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A B S T R A C T

In this study, the ‘Quantitative Structure-Property Relationship’ (QSPR) method has been applied for the pre-
diction hydrogen (H2) solubility in different types of hydrocarbons using a new bigger dataset than former
studied datasets. The dataset constitutes of 1751 datapoints including 32 unique hydrocarbons at the wide ranges
of pressures and temperatures. The simple Machine Learning (ML) algorithm, called ‘Multilinear Regression
(MLR)’ has been applied for the model development for the first time which has not been studied for this
application, yet. The two suggested MLR-QSPR models including novel molecular descriptors, called ‘PaDEL’ and
‘sigma profile’ descriptors, have been developed for the first time. The dataset was divided to a training set for
the development of models, and to a validation set for external validation. The advantages of this study were
discussed and compared with other available models which were developed with other ML algorithms. In these
comparisons, some deficiencies of former models have been shown and discussed. Unlike former models, internal
validation using Leave One/Multi Out- Cross Validations (LOO-CV/LMO-CV) and Y-scrambling methods were
performed on the both MLR-QSPR models using statistical parameters for further assessment. According to the
obtained results of statistical parameters (R2 = 0.98 and Q2

LOO-CV = 0.98), the predictive capability of the sug-
gested MLR-QSPR models was acceptable for training set. Regarding the external validation, another statistical
parameter like AARD% = 9.79 was also satisfactory for validation set.

1. Introduction

The urbanization and the increasing population rates lead to a
massive increase of the fossil fuels and energy consumptions. These large
consumptions cause to create some problems like high rate of CO2-gas
emission into atmosphere [1]. To remove this problem and to reduce the
rate of global warming, the finding and introducing the new clean en-
ergy resources [2] like hydrogen gas (H2) can play as a key role. For this
reason, H2 has recently received remarkable attractions by researchers
[1–4] in comparisons with other resources.

In one hand, H2 is a carbon-free source which plays prominent role in
the energy production and generation [1]. On the other hand, the ac-
curate knowledge of the solubility of H2 is crucial for the process
development of hydroprocesses [5] and industrial processes [3]. Accu-
rate information of the phase equilibria in the geological reservoir is
vital for the study of hydrogen reactivity and mobility, as well as the
monitoring, control, and optimization of the storage [6]. However, the

availability of data of solubility of H2 in heavy oils is scarce at elevated
temperatures and pressures, the solubility of H2 in different types of pure
light hydrocarbon is available [7–16] and has been modeled [1,2] at
wide ranges of temperature and pressures.

Regarding the performed experimental studies, a comprehensive
literature review of the solubility of H2 in the different hydrocarbons has
been carried out. As can be seen in Table 1, the details of studied hy-
drocarbons and their properties can be found. The most recent experi-
mental studies for the measurement of solubility of H2 in hydrocarbons
have been performed by our research group (i.e., 2014) [5] and Aslam
et al. [17] (i.e., 2015). Regarding to our former study, a continuous flow
apparatus with a camera systemwas modified for gas–liquid equilibrium
measurements to achieve the high accuracy of the solubility of H2 in
toluene, hexadecane, and octadecane. Benefits of the modified appa-
ratus were a short time of residence of a sample in the heated zone and
no sampling is needed [5]. The benchmark was done by measuring the
solubility of H2 in hexadecane and toluene at high pressures and
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temperatures (P = 5–10MPa, T = 461–575 K) and comparing the results
with the literature values. After that, the solubility of H2 in octadecane
which would be a good model for heavy oil systems, was measured for
the first time. In contrast, Aslam et al. [17] measured the solubility of H2
in toluene and methylcyclohexane at low ranges of pressures (lower
than 1 MPa) and temperatures. In their studies, the solubility values
were measured using the static isochoric saturation method. More
experimental studies of solubility of H2 in different types of hydrocar-
bons can be found in Table 1.

Regarding the modeling studies, it was tried to apply equations of
state (EOSs) for the prediction of solubility of H2 in hydrocarbons in the
preliminary efforts. Since the accuracy of EOSs in the prediction of the
solubility of H2 was restricted, particularly in high-pressure or/and high-
temperature conditions [3], different algorithms of Machine Learning
(ML) have been used. There are many ML algorithms [45] such as
multiple linear regression (MLR), multiple nonlinear regression (MNLR),
k-nearest neighbors (kNN), decision trees (DT), random forest (RF),
gradient boosting machine (GBM), support vector machine (SVM),
artificial neural network (ANN), etc. A comprehensive literature review
of the modeling studies using different ML algorithms for the prediction
of solubility of H2 in the different hydrocarbons has been conducted and
tabulated in Table 2. The majority of above-mentioned ML algorithms
(except MLR) has been studied in past three years. For further com-
parisons, the most important statistical parameters have been reported

for each applied ML algorithm as much as possible.
As can be seen from Table 2, there were two missing points in the

performed studies in the literature. The first point was that the molec-
ular variables (predictors or descriptors) of hydrocarbons were almost
chosen same (Tc, Pc, and Mw) to distinguish the effect of molecular
structures. The second point was a missing of MLR model as a simplest
ML algorithm [45]. However, the reported values of statistical param-
eters (i.e., R2, RMSE, MSE, and AARD%) were excellent, but all used ML
algorithms seem to be a little bit challenging task for general usage by
researchers, due to their complexities. Apart from complexity of applied
ML algorithms, the high values of these statistical parameters may be
attributed to the high numbers of used variables (inputs). For example,
the numbers of selected molecular variables (descriptors) for those
datasets which had 15 and 11 structural variations of hydrocarbons
were quite high. In another word, there were not the rational pro-
portions between the number of applied molecular variables (i.e., 3: (Pc,
Tc, and acentric factor (ω))) and number of variations of studied hy-
drocarbons (15 and 11) which had been studied by Refs. [1,2], and [46].
Moreover, the values of critical properties such Tc and Pc of some hy-
drocarbons may be unavailable which causes some problems and trou-
bles for the prediction of solubility of H2 in hydrocarbons. For these
reasons, it seems that it is necessary to introduce a simple MLR model
including new kind of descriptors (except former suggested descriptors)
for more variations of hydrocarbons.

