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A B S T R A C T

Children with Cerebral Palsy (CP) exhibit less-selective, simplified muscle activation during gait due to injury of the developing brain. Abnormal motor unit
recruitment, altered excitation-inhibition balance, and muscle morphological changes all affect the CP electromyogram. High-density surface electromyography
(HDsEMG) has potential to reveal novel manifestations of CP neuromuscular pathology and functional deficits by assessing spatiotemporal details of myoelectric
activity. We used HDsEMG to investigate spatial-EMG distribution and temporal-EMG complexity of gastrocnemius medialis (GM) muscle during treadmill walking in
11 adolescents with CP and 11 typically developed (TD) adolescents.

Our results reveal more-uniform spatial-EMG amplitude distribution across the GM in adolescents with CP, compared to distal emphasis in TD adolescents. More-
uniform spatial-EMG was associated with stronger ankle co-contraction and spasticity. CP adolescents exhibited a non-significant trend towards elevated EMG-
temporal complexity. Homogenous spatial distribution and disordered temporal evolution of myoelectric activity in CP suggests less-structured and desynchron-
ized recruitment of GM motor units, in combination with muscle morphological changes. Using HDsEMG, we uncovered novel evidence of atypical spatiotemporal
activation during gait in CP, opening paths towards deeper understanding of motor control deficits and better characterization of changes in muscular activation from
interventions.

1. Introduction

Cerebral Palsy (CP) is the most-common lifelong physical disability,
encompassing a group of movement disorders caused by non-
progressive damage in the developing brain (McIntyre et al., 2022).
The brain lesion generates a cascade of neuromusculoskeletal symp-
toms, such as smaller, stiffer, and weaker muscles, as well as motor
control deficits (Graham et al., 2016; Mathewson and Lieber, 2015). As a
consequence, children with CP adopt atypical gait patterns, which
inhibit mobility, and can deteriorate over time, reducing community
participation and quality of life (Bell et al., 2002; Lundh et al., 2018).
Many gait deviations are marked by dysfunction of the ankle joint, with
ankle musculature being especially affected in ambulatory CP (Eek and
Beckung, 2008).

A variety of neuromuscular changes occur with CP. Muscular acti-
vation patterns of the locomotor muscles are altered during gait, such as
elevated plantarflexor recruitment during early-stance related to
walking on the forefoot (Romkes and Brunner, 2007). Individuals with
CP also exhibit limitations in selective control of muscles and elevated
co-contraction of agonists and antagonists (Mohammadyari Ghar-
ehbolagh et al., 2023), employing less-complex coordination patterns
during walking (Steele et al., 2015). Additionally, evidence suggests CP
generates imbalances in motor system excitation-inhibition, leading to
over-activation of some motor circuits (Condliffe et al., 2016; Fogarty,
2023), with simultaneous loss of motor connections and subsequent
weakness and under-activation of other circuits (Elder et al., 2003).
Finally, abnormal neuromotor signaling during development, in com-
bination with muscle disuse, contributes to degradation of muscle

Abbreviations: CP, Cerebral Palsy; TD, typically developed; EMG, electromyography; HDsEMG, High-Density surface electromyography; GM, Gastrocnemius
Medialis; TA, Tibialis Anterior; SD, single-differential; CCA, canonical correlation analysis; SPM, statistical parametric mapping; RMS, root-mean square; MVIC,
maximal voluntary isometric contraction.
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quality in CP, with intramuscular infiltration of non-contractile collagen
and fat (Graham et al., 2016; Mathewson and Lieber, 2015).

Currently, there is a lack of comprehensive understanding of the
links between neuromuscular symptoms and gross motor functional
deficits in CP. Previous research on CP motor pathology has relied on
bipolar electromyography; however, this method is limited by its local
sampling that may not be sufficiently representative of the global muscle
activation. Indeed, the electromyogram of a muscle is not uniform, and
fiber arrangement and inhomogeneities in intramuscular structure often
generate regional EMG variations (Vieira et al., 2017; Vieira and Botter,
2021). Further, the smallest level of motor control is not at the muscle
level, but at the level of its motor units, whose territories do not extend
to the entire muscle cross section (Carbonaro et al., 2022; Rohlén et al.,
2023, Rohlén et al., 2020), opening the possibility for regional recruit-
ment of muscle fibers (Hug et al., 2023; Vieira et al., 2011). Depending
on muscle size and fiber arrangement, this may result in distinct spatial
excitation patterns, often reported in literature (Nishikawa et al., 2022;
Sanderson et al., 2019; Schlink et al., 2020a; Schlink et al., 2020b; Vieira
et al., 2015).

