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Abstract: Here, we examined multitemporal behavior of fully polarimetric SAR (PolSAR) parameters
at L-band in relation to the stem volume of boreal forests. The PolSAR parameters were evaluated
in terms of their temporal consistency, inter-dependence and suitability for forest stem volume
estimation across several seasonal conditions (frozen, thaw and unfrozen). The satellite SAR data were
represented by a time series of PolSAR images acquired during several seasons in the years 2006 to
2009 by the ALOS PALSAR sensor. The study area was in central Finland, and represented a managed
area in typical boreal mixed forest land. Utility of different PolSAR parameters, their temporal stability
and cross-correlations were studied along with reference stand-level stem volume data from forest
inventory. Further, two polarimetric parameters, cross-polarization backscatter and co-polarization
coherence, were chosen for further investigation and stem volume retrieval. A relationship between
forest stem volume and PolSAR parameters was established using the kNN regression approach.
Ways of optimally combining PolSAR images were evaluated as well. For a single scene, best results
were observed with polarimetric coherence (RMSE ≈ 38.8 m3/ha) for scene acquired in frozen
conditions. An RMSE of 40.8 m3/ha (42.9%, R2 = 0.66) was achieved for cross-polarization backscatter
in the best case. Cross-polarization backscatter was a better predictor than polarimetric coherence for
few summer scenes. Multitemporal aggregation of selected PolSAR scenes improved estimates for
both studied PolSAR parameters. Stronger improvement was observed for coherence with RMSE
down to 34 m3/ha (35.8%, R2 = 0.77) compared to 38.8–51.6 m3/ha (40.8–54.3%) from separate scenes.
Finally, the accuracy statistics reached RMSE of 32.2 m3/ha (34%, R2 = 0.79) when multitemporal
HHVV coherence was combined with multitemporal HV-backscatter.

Keywords: synthetic aperture radar; SAR polarimetry; time series; stem volume; boreal forest;
L-band; ALOS PALSAR

1. Introduction

Aboveground biomass (AGB) is a key biophysical ecosystem variable describing all living biomass
above the soil including stem, stump, branches, bark, seeds and foliage [1]. Cost-effective assessment
and monitoring of forest biomass is central for effective forest industry, resource planning and
sustainable forest management [2]. Forest biomass has been recognized as a terrestrial Essential
Climate Variable [3], and its importance in global terms has become even greater in recent years due to
international concerns about climate warming [2,4].

Remote sensing of forest structure and biomass with synthetic aperture radar (SAR) bears
significant potential for mapping and understanding forest ecological processes [5–7]. These techniques
could serve as valuable methods for biomass assessment of heterogeneous complex biophysical
environments. Special interest is to multiparametric SAR data for forest properties assessment and
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monitoring. Polarimetric SAR (PolSAR) could be a suitable alternative with active development
particularly in forestry applications [8]. Further, we will use the term PolSAR exclusively for
quad-polarimetric SAR, in contrast to, e.g., dual-polarization SAR.

Saturation of the radar-biomass relationship at higher levels of forest biomass is a well-known
difficulty of SAR-based mapping of AGB [9,10]. Due to greater sensitivity to the woody components
and higher penetration through forest canopy at a longer wavelength, L- and P-band SAR data
are considered more suitable for forest stem volume retrieval, compared to SAR data acquired at
higher microwave frequencies. Among established and newly developed imaging configurations
and techniques utilizing SAR imagery in forest characterization, such as multitemporal, polarimetric,
multifrequency, interferometric, polarimetric-interferometric and tomographic SAR, only the first two
are presently routinely available at L-band from space.

In this study, we will concentrate on fully polarimetric and multitemporal SAR, merging these
techniques to investigate multitemporal behavior of PolSAR images and synergy it might offer for
advanced forest variable assessment. As the forest inventory measurements are represented by stand
level measurements of forest stem volume, which in the case of boreal forest can be recalculated to
AGB using simple factors [11], the terms AGB, forest biomass and forest stem volume are used further
interchangeably in this paper.

Polarimetric SAR signatures are sensitive to individual particle characteristics dictated by particle
geometry (such as particle orientations and shapes) and dielectric constants (thus effectively moisture
content), as well as ensemble average entropy [12,13]. Furthermore, incoherent model-based PolSAR
decompositions permit separating main scattering contributions from vegetated areas, which consist
of surface, even-bounce, and volume scattering [14]. However, as the number of independent
polarimetric observables is limited to nine (in monostatic backscattering case), only relatively simple
scattering mechanism models can be employed for the identification and separation of corresponding
contributions. For surface and double-bounce scattering, typically first-order models are used,
whereas modeling of scattering from vegetation has achieved more focus in recent literature [14–16].
Additionally, different ratios [17] and correlations based on the second order statistics of SAR data are
often used to establish empirical or semi-empirical relationships between PolSAR observables and
forest variables [18–20], in PolSAR based forest classification [21,22] and land cover mapping [23,24].