Table 1
The experimental studies of H2 solubility in different types of hydrocarbons, and hydrocarbons features (critical temperature (Tc), critical pressure (Pc), and molecular
weigh (Mw)).

Hydrocarbon Types Hydrocarbon name Number of carbons (nC) Tc (K) Pc (MPa) Mw (g/mol) Refs.

alkane Methane 1 190.56 4.599 16.042 [7–10]
Ethane 2 305.32 4.872 30.068 [10,11]
Propane 3 369.82 4.246 44.095 [12,13]
Butane 4 425.12 3.786 58.121 [14–16]
Pentane 5 469.7 3.367 72.148 [18,19]
Hexane 6 507.49 3.018 86.174 [20,21]
Heptane 7 540.13 2.727 100.200 [22–24]
Octane 8 568.88 2.486 114.227 [21–26]
Decane 10 617.7 2.103 142.279 [19,21,27–31]
Dodecane 12 658.1 1.817 170.332 [32]
Hexadecane 16 722.1 1.432 226.438 [5,28,33–35]
Eicosane 20 771.4 1.198 282.543 [36,37]
Octacosane 28 844.00 0.954 394.754 [33,36,37]
Hexatriacontane 36 896.00 0.845 506.965 [28,36,37]
Hexatetracontane 46 1064.86 0.454 647.229 [28]
Octadecane 18 747 1.27 254.5 [5]
2,2,4 trimethylpentane 8 543.9 2.57 114.23 [22]

alkene 1-Octene 8 567 2.68 112.21 [22]
Ethene 2 282.34 5.041 28.054 [38]
1-Hexene 6 504 3.143 84.161 [39]
1-Heptene 7 537.3 2.92 98.188 [39]

cyclic Cyclohexane 6 553.58 4.073 84.16 [22,40,41]
Methylcyclohexane 7 572.19 3.471 98.19 [17,22,41]

aromatic Benzene 6 562.05 4.895 78.11 [22,41,42]
Toluene 7 591.75 4.108 92.14 [5,17,21,22,41]
Ethylbenzene 8 617.1 3.61 106.16 [22]
m-xylene 8 617 3.54 106.16 [22]
1,2,4-trimethylbenzene 9 649.1 3.232 120.19 [22]
Cumene 9 631 3.209 120.19 [43]
Diphenylmethane 13 760 2.71 168.238 [44]

Polycyclic aromatic Naphthalene 10 748.4 4.05 128.17 [35.42]
Phenanthrene 14 869 2.87 178.23 [42]
Pyrene 16 938.2 2.61 202.25 [42]
1,2,3,4tetrahydronaphthalene 10 720 3.65 132.2 [35]

terpene Squalane 30 822 0.7 422.8 [26]
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Table 2
Numbers of datapoints and studied hydrocarbons at each former dataset, and different used ML algorithms for the prediction of solubility of H2 in the different
hydrocarbons with their independent inputs and their values of statistical parameters.

Research group
(year)

Number of
datapoints

Studied hydrocarbons in the dataset Independent
variables (inputs)

Applied ML
algorithms

Statistical parameters Ref.

R2 RMSE MSE AARD
%

Amar et al. (2023) 1484 15 alkanes: Methane, ethane, propane,
butane, pentane, hexane, heptane,
octane, decane, dodecane, hexadecane,
eicosane, octacosane, hexatriacontane,
hexatetracontane

T, P, Tc, Pc, and
acentric factor
(ω)

Multilayer
Perceptron
(ANN)

0.9959 0.004 – – [1]

​ ​ ​ Cascaded
Forward Neural
Network (ANN)

0.9969 0.0035 – – ​

​ ​ ​ committee
machine
intelligent system
(CMIS)

0.9972 0.0033 – – ​

Tatar et al. (2022) 1845 15 alkanes: Methane, ethane, propane,
butane, pentane, hexane, heptane,
octane, decane, dodecane, hexadecane,
eicosane, octacosane, hexatriacontane,
hexatetracontane

T, P, Tc, Pc, Mw,
boiling point
(Tb), and acentric
factor (ω)

Decision tree 0.9998a 0.0009a 0.002a – [2]

​ ​ ​ Random forest 0.9935a 0.0051a 0.0027a – ​
​ ​ ​ Gradient

boosting
0.9964a 0.0038a 0.0023a – ​

​ ​ ​ Extremely
randomized trees

0.9944a 0.0047a 0.0028a – ​

Hadavimoghaddam
et al. (2022)

1332 32 hydrocarbons: Ethane, propane,
butane, hexane, heptane, octane, decane,
dodecane, hexadecane, eicosane,
octacosane, hexatriacontane,
hexatetracontane, 2,2,4
trimethylpentane, ethene, 1-hexene, 1-
heptene, 1-octene, benzene, toluene,
ethylbenzene, m-xylene, cumene, 1,2,4
trimethylbenzene, diphenylmethane,
cyclohexane, methylcyclohexane,
naphthalene, 1,2,3,4
tetrahydronaphthalene, phenanthrene,
pyrene, squalane