High-density surface electromyography (HDsEMG) utilizes a grid of
electrodes covering a large skin surface area over the muscle. HDsEMG
may provide a more informative picture of muscular activation differ-
ences in CP due to the capability to evaluate the myoelectric signal in
both temporal and spatial domains (Campanini et al., 2022). Studies
using HDsEMG have revealed variations in spatial-EMG patterns with
fatigue, exercise-induced muscle damage, and chronic pain (Gallina
et al., 2011; Piitulainen et al., 2009; Sanderson et al., 2019), as well as in
clinical conditions, such as knee osteoarthritis (Ogrezeanu et al., 2023),
ankle instability (Mendez-Rebolledo et al., 2024), and scoliosis (Wang
et al., 2022), indicating abnormal spatial activity may contribute to
clinical symptoms. Additionally, HDsEMG has illuminated atypical
spatial activation in neurological movement disorders, including Par-
kinson’s (Nishikawa et al., 2017) and Stroke (Kallenberg and Hermens,
2011).

The use of HDsEMG during movement has important clinical po-
tential to uncover differences in spatial muscle activation in individuals
with neuromotor disorders during activities relevant to everyday life,
such as gait. Previous research has shown spatial activation in the
gastrocnemius is amplified in the distal region during walking in healthy

adults (Cronin et al., 2015; Schlink et al., 2020a; Schlink et al., 2020b),
with activation shifting more-proximally following fatigue (Schlink
et al., 2021). Intramuscular coherence has been shown to be altered
during gait in individuals with incomplete spinal-cord injury, demon-
strating the potential of dynamic HDsEMG to reveal novel abnormalities
in activation following neuromotor disturbance (Zipser-Mohammad-
zada et al., 2022). However, no studies have used HDsEMG to compare
spatial-EMG patterns between typically-developed individuals and those
with CP during walking.

The temporal pattern of the myoelectric signal, as assessed using
EMG complexity, can also be altered due to neurological disturbance.
EMG complexity strongly relates to active motor unit properties,
including firing rate and level of synchronization, as well as action po-
tential conduction velocity (Mesin et al., 2016; Rampichini et al., 2020).
Studies have displayed reductions in EMG complexity with fatigue,
related to central and peripheral changes to neuromotor function and
intramuscular physiology (Rampichini et al., 2020). EMG complexity
has been shown to change in post-stroke individuals during target
tracking and obstacle avoidance tasks, potentially related to neuro-
muscular coping strategies in paretic compared to non-paretic limbs (Ao
et al., 2015; Chen et al., 2018). Individuals with Parkinson’s Disease also
exhibit altered EMG complexity (Flood et al., 2019), and complexity
changes have been observed during spastic muscle contractions in post-
stroke patients (Xie et al., 2020), indicating altered motor unit recruit-
ment generating changes in EMG temporal properties. To our knowl-
edge, no studies have utilized HDsEMG to evaluate EMG-temporal
complexity during walking in adolescents with CP.

The aim of this study was to characterize differences in spatiotem-
poral EMG properties of the gastrocnemius medialis (GM) muscle be-
tween adolescents with CP and age-matched typically developed (TD)
peers during treadmill walking using HDsEMG. We hypothesized a more
spatially-homogenous EMG distribution and higher temporal-EMG
complexity in adolescents with CP, based on lower levels of neuro-
muscular selectivity, abnormal excitation-inhibition balance, and deg-
radations in muscle structural quality leading to less-distinct and more-
disordered spatial and temporal activation patterns. Evaluating the
spatiotemporal elements of the electromyogram of a key locomotor
muscle in CP will expand our understanding of neuromuscular mani-
festations of CP, and could help in bridging knowledge on the links

Table 1
Participant Characteristics

Group Subject # Age Gender
F/M

Weight (kg) Unilateral / Bilateral Affected / Dom. Leg GMFCS Treadmill Speed (m/s)

TD

1 12 F 55 − R − 1.25
2 13 F 58.5 − R − 1.06
3 10 M 37.3 − R − 1.14
4 14 F 59.1 − R − 1.11
5 18 M 69 − R − 1.19
6 15 M 65.1 − R − 1.17
7 17 M 69.5 − R − 1.22
8 9 M 29.5 − R − 1.17
9 16 M 62 − R − 1.28
10 16 M 68 − R − 1.17