Polarimetric SAR research with airborne instruments has been active since early days of SAR
polarimetry. Several studies were made particularly with airborne PolSAR data at P-, L- and C-bands
aiming at forest parameter estimation and AGB retrieval. Forest biomass retrieval was attempted
with polarization phase difference [10], followed by incorporating polarimetric coherence [25].
Radar backscatter intensities and polarimetric coherence were useful in improving forest biomass
estimation with simple regression model [26] in boreal forest. Polarization phase difference and
coherence were used for the retrieval of biomass in mangroves forest, with the polarimetric coherence
exhibiting a clear sensitivity to forest biomass [27]. Useful features of polarimetric coherence were
studied in [28] further relating it to diverse forest types and biomass classes. In [29], a linear
correlation of polarimetric anisotropy to tree height up till 25 m was observed, while alpha angle and
entropy saturated at much lower tree heights. In [30], airborne L-band SAR data were used to study
polarization phase difference, polarimetric coherence and the volume scattering component of the
Freeman-Durden decomposition [14] (that is cross-polarization backscatter) in multiple regression
over tropical forest. Comparable results were achieved in [31] over boreal forest, where averaged
scattering mechanism and cross-polarization intensity were found to be best correlated with forest
stem volume. Further, polarization synthesis was used to improve correlations between PolSAR data
and forest variables [32–34].

The opportunity to use multi-polarization (including quad-polarimetric) and multitemporal SAR
data at L-band was offered by a Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor
on-board ALOS during its life span of more than five years [35], followed by its successor ALOS-2
PALSAR-2. As fully polarimetric satellite SAR data were collected by PALSAR only and were not
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routinely available for wide area forest mapping [11,36,37], only few studies are known aiming at the
assessment of forest properties with quad-pol PALSAR. However, in the view of ALOS PALSAR-2
mission and other potential L-band missions, development of effective methodologies for retrieving
forest parameters from PolSAR L-land data are timely and necessary.

Due to earlier L-band spaceborne imaging radars operating in a single-polarization imaging
mode, not many papers are available for objective comparison using multi-polarization capability,
particularly in the boreal forest. Few recent studies [38–42] indicate a potential of the ALOS PALSAR
data for stand-wise stem volume retrieval in the boreal forest zone, noting seasonal and multitemporal
dependence of estimates. However, the problem is that approaches demonstrated so far with
spaceborne SAR data at L-band gave satisfactory results only when produced biomass estimates
were aggregated to relatively large areas [41]. Another problem is suboptimal inversion scenario in
model-based approaches, which may complicate routine stem volume estimation due to non-physical,
negative or unrealistically high estimates of AGB, as discussed in [39]. Chowdhury et al. used
PolSAR variables in linear regression fitting [43] and polarimetric coherence in semi-empirical model
inversion [42] to recover growing stock volume of Siberian forests. Results were encouraging with
up to 33 m3/ha RMSE. However, the reference data were relatively outdated and stand sizes were
relatively big with large variation in size. As the forest was mostly natural, it is interesting to study
respective dependencies over managed forest areas with smaller stands. Another reason is that fully
polarimetric ALOS PALSAR data were used in the fitting against reference data mostly on scene by
scene basis (in contrast to single- and dual-pol ALOS PALSAR studies notably in [44]). Multitemporal
behavior of PolSAR parameters was not analyzed in-depth, aside from cross-correlation check-ups
in [42]. In addition, models employed rely primarily on WCM-based or simple regression fitting, while
more advanced computational approaches were not studied. To date, comprehensive quad-pol ALOS
PALSAR time series were rarely collected and available only over selected areas.

In this study, for the first time fully polarimetric spaceborne L-band SAR data were combined
using suitable PolSAR parameters, for forest stem volume estimation. The focus of this study was
two-fold. Firstly, we examined multitemporal behavior of several PolSAR parameters suitable for forest
biomass mapping, particularly covering aforementioned gaps. Understanding their cross-correlation
and temporal dynamics across several seasons can help identify more stable PolSAR parameters for
their optimal aggregation and substitution. Secondly, we chose several suitable PolSAR parameters
and performed forest stem volume estimation using a non-parametric regression approach, to achieve
improved performance compared to earlier studies.

The paper is organized as follows. In Section 2, the primary concepts of SAR polarimetry relevant
for this study are provided, along with the description of specific PolSAR parameters that were
examined. This sets the theoretic background of the study. Section 3 describes satellite SAR images and
reference data, as well as specific methods used in the forest biomass estimation. Further, in Section 4,
the primary analysis was performed and discussed. The study is concluded, indicating future research
directions and potential, in Section 5.