T, P, Tc, Pc, and
Mw

Genetic
programming

0.9861 0.0132 – – [3]

​ ​ ​ Group method of
data handling

0.9687 0.0198 – – ​

Mohammadi et al.
(2021)

919 26 hydrocarbons: butane, hexane,
heptane, octane, decane, dodecane,
hexadecane, eicosane, octacosane,
hexatriacontane, hexatetracontane, 2,2,4
trimethylpentane, 1-octene, benzene,
toluene, ethylbenzene, m-xylene,
cumene, 1,2,4 trimethylbenzene,
cyclohexane, methylcyclohexane,
naphthalene, 1,2,3,4
tetrahydronaphthalene, phenanthrene,
pyrene, squalane

T, P, Tc, Pc, and
Mw

Extreme gradient
boosting

0.9998 0.0007 – 1.81 [4]

​ ​ ​ Adaptive
boosting support
vector regression

0.9995 0.0012 – 3.40 ​

​ ​ ​ Gradient
boosting with
categorical
features support

0.9993 0.0015 – 4.7 ​

​ ​ ​ Light gradient
boosting machine

0.9940 0.0045 – 3.51 ​

​ ​ ​ Multi-layer
perceptron

0.9917 0.0053 – 6.01 ​

Jiang et al. (2021) 278 11 aromatic/cyclic hydrocarbons:
cyclohexane, toluene, tetrahydrofuran,
1,4-Dioxane, 1-methyl-2-pyrrolidone,
benzene, naphthalene, phenanthrene,
pyrene, methylcyclohexane, quinoline,

T, P, Tc, Pc, and
acentric factor
(ω)

Adaptive neuro-
fuzzy inference
systems

0.9966 0.0052 0.00002 7.88 [46]

(continued on next page)
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The ‘Quantitative Structure-Property Relationship’ (QSPR) method
is commonly used to provide quantitative and qualitative descriptions
between macroscopic properties and involved structures [47–50]. Un-
like former studies (see Table 2) where Tc, Pc, and ω were assumed as
distinct molecular descriptors, QSPR study will reveal the relationship
between hydrocarbon structures and H2 solubility with finding proper
descriptors. Therefore, it is computationally possible to reach the
high-accurate solubility of H2 in many hydrocarbons using the QSPR
method which is important for the development of thermodynamic
models (PC-SAFT and Peng-Robinson) as well as many chemical pro-
cesses. Up to now, no researchers have applied the QSPR method for the
prediction of solubility of H2 in hydrocarbons at the wide ranges of
temperatures and pressures. QSPR method has been applied in the
well-known software called ‘QSARINS’ [51–53] which features several
methods of internal and external validations in its environment.

The main aim of this study is to show the advantages of MLR-QSPR
model-based in comparison with other applied non-linear and compli-
cated ML algorithms. In particular, the results of this study make com-
parison with genetic programming (GP) which was developed using 32
hydrocarbons and 1332 datapoints by Ref. [3]. Among of applied ML
algorithms (see Table 2), GP ML algorithm can be considered as a white
box approach [3]. Most applied ML algorithms were black box. Finding
the most proper descriptors and structural variables of hydrocarbons is
another main aim of this study. In this study, a bigger dataset (i.e., 32
hydrocarbons and 1751 datapoints) will be applied for the development
of the predictive MLR-QSPR model for the prediction of H2 solubility in
hydrocarbons. The developed predictive and reliable MLR-QSPR model
aids the chemical engineering community to optimize and design the
process for the specific applications.

2. Method

2.1. Basic theory

In this study, the values of the solubility of H2 in hydrocarbons (i.e.,
x) are first converted to logarithms-based (i.e., ln(x)). The effects of
pressure, temperature, and molecular structures on x were included as
the independent variables as below (Eq. (1)):

ln (x) = a1 ln(P) + a2 ln(T) + F (descriptors) + a3 (1)

where ‘a1’, ‘a2’, and ‘a3’ are adjustable parameters. In this study, the
most important descriptors (i.e., F (descriptors) in Eq. (1)) were applied
to distinguish the effect of hydrocarbon structural variations and the
effects of pressure and temperature are considered using ‘ln P’ and ‘ln T’,
respectively.

2.2. Dataset

According to the gathered experimental data [7–44], a bigger dataset
with very high structural variations of hydrocarbons and datapoints has
been created for QSPR studies in comparison with former datasets which
were proposed (listed) in Table 2. The detail of this dataset can be found
in Table 3 and Table S1. In total, 1751 datapoints including 32 unique
hydrocarbons at wide ranges of pressure (0.1–96.18 MPa) and

temperature (92.3–701.5 K) are listed in Table 3.

2.3. Former available models

Among of different ML algorithms in Table 2, there is only one study
by Hadavimoghaddam et al. [3] which has been done on the enough
variation of hydrocarbons. Also, there were some black-box approaches
which were carried out on low variations of hydrocarbons as well as
homologous series of alkanes [1,2] using high number of descriptors.
Since the MLR-QSPR model is a white-box approach, it is rational to
make comparison the obtained results of this study with the most
qualitative and quantitative white-box model with enough variation of
hydrocarbons (i.e., GP model) [3]. As already shown in Table 2, that
model was developed using 32 different structures simultaneously
consider the effects of pressure temperature, structural variations of
hydrocarbons. The used molecular descriptors were Tc, Pc, and Mw.
Hadavimoghaddam et al. [3] evaluated the prediction capability of their
predictive model using RMSE and R2 statistical parameters. They re-
ported R2 and RMSE values for total data of their dataset 0.986 and
0.013, respectively. It is necessary that their proposed model to be
applied on our dataset (see Table 3), for further investigations.