​ 11 11 M 42.3 − R − 1.17

Group Avg ¡ 13.7 ± 3.0 3 / 8 55.9 ± 13.7 ¡ 11 / 0 ¡ 1.18 ± 0.06

CP

12 11 F 34.1 Bi R II 0.56
13 14 M 66.2 Bi R II 0.75
14 17 M 68.1 Bi L II 1.06
15 18 M 69 Uni R I 1.00
16 17 F 72 Uni L I 0.97
17 15 M 53.1 Uni R I 1.22
18 15 M 59.7 Uni R I 1.06
19 10 M 28.7 Uni L II 0.92
20 14 F 62.9 Uni R I 1.08
21 14 F 62 Uni L I 1.17

​ 22 10 M 38.9 Uni R I 1.00

Group Avg ¡ 14.1 ± 2.8 4 / 7 57.6 ± 14.8 8 / 3 7 / 4 7 / 4 0.98 ± 0.19
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between motor control changes and loss of mobility and function.

2. Methods

2.1. Participants

Eleven adolescents with CP (14.1 ± 2.8 years old; 4 female) were
recruited from the rehabilitation unit of the New Children’s Hospital in
Helsinki, Finland. Eleven TD adolescents (13.7 ± 3.0 years old; 3 fe-
male) were recruited as controls (Table 1). Bilateral and unilateral CP
participants, as well as GMFCS levels I-II were included to capture a
broad sample of ambulatory CP. This study was approved by the Hel-
sinki University Hospital ethics committee (HUS/1074/2020). All pro-
tocols abided by the Declaration of Helsinki. Written informed consent
from participants’ parents, and verbal assent from participants were
obtained before measurements.

2.2. Experimental Protocol

Participants walked on a treadmill for six-minutes while myoelectric
activity from the GM was recorded using a 32-channel HDsEMG grid
(8x4 electrode matrix, 10-mm interelectrode distance) Fig. 1. Signals
were amplified (192 V/V), band-pass filtered (10–500 Hz), sampled at
2048 Hz, digitalized with a 16 bits A/D converter and transmitted
through a Wi-Fi link to a personal computer for real-time visualization
and storage (MEACS system, LISiN, Politecnico di Torino and ReC
Bioengineering Laboratories s.r.l., Torino, Italy; Cerone et al., 2019). We
focused on the GM because of its importance for propulsion during
healthy gait, and because it is commonly affected by neuromotor
symptoms in ambulatory CP. The grid was placed on the dominant leg of
TD participants and more-affected leg of CP participants. The center of
the grid was positioned approximately 1-cm above the midpoint of the
GM, based on participants performing three heel-raises and identifying
muscle boundaries and midpoint. Retroreflective markers were placed
on bony landmarks according to the plug-in-gait lower body model, and
tracked using three-dimensional motion capture (Vicon Motion Systems,
Oxford, UK). Motion capture data was used for detecting relevant gait
events (i.e., foot-strike and toe-off). EMG and kinematic signals were
synchronized using a common trigger (Cerone et al., 2022). Treadmill
speed was set at 0.9x participants’ self-selected overground walking
speed (Jung et al., 2016).

Prior to treadmill walking, participants performed maximal volun-
tary contraction and ankle spasticity testing using an isokinetic dyna-
mometer (Con-Trex, CMV AG, Dübendorf, Switzerland). Metrics from
dynamometer testing were utilized for secondary correlation testing,
and detailed in the supplementary methods.

2.3. Data Processing

HDsEMG data from minute 4–5 of treadmill walking was analyzed.
32-channel monopolar data was converted to 28 single-differentials by
subtracting channels longitudinally, then filtered with a 4th-order But-
terworth filter between 20–450 Hz. Monopolar channels with baseline
instability from bad electrode–skin contact were marked via visual in-
spection, and extrapolated as the average of adjacent channels.

The HDsEMG system has been shown to be robust against movement
artifact, even in highly dynamic actions (Cerone et al., 2023). However,
due to partly suboptimized reference-cable positioning, and novel
experimental design in young clinical participants, we observed some
residual movement artifact, especially at foot-strike. If movement arti-
fact was observed, canonical correlation analysis (CCA) was used to
clean signals (Al Harrach et al., 2017; Schlink et al., 2020a; Schlink
et al., 2020b). In brief, decomposed canonical components from
HDsEMG were correlated to isolated movement artifact (extracted based
on occurrence within gait cycle). Components with highest Pearson’s
correlation to the artifact were removed, and the signal was recon-
structed from remaining components. Cleaned signals were inserted
back into the HDsEMG dataset over the gait cycle period where move-
ment artifact was originally identified. CCA has been shown to effec-
tively clean movement artifact from HDsEMG data (Al Harrach et al.,
2017; Schlink et al., 2020a; Schlink et al., 2020b), and good signal
quality was confirmed by visual analysis following CCA cleaning.