2. Main PolSAR Concepts in the Context of the Study

Fully polarimetric measurement can be represented by a scattering matrix, essentially a
linear mathematical operator describing transformation of incident electromagnetic wave into
backscattered one:

[S] =

[
Shh Shv
Svh Svv

]
. (1)

where Spq is the complex backscattering term associated with p transmit and q receive polarizations.
In satellite borne SAR polarimetry, after polarimetric calibration and Faraday rotation compensation
are performed (or in case latter is negligible), quad-polarimetric measurement for the monostatic

case can be represented by a lexicographic target vector kL =
[
Shh,
√

2Shv, Svv

]T
. Second-order
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statistics of backscatter, suitable for describing polarimetric information content for complex and
natural distributed targets, is obtained as an ensemble averaged outer product of the target vector kL.
The corresponding covariance matrix is positive semi-definite Hermittian:

[C3] =


〈
ShhS∗hh

〉 〈√
2ShhS∗hv

〉
〈ShhS∗vv〉〈√

2ShvS∗hh

〉 〈
2ShvS∗hv

〉 〈√
2ShvS∗vv

〉
〈
SvvS∗hh

〉 〈√
2SvvS∗hv

〉
〈SvvS∗vv〉

. (2)

This covariance matrix [C3] (or equivalent coherence matrix [T3] described further) can be used
for characterizing a target via a change of polarization state of electromagnetic wave. Further, specific
polarimetric observables can be further derived from it for ad hoc classification or characterization of
the illuminated target.

Cloude and Pottier have proposed a polarimetric coherence matrix, reformulating the
covariance matrix in the Pauli basis, with the target vector in reciprocal monostatic case given by
k = 1/

√
2[Shh + Svv, Shh − Svv, 2Shv]

T [45]. Then, the following expression is obtained:

[T3] =
1
2


〈
|Shh + Svv|2

〉 〈
(Shh + Svv)(Shh − Svv)

∗〉 〈
2(Shh + Svv)S∗hv

〉〈
(Shh − Svv)(Shh + Svv)

∗〉 〈
|Shh − Svv|2

〉 〈
2(Shh − Svv)S∗hv

〉〈
2Shv(Shh + Svv)

∗〉 〈
2Shv(Shh − Svv)

∗〉 4
〈
|Shv|2

〉
. (3)

Theory of target decomposition using eigenvalue or, alternatively, model based decomposition
of coherence (or covariance) matrix has found wide application [12,46]. In this study, we will use
several closely associated albeit different polarimetric measures based on the elements of coherence
(or covariance) matrix.

The following PolSAR parameters are examined in the study:

• Backscattering coefficients (in dB) at HH, VV and HV polarizations. The corresponding
expressions are given as

σpq = 10 ∗ log10

(〈∣∣Spq
∣∣2〉). (4)

• Total backscattered power (in dB), which can be calculated based on span of
coherence/covariance matrix.

Span = trace([T3]) = trace([C3]); Pt = 10 ∗ log10(Span). (5)

• Polarimetric coherence between two co-polarization channels. Both magnitude and phase are
important here, as they provide degree of correlation and HH-VV phase difference.

ρhhvv =

(
〈ShhS∗vv〉/

√〈
ShhS∗hh

〉
〈SvvS∗vv〉

)
. (6)

• Surface scattering fraction, given in [47] as

N11 =

〈
|Shh + Svv|2

〉
〈
|Shh|2

〉
+
〈
|Svv|2

〉
+ 2
〈
|Shv|2

〉 . (7)

• Even-bounce scattering fraction, which can be defined as a ratio:
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N22 =

〈
|Shh − Svv|2

〉
〈
|Shh|2

〉
+
〈
|Svv|2

〉
+ 2
〈
|Shv|2

〉 . (8)

Additionally, we use several more PolSAR parameters specifically formulated to capture
vegetation characteristics, as follows:

• Radar Vegetation Index (RVI) given as

RVI =
a
〈
|Shv|2

〉
〈
|Shh|2

〉
+
〈
|Svv|2

〉
+ 2
〈
|Shv|2

〉 . (9)

where typically a = 8, but can be adjusted to cover the dynamic range from 0 to 1. It was introduced
in [48] with a goal of deriving a seasonally stable polarimetric descriptor for vegetated areas,
but never really tested in forest biomass estimation. In forested terrain, it can be considered as a
relative volume scattering contribution to the total backscattered power.

• Canopy Scattering Index defined as

CSIVV =

〈
|Svv|2

〉
〈
|Shh|2

〉
+
〈
|Svv|2

〉 . (10)

and its modification (or supplement)

CSIHH =

〈
|Shh|2

〉
〈
|Shh|2

〉
+
〈
|Svv|2

〉 . (11)

The CSI parameter introduced in [49] is expected to provide sensitivity to forest variables as a
measure of the relative importance of vertical against horizontal structure (or vice versa).