2.4. QSPR method

2.4.1. Calculation of descriptors
In this study, it was attempted to calculate 2D, 1D, and 0D de-

scriptors which were independent of the optimization of molecular
structures of hydrocarbon. Before calculation of such descriptors, each
molecular structure of hydrocarbons was drawn in ChemBioDraw-Ultra
[54]. Then, the drawn structures in ‘MDL mol’ format fed to
PaDEL-Descriptor software [55] for the calculation of descriptors. De-
scriptors with constant or almost constant values for each hydrocarbon
were eliminated. Finally, 1000 descriptors were calculated. Also, the
sigma profiles for each involved hydrocarbon in the dataset (see Table 3)
have been used for the calculation of molecular descriptors in this study.
There is a comprehensive databank of sigma profiles in COSMO-RS
software which was developed by Klamt and Eckert [56]. To plot the
sigma profile, two factors must be available: 1) the 61 points of specific
charge density (e/ Å

2
) which typically vary from −0.03 to +0.03 with

0.001 step (interval), and 2) the probability distribution of a molecular
surface segment having a specific charge density. In this study, the
calculated values (peak, height, the values of second factor of sigma
profile) at each point of specific charge density (from −0.03 to +0.03
with 0.001 step) have been considered as the molecular descriptors in
the variables (descriptors) selection.

2.4.2. Model development
As can be seen in Eq. (1), ln (x) is simultaneously a function of hy-

drocarbon descriptors alongside pressure and temperature. For model
construction, the suitable descriptors must be selected from two pools of
descriptor (1: 1000 PaDEL-descriptors and 2: 61 points from −0.03 to
+0.03 with 0.001 step). There are well-known methods of variables
selection such as genetic algorithm (GA) method [57], artificial neural
network (ANN) [58], replacement method (RM) [59]. In this study, GA

Table 2 (continued )

Research group
(year)

Number of
datapoints

Studied hydrocarbons in the dataset Independent
variables (inputs)

Applied ML
algorithms

Statistical parameters Ref.

R2 RMSE MSE AARD
%

​ ​ ​ Artificial neural
networks

0.9953 0.0062 0.00003 8.77 ​

​ ​ ​ Least-squares
support vector
machines

0.9950 0.0063 0.00004 13.7 ​

a These values have been reported for training set.
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Table 3
The solubility values (mole fractiona) of H2 in studied hydrocarbons of our dataset with their ranges of pressure, temperature, and experimental values as well as
statistical parameter.

hydrocarbons Temperature range (K) Pressure range (MPa) Range of x (mole fraction) AARD%c

Methane 116–172 3.37–27.57 0.031–0.349 16.03
108–183 2.44–27.58 0.011–0.378
92–180 0.22–27.63 0.0018–0.392
103–173 1.02–10.83 0.0073–0.225

Ethane 92–255 3.18–28.43 0.0072–0.202 11.62
148–223 2.02–8.10 0.006–0.055

Propane 98–348 1.03–20.68 0.0021–0.244 11.51
277–360 3.44–27.57 0.024–0.319

Butane 327–394 2.77–16.84 0.019–0.217 11.27
297–355 2.24–10.72 0.02–0.111
172–297 2.06–19.37 0.009–0.111

Pentaneb 273–373 0.34–20.68 0.001–0.146 9.41
308–463 2.86–14.08 0.025–0.119

Hexane 344–410 1.24–15.11 0.010–0.143 3.34
298–373 1.38–9.81 0.010–0.093

Heptane 295 6.99–17.33 0.045–0.112 1.9
298–323 0.10 0.0006–0.0007
238–308 0.10 0.0004–0.0007

Octaneb 295 10.44 0.066 17.49
463–543 1.01–12.53 0.008–0.20
298–373 2.4–15.27 0.018–0.137
295 0.68–1.37 0.004–0.008
298–323 0.10 0.0006–0.0007
248–308 0.10 0.0004–0.0007

Decane 283–449 1.23–14.21 0.016–0.088 4.35
503 1.48–10.10 0.017–0.150
344–423 3.71–15.04 0.036–0.128
293–373 2.04–10.35 0.015–0.088
308–573 1.78–16.74 0.025–0.147
462–583 1.92–20.26 0.025–0.240

Dodecaneb 344–410 1.42–13.24 0.014–0.125 2.73
​ ​ ​ ​
Hexadecane 298–448 1.15–13.88 0.018–0.113 5.64

301–508 3.79–6.51 0.033–0.098
461–542 2.00–15.14 0.031–0.197
453–543 2.04–9.74 0.036–0.135

Eicosane 373–573 1.00–5.08 0.011–0.096 3.6
323–423 2.23–12.91 0.027–0.124

Octacosane 342–447 1.46–14.00 0.03–0.178 7.68
373–573 0.98–5.06 0.014–0.110
419–516 4.14–5.10 0.081–0.096
348–423 2.86–12.43 0.045–0.172