To evaluate proximal–distal EMG variations, we divided the GM area
covered by the grid into proximal and distal regions based on the non-
homogenous orientation of GM fibers relative to the skin along the
muscle length. As the alignment between electrodes and fibers affects
EMG outcomes (Vieira et al., 2017; Vieira and Botter, 2021), we
computed proximal and distal outcomes separately, ensuring compara-
ble electrode-fiber alignment within each region. The proximal region
contained rows 1–4 over the part of the GM with in-depth pennate fiber
orientation. Rows 5–7 were taken as the distal region over the curved
part of the muscle transitioning to the aponeurosis, with fibers becoming
more-parallel to the skin, enabling higher possibility to record propa-
gating motor unit action potentials (MUAPs) from surface electrodes
(see Fig. 6 in Vieira and Botter, 2021). The existence of propagating
potentials was identified by visual analysis of the signals by an expert
investigator. Row 4 divided non-propagating and propagating signal
properties in both CP and TD groups.

To quantify EMG-spatial distribution, we computed the modified
entropy across the HDsEMG grid (Farina et al., 2008). First, EMG
amplitude was estimated as the root-mean square (RMS). Modified en-
tropy, or spatial entropy, was then computed as:

Fig. 1. Experimental Setup. A CP participant walking on the treadmill with the HDsEMG grid recording activity from the GM muscle. B The HDsEMG grid and
wireless amplifier (34x30x15 mm).
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Entropy =
∑28

i=1
p2(i)log2(p

2(i))

Where p2(i) represents the square of the EMG-RMS value of each channel
i, normalized to the sum of squares of all channels. Spatial entropy de-
scribes the spatial-EMG amplitude distribution, with greater entropy
indicating greater spatial uniformity of EMG amplitude across the grid,
while lower entropy indicates more-heterogeneous distribution and
spatially-localized EMG amplitude. Spatial entropy is commonly used
for comparing EMG-spatial distribution between two conditions or
populations (Arvanitidis et al., 2021; Schlink et al., 2021).

To capture the temporal complexity of the EMG signal, we computed
Higuchi’s Fractal Dimension (HFD), which quantifies the space-filling
propensity of a signal, with values bounded between 1 and 2 and a
higher-HFD signifying a more-complex and convoluted signal (Higuchi,
1988; Santuz and Akay, 2020). The fractal dimension of the EMG has
been shown to strongly relate to motor unit properties, especially the
firing rate and level of synchronization (Mesin et al., 2016, Mesin et al.,
2009), making it a compelling tool to evaluate the temporal-EMG
pattern between CP and TD individuals. To supplement HFD, the me-
dian spectral frequency (MDF) of EMG was also taken to describe the
frequency content of the signal. HFD and MDF were averaged over the
proximal GM region to represent signal complexity and spectral prop-
erties in the in-depth pennate part of the muscle.

Foot-strike and foot-off events were identified from the antero-
posterior velocity of the toe-marker, which has shown to be a reliable
method to classify gait events during treadmill walking (Visscher et al.,
2021). The EMG linear envelope was generated by rectifying and low-
pass filtering the 28 single-differential channels using a 2nd-order But-
terworth filter at 10 Hz, time-normalizing to the gait cycle, and aver-
aging across channels. Considering the GM muscle is primarily active
during stance-phase, our primary spatiotemporal EMG comparisons
between CP and TD were computed over the stance-phase of gait from
foot-strike to toe-off. Additionally, we computed a spatial entropy en-
velope to track evolution of spatial-EMG changes across the gait cycle as
EMG-spatial entropy time-normalized to the gait cycle. HDsEMG videos
displaying spatial activation changes throughout gait were also gener-
ated and presented in supplementary materials. At least 30 strides were
taken from the one-minute walking period for each participant.

