-tuned BERT model. Fine-tuning BERT
improved performance in some modalities but decreased it in others. In conclu-
sion, BERT features outperformed ECFP, weighted loss functions were superior
to unweighted ones, and the effectiveness of fine-tuning remained inconclusive.

To analyze the impact of different loss functions, we computed the log-loss for
positive and negative instances generated from Frozen-BERT, as shown in Fig. 2.
Task-wise means, calculated using Eq. 10, are represented by small blobs with
ellipses indicating the 95% confidence interval across all tasks. The visualization
highlighted a network bias towards the majority class (negatives), resulting in
elevated log-loss for positive instances, particularly with Binary Cross-Entropy
(BCE). Transitioning to weighted Binary Cross-Entropy (BCE-W) prompted
the model to equally prioritize both positives and negatives, decreasing log-
loss for positives compared to BCE. Moreover, Focal Loss naturally emphasizes
on hard examples, in this case, positive instances, lead to significantly lower
log-loss for positives. Weighted Focal Loss further supported this by assigning
additional weight to positive examples, consequently reducing the log-loss of
positive instances even further. Further, in our experience frozen-BERT model
provided the highest ROC-AUC with weighted Focal loss as depicted in the
bottom row of the Fig. 2.

We computed a task-wise performance, as depicted in Fig. 3. Our models
achieved the highest ROC-AUC for biochemistry related tasks and lowest for
the clinical tasks the highest ROC scores. Interestingly, the model encounters
difficulty in learning two specific tasks: Extramedullary from the pathological
category and 100197554 from the clinical category.

4 Supplementary Information

The related supplementary information can be found on project GitHub repos-
itory https://github.com/Arslan-Masood/Tox_balance
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