Hexatriacontane 357–447 1.37–14.34 0.033–0.210 6.39
373–573 1.02–5.06 0.015–0.123
373–423 3.56–14.32 0.067–0.208

Cyclohexaneb 304–332 0.13–4.49 0.0006–0.029 8.39
303 0.88–4.74 0.003–0.019
295 6.99–17.33 0.028–0.068

Tolueneb 298–373 0.87–10.12 0.002–0.047 6.56
303 1.22–4.41 0.004–0.014
293–333 0.51–0.89 0.001–0.003

(continued on next page)
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Table 3 (continued )

hydrocarbons Temperature range (K) Pressure range (MPa) Range of x (mole fraction) AARD%c

295 6.99–17.33 0.021–0.050

Benzene 303 0.98–4.60 0.002–0.012 13.93
295 6.99–17.33 0.017–0.042
323–423 2.55–15.73 0.010–0.058

Methylcyclohexane 303 1.23–4.32 0.006–0.021 6.42
293–333 0.50–0.89 0.002–0.004
295 6.99–20.78 0.033–0.094

1,2,3,4 tetrahydronaphthalene 453–623 1.53–9.19 0.014–0.085 8.97

Naphthalene 503–623 1.42–8.67 0.012–0.080 18.58
373–423 4.29–19.39 0.015–0.056

1-octeneb 295 6.99–20.78 0.043–0.120 3.88

Ethylbenzene 295 10.44–17.33 0.033–0.054 16.82

m-xylene 295 10.44–17.33 0.034–0.056 1.06

1,2,4 trimethylbenzene 295 6.99–17.33 0.024–0.057 2.47

Squalane 295 0.68–1.37 0.006–0.013 3.5

Phenanthrene 383–423 5.89–21.69 0.016–0.055 9.89

Pyrene 433 5.17–19.73 0.015–0.057 6.33

Cumene 323 1.02–11.70 0.004–0.048 6.48

Diphenylmethane 462–701 2.00–25.00 0.012–0.305 5.9

Octadecaneb 462–540 5.00–9.97 0.087–0.184 7.59

2,2,4 trimethylpentaneb 295 6.99–20.78 0.052–0.145 14.69

Ethene 114–247 4.63–96.18 0.024–0.576 30

a Solubility (x) =
nGas

H2
nL

Hyd
(mole fraction).

b Bold hydrocarbon means validation set.
c Calculated using Eq. (13).
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was used to build MLR QSPR models-based COSMO descriptors. The
details of the GA-MLR algorithm can be found elsewhere [60,61]. It
should be mentioned that the QSARINS software [51–53] was applied to
develop the GA-MLR models.

2.4.3. Statistical parameters
The goodness-of-fit of QSPRmodel should be carefully checked using

the standard statistical parameters, including root mean square error
(RMSE), coefficient of determination (R2), leave-one-out cross-validated
coefficient of determination (Q2

LOO-CV), adjustable coefficient of deter-
mination (R2Adj), average absolute relative deviation (%AARD), average
absolute deviations (AAD), Fisher function (F), standard residual (S),
and maximum (or critical) leverage (h*). More detailed information
regarding the statistical parameters used in this study can be found in
Table 4 (Eqs. (2)–(10)).

Applicability of Domain (AD) analysis as a vital concept of QSPR
approach should be considered. It allows [62]: 1) the uncertainty in
prediction 2) the extent of extrapolation of QSPR models [63,64]. In
order to predict solubility values of H2 in new hydrocarbons, it is
essential that new hydrocarbon lie within the same AD space. In another
words, it means that new hydrocarbons are physicochemically, biolog-
ically, or structurally similar with molecules used for model develop-
ment (i.e., training set). The more space of AD, the more reliable
predictions of new hydrocarbons. To carry out the external validation
using validation set, it is essential to ensure that the validations set of
molecules is inside of QSPR model’s AD [65].

The space of AD can be specified using two main parameters: 1) the
leverage values (hi) 2) the standardized residual (SDR) and. SDR was
defined as Eq. (11):

SDR=
Yexp
i − Ypre

i̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
m=1(Y

exp
i −Yprei )

2

n

√ (11)

hi, represents a measure of a molecule’s distance from the center of
the training set. It is needed to determine whether new hydrocarbons are
within the applicability of domain of the developed QSPR model or not.
The parameter can be calculated with Eq. (12).

hi (or Leverage (i)) = zi. (ZiTZi)−1. ziT (12)

When zi, Z are the descriptor row vector of point i and a n × p matrix of
descriptors for compounds derived from the training set, respectively.
AD of developed QSPR models can be obtained in QSARINS software for

Table 4
Applied statistical parameters in this study.

Introduced parameters Introduced parameters equations Eqs.
No

Coefficient of determination
R2 = 1 –

∑n
i=1

(
Yexpi − Ypre

i
)2

∑n
i=1

(
Yexp
i − Yi

)2

(2)

Adjustable coefficient of
determination

R2Adj = 1 – (1-R2) × (
n − 1

n − p − 1
) (3)

Leave-one-out cross-validated
coefficient of determination

Q2
LOO-CV = 1 –

∑n
i=1

(
Yexp
i − Ypre−CV

i

)2

∑n
i=1

(
Yexp
i − Yi

)2

(4)

Fisher function
F =

∑n
i=1

(
Ypre
i − Yi

)2/

p
∑n

i=1

(
Yexp
i − Yprei

)2/

n − p − 1

(5)

Standard residual
S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
Yexp
i − Yprei

)2

n − p − 1

√ (6)

root mean square error (RMSE)
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
Yexp
i − Yprei

)2

n

√ (7)

Average absolute deviation
AAD =

∑n
i=1

(
|Yexp

i − Yprei
⃒
⃒
)

n
(8)

Average Absolute relative
deviation %

AARD% =
∑n

i=1
(
|Yexp

i − Yprei
⃒
⃒
)
/Yexpi

n
× 100

(9)

maximum Leverage h* = 3 (p+1)/n (10)

Yiexp, Yipre, Yi, n, and p demonstrate experimental values, predicted values,
average experimental values, the number of the experimental dataset, and the
number of employed descriptors, respectively.