2.4. Statistical analysis

Shapiro-Wilk and Kolmogorov-Smirnov with Lilliefors correction
tests were used to assess normality. Outcomes needed to pass both tests
to be considered normal, and analyzed using parametric tests; while
outcomes found to have non-normal distribution were analyzed using
non-parametric tests. We compared EMG-spatial entropy, EMG-
temporal complexity (HFD), and median frequency (MDF) computed
over stance-phase between CP and TD groups using independent sam-
ples t-tests or Mann-Whitney U-tests. To evaluate proximal–distal dif-
ferences in EMG amplitude and temporal complexity, we compared
EMG-RMS and HFD from proximal-distal regions within-groups using
paired t-tests or Wilcoxon signed-ranks tests. Statistical parametric
mapping (SPM) was performed to identify periods of significant differ-
ence between CP and TD EMG and spatial entropy envelopes (Pataky
et al., 2016). Alpha was set at p = 0.05 and Bonferroni corrections were
performed to account for multiple comparisons for each group of tests (i.
e., three independent-samples t-tests performed – p-value corrected for
three tests, corrected p-value: 0.017, etc.). P-values presented in Results
are re-corrected to significance level p = 0.05 for clarity. Effect-size was
computed using Cohen’s D (Cohen, 2013). A supplementary correlation
analysis was performed to evaluate relationships between EMG-spatial
entropy and EMG-temporal complexity to other neuromuscular (spas-
ticity and co-contraction) and functional (ankle movement pattern
during gait and plantarflexor strength) outcomes across the two groups

(supplementary methods).

3. Results

3.1. Between-Group comparisons

Comparing EMG-spatial distribution between CP and TD groups, we
found significantly increased EMG-spatial entropy during stance-phase
in the CP group (CP: 4.73 ± 0.02, TD: 4.53 ± 0.11; d = 3.10, p <

0.001), indicating more-homogenous EMG-amplitude distribution
across the GM in adolescents with CP (Fig. 2A). EMG-temporal
complexity (HFD) exhibited an elevated trend in the CP group (CP:
1.44 ± 0.07, TD: 1.37 ± 0.06; d = 1.09, p = 0.088), but this difference
was not significant. MDF also appeared higher in CP adolescents, but not
significantly (CP: 115 ± 30 Hz, TD: 90 ± 23 Hz; d = 0.93, p = 0.212).
The CP group exhibited elevated GM activity during early-stance, pre-
swing, and late-swing (2.9–20.3 %, 52.6–68.6 %, 84.3–98.6 %; p <

0.001), based on EMG envelopes (Fig. 2D).

3.2. Within-Group comparisons between Proximal-Distal GM activity

In the TD cohort, the distal GM region exhibited 29.5 ± 14.7% higher
EMG-RMS compared to the proximal region (d = 0.54, p = 0.008). EMG
signal complexity (HFD) was significantly greater in the proximal
compared to the distal region in TD (d = -0.81, p = 0.019).

In the CP group, EMG-RMS was 9.5 ± 10.8% higher in the distal
compared to the proximal region, but this difference was not significant
(p = 0.114). There were no significant proximal–distal differences in
signal complexity in CP adolescents.

3.3. Evolution of GM spatial activation throughout the gait cycle

There were statistically significant differences in spatial entropy
envelopes between CP and TD groups for the majority of single-support
phase (14.8 – 17.6%, 19.5 – 47.0%; p < 0.01), with adolescents with CP
exhibiting higher spatial entropy when the GM muscle was most
strongly active (Fig. 3).

4. Discussion

This study was the first to use HDsEMG to compare spatiotemporal
activation of the GM muscle between adolescents with CP and age-
matched TD controls during treadmill walking. The novel finding was
a more spatially-homogeneous EMG-amplitude distribution across the
GM in adolescents with CP, compared to distal emphasis in TD partici-
pants. Altered motor unit activations and/or territories in combination
with muscle morphological changes in CP may generate more-uniform
spatial activation patterns during gait. Temporal-EMG complexity and
spectral frequency also both displayed elevated trends in CP, pointing
towards more-disordered neuromuscular recruitment. Significant dif-
ferences in EMG-spatial distribution between CP and TD groups were
found especially during the mid-stance phase of gait, when the GM
muscle is most active, signifying highly contrasting spatial activation
strategies between the groups.