Fig. 1. The predicted values of H2 solubility in studied hydrocarbons of our dataset (this study) by GP-model versus experimental values.

Table 5
The suggested MLR-QSPR models for the training and validation status.

Kind of
descriptors

Number of datapoints
and hydrocarbons in
training set

Model Eq.
No

PaDEL 1464 and 24 ln(x) = 1.7487 ln(T) + 0.9903
ln(P) + 0.0014 ATSC0m –
2.5452 MATS1e + 0.1242
minssCH2 – 0.1686
ETA_Beta_s −15.7177

(13)

Sigma
profile

1464 and 24 ln(x) = 1.5386 ln(T) + 1.0131
ln(P) – 1.5564 (SCD-0.008) –
0.0751 (SCD-0.002) – 0.4608
(SCD-0.001) + 0.6626 (SCD0)
– 0.2904 (SCD0.001) +

0.3904 (SCD0.004) – 13.1838

(14)
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each model and maximum leverage (i.e., h*) can be calculated using Eq.
(10).

2.4.4. Internal and external validations
After building of QSPR model, it is essential to conduct internal and

external validations on the training (approx. 80% of main dataset) and
validation (approx. 20% of main dataset) sets, respectively. Regarding
the internal validation, Y-Scrambling, leave multi out -cross validation
(LMO-CV), and leave one out -cross validation (LOO-CV) methods
should be conducted on the developed QSPR model. These methods
were performed on the training set only. Regarding the external

validation, the prediction capability of developed QSPR model was
evaluated using a validation set. Both of internal and external valida-
tions of QSPR models can be carried out in QSARINS software one by
one, due their high importance.

3. Results and discussion

3.1. A comparison with former model based-genetic programming (GP)

Prediction capability of the proposed GP-model by Hadavimog-
haddam et al. [3], was examined on our dataset which was described in

Table 6
The values of statistical parameters of suggested MLR-QSPR models (ln-based) for both of training and validation sets.

Eqs. No Sets Number of datapoints and hydrocarbons R2 R2-Adj Q2-LOO Q2-LMO F S RMSE

(13) Training 1464 and 24 0.98 0.98 0.98 0.98 11161 0.1492 0.1488
Validation 287 and 8 – – – ​ – – 0.1543

(14) Training 1464 and 24 0.96 0.96 0.96 0.96 4313 0.2058 0.2051
Validation 287 and 8 – – – – – – 0.2190

Fig. 2. The predicted versus experimental values for both of training and validation sets using a) PaDEL descriptors (Eq. (13)) and b) sigma profile descriptors
(Eq. (14)).
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Table 3. The more details of calculations and predicted values of H2
solubility in studied hydrocarbons of our dataset can be found in
Table S2. As can be seen in Table S2, GP-model predicted the negative
H2 solubility in methane. Also, the same deficiency was observed for

other datapoints. It indicates that the proposed GP-model used some
irrelevant descriptors (variables or predictors: Tc, Pc, and Mw) to
distinguish the effect of hydrocarbons on the H2 solubility. The pre-
dicted versus experimental values have been plotted in Fig. 1.

Table 7
The built MLR models without and with former descriptors (i.e., Tc, Pc, and Mw) for the training and validation status.

Without/with
descriptors

Number of datapoints and hydrocarbons in training
set

Model Eq. No

Without 1464 and 24 ln(x) = 0.4320 ln(T) + 0.9329 ln(P) – 7.0204 (15)
With former descriptors 1464 and 24 ln(x) = 1.4141 ln(T) + 0.9522 ln(P) – 0.0062 TC – 0.3319 PC + 0.0045Mw – 8.9884 (16)

Table 8
The values of statistical parameters of MLR-models (ln-based) without and with former descriptors for both of training and validation sets.

Eqs. No Sets Number of datapoints and hydrocarbons R2 R2-Adj Q2-LOO F S RMSE

(15) Training 1464 and 24 0.73 0.73 0.73 1962 0.5318 0.5312
Validation 287 and 8 – – – – – 0.6059

(16) Training 1464 and 24 0.92 0.92 0.92 3480 0.2841 0.2836
Validation 287 and 8 – – – – – 0.2538

Fig. 3. The predicted versus experimental values for both of training and validation sets using a) without any descriptors (Eq. (15)) and b) with Tc, Pc, and Mw
descriptors (Eq. (16)).
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Therefore, it seems that it is better to propose a new reliable pre-
dictive model including relevant descriptors. Although the proposed GP-
model showed a big deficiency for prediction of H2 in methane, the
prediction capability of such model had enough accuracy for prediction
of H2 in other hydrocarbons. For this reason, a comprehensive com-
parison between the proposed MLR-model in this study and former GP-
model will be done in upcoming sections.

3.2. Developed MLR-QSPR models

In this study, an extensive dataset including 32 hydrocarbons from
six types of hydrocarbons (see Table 1) and 1751 datapoints was divided
to training and validation sets for performing of internal and external
validations. All datapoints of eight hydrocarbons (i.e., pentane, octane,
dodecane, octadecane, cyclohexane, 1-octene, toluene, and 2,2,4 tri-
methylpentane) were set aside into validation set. Some types of hy-
drocarbons (cyclic and branched alkane) were set intentionally aside in
the validation set to guarantee presence of hydrocarbons with new
types. The main aim of this categorization is to investigate the MLR-
QSPR model’s prediction capability for new types of hydrocarbons.
Since the finding the proper descriptors (except Tc, Pc, and Mw de-
scriptors in Table 2) in MLR-ML algorithms is always interesting, two
separate MLR-QSPR models with two different kinds of descriptors
(PaDEL and sigma profile descriptors) are suggested here. These two
suggested MLR-QSPR models which were built in training and valida-
tion status (Eqs. (13) and (14)) are indicated in Table 5.

The values of statistical parameters of each suggested model (ln-
based) are shown in Table 6.

As indicated in Table 6, the obtained values of Q2
LOO (as internal

validation) of each MLR-QSPR model (either with PaDEL or sigma
profile descriptors) were high which are confirming that each model has
acceptable capability for prediction of H2 solubility in studied hydro-
carbons of our dataset at the wide ranges of pressures and temperatures
(see Table 3). Also, LMO-CV and Y-scrambling techniques have been
done on the training set in the QSARINS software for each selected MLR-
QSPR model and results confirmed the validity of each model. As
external validation, it is also shown that H2 solubility in hydrocarbons of
validation set (bold hydrocarbons in Table 3) predicted with enough
accuracy based on the obtained values of AARD% (See Table 3 and
Table S3). In comparison between these two models, the predicted
values by Eq. (13) were in better agreement with experimental data than
the predicted values by Eq. (14). The proposed MLR-QSPR model (i.e.,
Eq. (13)) could take into account the effects of pressure and temperature
on the H2 solubility in majority of studied hydrocarbons (the included
hydrocarbons in Table 3) well.

The Williams plot for the training and validation sets which was
obtained using MLR-QSPRmodel (i.e., Eq. (13)), is shown in Fig. S1. The
plot confirms that there were no outliers in our dataset as no hydro-
carbon at given pressure and temperature has a leverage value higher

than the critical leverage (i.e., h* = 0.014) and its SRD is higher than
±3. Although the leverage values of some hydrocarbons were a little bit
higher than the critical leverage (h*), the MLR-QSPR models could
predict the H2 solubility in those hydrocarbons well. The plots of pre-
dicted versus experimental values for both of training and validation sets
which were obtained using MLR-QSPR models (i.e., Eqs. (13) and (14)),
are shown in Figure (2).

To show the importance of presence of relevant descriptors in the
models, two separate MLR-models 1) without any descriptors (i.e., Eq.
(15)) and 2) with Tc, Pc, and Mw descriptors (i.e., Eq. (16)) have been
regressed on our dataset, too. These two models have been shown in
Table 7.

The values of statistical parameters of each model (ln-based) are
shown in Table 8.

The plots of predicted versus experimental values for both training
and validation sets obtained using MLR-models (i.e., Eqs. (15) and (16)),
are shown in Figure. (3).

A general comparison between all the developed models (i.e., Eqs.
(13)–(16)) in this study has been performed using some statistical pa-
rameters reported in Table 9.

Table 9
Statistical parameters of all developed models in this study for both of training and validation sets (none ln -based).

Eqs. No Sets R2 RMSE AAD AARD%

(13) Training 0.94 0.0188 0.0085 10.02
Validation 0.99 0.0055 0.0031 9.79

(14) Training 0.90 0.0224 0.0119 14.94
Validation 0.65 0.0336 0.0091 15.38

(15) Training 0.47 0.0566 0.0324 49.23
Validation 0.75 0.0225 0.0155 70.24

(16) Training 0.78 0.0344 0.0173 21.66
Validation 0.96 0.0117 0.0085 23.70

Table 10
Definition of each descriptor.

Models Descriptors Definition Ref

PaDEL (i.e.,
Eq. (13))

ATSC0m Centered Broto-Moreau
autocorrelation - lag 0/weighted by
mass

[66–71]

MATS1e Moran autocorrelation - lag 1/weighted
by Sanderson electronegativities

[66–71]

minssCH2 Minimum atom-type E-State: –CH2- [72]
ETA_Beta_s A measure of electronegative atom

count of the molecule
[73,74]

Sigma profile
(i.e., Eq.
(14))

SCD-0.008 the probability distribution of a
molecular surface segment having a

‘-0.008 e/ Å
2
’

[56]

SCD-0.002 the probability distribution of a
molecular surface segment having a

‘-0.002 e/ Å
2
’

[56]

SCD-0.001 the probability distribution of a
molecular surface segment having a

‘-0.001 e/ Å
2
’

[56]

SCD0 the probability distribution of a
molecular surface segment having a ‘0

e/ Å
2
’

[56]

SCD0.001 the probability distribution of a
molecular surface segment having a

‘0.001 e/ Å
2
’

[56]

SCD0.004 the probability distribution of a
molecular surface segment having a

‘0.004 e/ Å
2
’

[56]
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As can be seen in Table 9 and Fig. 3, both developed MLR-models (i.
e., Eqs. (15) and (16)) had not acceptable accuracy for the prediction of
H2 solubility in hydrocarbons. This point verifies that suggested MLR-
QSPR models (i.e., Eqs. (13) and (14) in this study, could efficiently
predict the target, due to their relevant descriptors (either PaDEL or
sigma profile descriptor).