4.1. Spatiotemporal activation of GM muscle in typically developed
adolescents

TD adolescents displayed 30% higher EMG amplitude in the distal
compared to proximal GM region during gait (Fig. 2A). Previous
research in healthy adults has shown similar results, with increased EMG
amplitude in the distal part of both lateral (Cronin et al., 2015), and
medial (Schlink et al., 2020a; Schlink et al., 2020b) gastrocnemii mus-
cles during walking and running. We observed contrasting differences in
EMG-temporal complexity, with significantly higher EMG complexity in
the proximal compared to the distal region in TD adolescents (Fig. 2B).
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The pennate architecture of the GM means more active motor units
can be recorded from a smaller area on the skin surface, but action po-
tential propagation is less emphasized in the EMG signal compared to
muscles with more-parallel fascicle orientation (Mesin et al., 2011). Due
to the curved shape of the GM muscle, fascicle orientation in the distal
region becomes more-parallel to the skin, making recording of action
potential propagation more-likely (Vieira and Botter, 2021). Consid-
ering single-differential channels act as spatial filters enhancing propa-
gating components of the signal (Merletti and Muceli, 2019), distal
emphasis of EMG amplitude in TD individuals may be largely explained
by higher likelihood for propagating potentials in the lower-part of the
GM due to muscle anatomy. Higher EMG complexity in the proximal GM
may instead be related to greater numbers of motor units represented in
the surface EMG signal in the proximal-pennate region, generating a
more-complex signal.

Neurophysiological factors in proximal–distal EMG differences in TD
adolescents also may play a role. For instance, some evidence points
towards small and spatially-distinct motor unit territories within the
human GM, as well as proximal–distal segmentation of motor unit
populations (Vieira et al., 2015, 2011), although larger territories have
also been described in literature (Héroux et al., 2015). Thus, prox-
imal–distal differences in EMG amplitude and complexity in the GM of
TD participants could indicate selective recruitment of regionally
distinct motor unit populations, based on functional demands of
walking. Further research combining musculoskeletal imaging and
HDsEMG is needed to elucidate the contribution of structural and
neurophysiological parameters to the spatial-EMG pattern of the GM
muscle during gait in TD adolescents.

4.2. More-Uniform Spatial-EMG distribution across GM muscle in
adolescents with CP

In-line with our primary hypothesis, CP adolescents showed signifi-
cantly greater EMG-spatial entropy across the GM muscle during gait,
indicating more-uniform spatial spread of myoelectric amplitude
(Fig. 2A). Further, no significant proximal–distal differences in EMG-
RMS nor signal complexity were observed in the CP group. When
examining the evolution of spatial activation across the gait cycle, the
CP group showed significantly higher EMG-spatial entropy especially
over mid-stance, when GM is most active, suggesting high spatial en-
tropy is a differentiating feature of the GM activation strategy of CP
adolescents during walking.

Evidence clearly suggests motor control alterations in individuals
with CP, with deficits in selectivity of muscle and movement control
(Noble et al., 2019), elevated co-contraction of agonist and antagonist
muscles during movement (Mohammadyari Gharehbolagh et al., 2023),
and adoption of less-complex inter-muscular coordination patterns for
walking (Steele et al., 2015). The more-uniform spatial-EMG pattern we
observed in the CP group reveals for the first time more-disordered and
less-distinct spatial activation across the surface of a key locomotor
muscle in adolescents with CP. Contrasted with the relatively consistent
spatial activation pattern observed in TD adolescents (singular EMG
burst during mid-late stance emphasized in the distal GM region), the CP
adolescents exhibited varied spatial activation patterns between in-
dividuals that often included multiple activation bursts across different
regions of the GM muscle (see supplementary HDsEMG videos for
demonstration). At the group-level, these varied spatial patterns man-
ifested as more-uniform and less-distinct spatial activation patterns in
the CP adolescents.

Abnormal spatial activation could arise from fundamental neuro-
muscular disturbances that underlie deficits in motor control selectivity

Fig. 2. Between-Group Differences. A–C Group average heatmaps of EMG amplitude (normalized RMS [A]), EMG-temporal complexity (HFD [B]), and median
frequency (MDF [C]) from the stance-phase of gait. Heatmaps present the 28 single-differential channels interpolated by a factor of 8 for visualization. RMS maps
were normalized to the peak value across the grid. Black horizontal lines represent the split between proximal and distal GM regions. D Group average EMG linear
envelopes. Shading represents ± 1 standard deviation from the mean. Blue horizontal bars display periods of significant difference between CP and TD curves
identified from SPM analysis. Vertical dashed lines indicate group average instances of foot-off, and separation of stance and swing phases.
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in CP. Indeed, we observed moderate-strong associations between
elevated EMG-spatial entropy and stronger ankle muscle co-contraction
during gait and higher levels of plantarflexor spasticity in the CP group
(supplementary results). Both co-contraction and spasticity in CP have
been linked to excitation-inhibition imbalance and impaired neuro-
muscular inhibition caused by the initial brain lesion (Condliffe et al.,
2016; Fogarty, 2023). Inhibitory synaptic connections are crucial for
healthy motor control, enabling selective control of muscles and
blocking undesirable overactivation. Damage or malformation to
inhibitory connections reduces the precision of activation in CP, and
may generate phenotypic symptoms, including diminished selective
motor control, elevated co-contraction, and hyper-sensitive reflexes
(Mohammadyari Gharehbolagh et al., 2023; Valadão et al., 2022).
Indeed, atypical homogenous GM spatial activation in CP adolescents
may reflect impaired selective inhibition of motor units during gait
leading to altered intra-muscular coordination.