To introduce the appeared descriptors in the suggested MLR-QSPR
model with PaDEL descriptors (i.e., Eq. (13)), it should be mentioned
that ‘ATSC0m’, ‘MATS1e’, descriptors are Autocorrelation descriptors
[66]. These descriptors are topological and can be calculated using
molecular graphs. Detail of these descriptors can be found in Moreau
and Broto [66–69] as well as Moran [70] and Geary [71]. ‘minssCH2’is
an Electro-Topological-State-Atom descriptor [72]. ‘ETA_Beta_s’ is an
Extended-Topochemical-Atom descriptor [73,74].

Six points (i.e., (−0.008), (−0.002), (−0.001), (0), (0.001), and
(0.004)) of specific charge density (SCD) from sigma profile are the
hydrocarbon descriptors. The values of peak (or height) for each hy-
drocarbon at above points of SCD are used and important for the pre-
diction of H2 solubility in hydrocarbons. In both suggested MLR-QSPR
models, the effects of pressure and temperature on the H2 solubility in

hydrocarbons have been taken into account using ‘ln P’ and ‘ln T’,
respectively. The values of these two kinds of descriptors can be found in
Table S4. The definition of each above descriptor has been listed in
Table 10.

In the former studies (see Table 2), no research groups included our
former experimental data for H2-octadecane system which were re-
ported in 2014. For this regard, the prediction capability of our MLR-
QSPR models for this system which was one of validation systems has
been examined. As can be seen in Fig. 4, the predicted values by our
MLR-QSPR models had an excellent consistency with our former
experimental data.

To make a comparison with other available models which were
developed by different ML algorithms, it should be mentioned that the
prediction capability of some models (see Table 2), never examined by
new types of hydrocarbons (cyclic and aromatic). For example [1,2],
examined the performance of their models only for some homologous
series of alkanes. It means that their proposed models have not covered
an extensive variation of different hydrocarbons. However, with
knowing this point, it has been tried to make comparison our models
with CMIS model for some hydrocarbons. This comparison has been

Fig. 4. The predicted values by our MLR-QSPR models (a: Eq. (13) and b: Eq. (14)) and our former experimental values [5] at two temperatures and
different pressures.
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indicated in Fig. 5. As can be seen in Fig. 5, the simple MLR-QSPR model
has quite the same capability for the prediction in comparison with most
complicated non-linear CMIS model. More details can be found in
Table S5. Keep in mind that CMIS model had been developed only for
prediction of H2 solubility in n-alkane hydrocarbons. Unlike our
MLR-QSPR models, the prediction capability of such model never
examined for other types of hydrocarbons.

A comprehensive comparison of prediction capability between the
suggested MLR-QSPR model (i.e., Eq. (13)) and the former GP-model
which was the unique and white-box predictive model, has been con-
ducted in this study for the prediction H2 solubility in hydrocarbons
(except methane). This comparison has been demonstrated in Fig. 6. As
can be seen in Fig. 6, the simple MLR-QSPR model shows an excellent
result for the prediction in comparison with GP-model. More details can

be found in Table S6. As it is clear, GP-model has not good efficiency for
the prediction of solubility of H2 in light hydrocarbons and over-
estimates the prediction of solubility of H2 in majority of hydrocarbons,
due to some irrelevant descriptors (Tc, Pc, and Mw).

As can be seen in Fig. 7, the residual values (i.e., Exp - Pre) seem to
reduce as a function of MW. It shows that suggested MLR-QSPR model (i.
e., Eq. (13)) may be used for the prediction of H2 solubility in heavier
hydrocarbons which could be difficult to purify and measure, even if
they are outside the present range of studied dataset.

As with all data-driven models, the validity depends on the quality
and quantity of the data. The present models could be improved further
by experimental solubilities in hydrocarbons which solubility data is not
currently available in the literature.

Fig. 5. The comparison between our simple MLR-QSPR model (i.e., Eq. (13)) and most complicated none-linear CMIS model [1].

Fig. 6. The comparison between our simple MLR-QSPR model (i.e., Eq. (13)) and GP-model [3].
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4. Conclusion

In this study, the strengths, and weaknesses of different applied ML
algorithms for the prediction of H2 solubility in different types of hy-
drocarbons as well as former molecular variables (i.e., Tc, Pc, and Mw
descriptors) have been discussed for the first time. The suggested MLR-
QSPRmodels as the simple ML algorithms, could successfully predict the
H2 solubility in hydrocarbons as functions of pressure, temperature, and
suitable molecular descriptors. In this study, H2 solubility in hydrocar-
bons has been predicted with very good accuracy using MLR-QSPR
models which had two different kinds of descriptors 1) PaDEL and 2)
sigma profile. The obtained values of statistical parameters (RMSE,
AAD, R2, and Q2

LOO-CV) of suggested MLR-QSPR models were acceptable
for training and validation sets. The obtained values of AARD%
parameter were 10.02 and 9.79 for training and validation sets,
respectively, expressing the high prediction capability of MLR-QSPR
model with PaDEL descriptors. The internal and external validations
verified that the prediction of H2 solubility in different types of hydro-
carbons which had not been experimentally studied can be practical
with respect to the leverage value of hydrocarbons and AD of MLR-QSPR
models.
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