Disturbed neuromuscular development in CP generates a cascade of
diverse consequences affecting neuromusculoskeletal structure and
function (Graham et al., 2016). Research has consistently reported
diminished morphological muscle quality in CP, and loss of contractile
tissue replaced by build-up of collagen and fat (Handsfield et al., 2022;
Mathewson and Lieber, 2015). Build-up of non-contractile tissue in the
muscle may increase diffusion of the intramuscular potential, and
diminish EMG amplitude and spatial selectivity, resulting in more-
homogenous spatial activation recorded by HDsEMG. However,

subcutaneous fat, known to reduce EMG amplitude and spatial sensi-
tivity, is not altered in ambulatory and higher-functioning individuals
with CP (Whitney et al., 2020). Further, there was no significant dif-
ference in body-mass index (BMI) between our CP and TD groups (CP:
20.6 ± 3.8 kg/m2, TD: 19.3 ± 1.7 kg/m2; p = 0.321), suggesting body
composition likely did not strongly contribute to observed differences in
spatial activation between CP and TD adolescents.

Alterations in GM gross-muscle morphology could also contribute to
spatial activation differences in CP. Changes in pennation angle towards
a sharper angle could align the fascicles in a more-parallel orientation
relative to the skin throughout a longer length of the muscle, causing
propagating and non-propagating regions to become less distinct, and
generating a more-uniform spatial spread of EMG amplitude. Previous
research on pennation angles in CP report mixed results; however, the
majority of studies indicate small or insignificant differences in penna-
tion angles with CP (D’Souza et al., 2019; Handsfield et al., 2022;
Shortland et al., 2002). Mixed results reinforce the heterogeneity of the
CP population, but indicate no generalized changes in pennation angle
caused by CP. Recent research, however, indicates greater GM muscle-
belly lengthening during gait in CP, compared to relatively isometric
muscle behavior in TD adolescents (Cenni et al., 2024). More muscle-
belly lengthening could stretch the fascicles and produce a sharper
pennation angle during dynamic walking, potentially contributing to
more-uniform spatial-EMG distribution.

Thus, alterations in both underlying neurophysiology and motor unit

Fig. 3. Evolution of GM Spatial Activity Across the Gait Cycle. A EMG Linear envelopes from TD and CP groups. B Spatial entropy envelopes displaying changes
in spatial-EMG distribution over the gait cycle. Gait events separating relevant gait subphases (double-support 1 [DS1], single-support [SS], double-support 2 [DS2],
and swing-phase [SW]) are marked as vertical dotted/dashed lines (in order: opposite foot-off, opposite foot-strike, same foot-off). Blue horizontal lines above the x-
axis indicate periods of significant difference between TD and CP groups from statistical parametric mapping (SPM). C EMG-RMS heatmaps are displayed from the
four gait subphases to visualize changes in spatial-EMG amplitude distribution during walking.
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properties in combination with gross changes in muscle morphology and
function likely contribute to the more-homogenous and disordered
spatial activation pattern observed in CP adolescents. Future research is
needed to uncover anatomical and neuronal mechanisms generating
greater EMG-spatial entropy in CP, and changes in spatial-EMG patterns
in response to different treatments.

4.3. Trend towards elevated Temporal-EMG complexity in CP

Our results showed trends towards higher temporal-EMG complexity
and median frequency in the adolescents with CP compared to TD
controls, partly supporting our hypothesis of a more-complex EMG
signal in the CP group. Although differences in group-average values
were present, high inter-individual variability likely contributed to the
lack of statistical significance of these results.

Tao et al showed muscle activity complexity between and across
muscles during gait, measured using multivariate multi-scale entropy
analysis, varied in children with CP compared to a TD control group
(Tao et al., 2015). At some scales, muscle activity complexity was
significantly higher in CP, with authors interpreting over-activation and
spasticity generating higher inter-muscular complexity in CP.
Conversely, muscle activity complexity was reduced in CP at different
scales and amongst different muscles, representing under-activation or
loss of muscle-couplings during gait (Tao et al., 2015). These findings
showcase the multifaceted effects of CP on neuromuscular activation,
and how positive (i.e., overactivation and spasticity) and negative (i.e.,
weakness and paralysis) features of the motor disorder generate differ-
ential impacts on EMG patterns. We observed trends towards elevated
EMG-temporal complexity and median frequency in the GM muscle of
CP adolescents during gait, potentially displaying predominance of
overactivation as well as spasticity generating a more-complex and
disordered EMG signal. More research is needed to characterize EMG-
temporal complexity in CP across different clinical classifications and
locomotor muscles.

Research indicates a shift within CP muscle from slow-to-fast fiber
types and fast-twitch fiber predominance (Deschrevel et al., 2023;
Pontén and Stål, 2007). Similar slow-to-fast fiber type shift is seen in
other muscle-wasting disorders characterized by disuse and/or dener-
vation, such as spinal-cord injury (Ciciliot et al., 2013). Research in
adults with CP also shows lower numbers of motor units controlling the
hand musculature, but increased motor unit size (Marciniak et al.,
2015). Larger motor units may be accompanied by larger motor unit
territories, as motor unit territories have been shown to be enlarged with
diabetic peripheral neuropathy (Favretto et al., 2023), and following
spinal-cord injury (Thomas et al., 1997). Increase in motor unit size and
territory may be generated by neuropathic loss of connection to some
motor units followed by reinnervation and axonal branching to
orphaned fibers (Favretto et al., 2023; Garg et al., 2017). Dominance of
large motor units and predominantly fast-twitch fibers in CP could lead
to higher discharge rates, lower levels of synchronization, and increased
amplitude per motor unit firing, producing a more-complex and higher-
frequency EMG signal. Additionally, larger motor units with enlarged
territories could generate a more-homogenic EMG-spatial distribution,
as well as a more temporally-complex EMG signal, as observed in our CP
cohort. However, further study into motor unit size and territory change
in CP is required.

5. Limitations

The lack of assessment of muscle anatomical variables was a limi-
tation. Without structural information, we cannot say whether features
such as pennation angle, muscle size, fat infiltration, and other non-
neural factors contributed to our results. Future studies should employ
combined HDsEMG-ultrasonography to examine relationships between
muscle structure and HDsEMG signal characteristics in individuals with
CP (Botter et al., 2013).

The small size of our sample was a further limitation. As no similar
studies using HDsEMG during gait in CP have been performed, we could
not perform statistical power analysis. However, our sample size is
similar to other electromyographic studies with CP participants (Conner
et al., 2020; Romkes and Brunner, 2007; Valadão et al., 2022).

Another important limitation was the focus on solely the GM muscle.
We chose the GM due to its importance in propulsive power during gait,
and that it is so often affected by neuromuscular symptoms in ambula-
tory CP. However, examination of other locomotor muscles, such as the
tibialis anterior, using HDsEMG during gait would expand our under-
standing of manifestations of CP motor control disturbances across
electromyograms, and their links with mobility and function.

6. Conclusion

We used HDsEMG to compare spatiotemporal characteristics of the
electromyogram of the GM muscle between adolescents with CP and
age-matched TD adolescents during treadmill walking. In-line with our
primary hypothesis, CP adolescents exhibited higher EMG-spatial en-
tropy, signifying more-uniform and less-precise EMG-spatial distribu-
tion across the GM muscle surface, compared to distal EMG emphasis in
TD adolescents. We also observed trends towards higher EMG-temporal
complexity and frequency in CP adolescents, implying potentially more-
disordered GM muscle recruitment during gait in CP. Less-selective
motor unit activations, abnormal anatomical distribution of motor
units, and morphological changes in the muscle could all contribute to
atypical myoelectric activation of the GM in both space and time during
gait in CP. Further, positive associations between EMG-spatial entropy
and EMG-temporal complexity with greater ankle co-contraction and
spasticity in the CP group may point towards common underlying
mechanisms, such as imbalances in motor system excitation-inhibition.
Our findings demonstrate the clinical potential of HDsEMG to reveal
novel features of motor pathology in CP, meriting further research into
causes of altered spatiotemporal activation, as well as how spatiotem-
poral EMG features in CP change in response to different treatments.
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