3. Data and Methods

Here, we first describe our study site, satellite SAR and ground reference data. Further,
methodologies for forest stem volume estimation from individual PolSAR scenes are described,
followed by SAR compositing approach and metrics for the accuracy assessment of retrieved stem
volume estimates.

3.1. Study Site and In Situ Data

The study site is located in central Finland in vicinity of town Kuortane, with center coordinates:
62◦49′N, 23◦32′E (see Figure 1). The forest within the area is primarily mixed conifer-dominated, the
main species being Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and birch (Betula pendula,
Betula pubescens). The primary soil type in the area is glacial drift, with occasional presence of
well-drained sandy soils. The area is flat to hilly. Terrain elevation varies between 80 m and 130 m in
the area of forest inventory data, and between 40 m and 226 m in the whole Digital Elevation Model
(DEM) covered by the SAR images. The DEM obtained from the National Land Survey of Finland has
a pixel spacing of 25 m and a vertical accuracy of about 2.5 m.
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11 August 2006 18 (11; 26) 0.0 
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29 March 2007 6 (−1; 14) 0.0 

5 May 2007 2 (−5; 10) 0.9 
14 November 2007 −6 (−3; −9) 0.0 

5 May 2009 8 (4; 11) 0.5 
6 June 2009 6 (2; 9) 0.3 

 

Figure 1. Study site location.

3.2. SAR Data

SAR data are represented by a time series of seven PolSAR scenes (see Figure 2) acquired during
2006–2009, at 24◦ incidence angle. Temperature and precipitation measurements from the nearby
airport of Kauhava provide an indication of the local weather situation (Table 1). Majority of scenes
were acquired in summer and leaf-on conditions, while two scenes were acquired under frozen
conditions, and one during the snow melt.
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Table 1. PolSAR scenes used in the study.

Acquisition Date Temperature Mean (Min; Max), ◦C Precipitation, mm

11 August 2006 18 (11; 26) 0.0
11 November 2006 −5 (−10; 0) 0.2

29 March 2007 6 (−1; 14) 0.0
5 May 2007 2 (−5; 10) 0.9

14 November 2007 −6 (−3; −9) 0.0
5 May 2009 8 (4; 11) 0.5
6 June 2009 6 (2; 9) 0.3
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3.3. Reference Data

Reference data were represented by a stand-wise forest inventory made available by forest
management companies in the study area. Only stands more than 2 ha were considered in the analysis
to obtain more stable models. The overall number of stands was 124. The average stand size was
3.5 ha, median stand size was 3.2 ha and maximum was 6 ha. Stand-wise forest inventory data were
updated to the year 2006. The forest inventory data were produced using standard methods for
stand-wise inventory, primarily based on sample plots and visual interpretation. Forest stem volume
varied between 0 and 314 m3/ha (area-weighted median 99 m3/ha, area-weighted mean 95 m3/ha).
Locations of forest stands, along with the stem volume distribution, are shown in Figure 3.
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Figure 3. Reference data: (a) land cover in the study area; (b) forest inventory data location and mask
of forest stands; (c) and forest stem volume distribution.

The forest stand mask was produced by rasterizing a forest inventory database provided by
Etelä-Pohjanmaan Metsäkeskus (forest center). The stand mask was eroded by one pixel to avoid
border effects in the processing. The forest stand mask overlaying SAR scene is shown in Figure 3 in
the context of the reference land cover map.

For independent validation, the available dataset was divided for training and validation into
two equal parts. To capture the whole dynamic range of forest stem volume and associated PolSAR
parameters, the stands were arranged in descending order according to their stem volume and divided
into two parts as odd or even numbers.

3.4. PolSAR Data Pre-Processing

The single look complex (SLC) level 1.1 PALSAR data were used for the investigations. The data
were polarimetrically calibrated by JAXA as described in [50]. The pixel spacing of ortho-rectified
scenes was set to 25 m. The DEMs were re-sampled to 25 m pixel spacing using cubic splines.
Scenes were aggregated (averaged in the form of Stokes matrix elements over 6 consecutive image
lines) in azimuth to obtain images with pixel dimensions approximately corresponding to the 25 m
grid spacing. The images were ortho-rectified in the form of Stokes matrix data [51]. Bi-linear
interpolation method was used for resampling in connection with the ortho-rectification. Radiometric
normalization of intensity was done using a projected pixel area based approach [52], to minimize
the effect of the topography. Correlation-derived tie points were used with the PolSAR image time
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series as the geo-location information was not precise enough. Map-derived ground control points
were used to revise the geo-location computed from the state vector and time code data in the ALOS
PALSAR products.

Afterwards, the covariance/coherency matrix was formed, followed by speckle filtering (median
filtering of 3 × 3). The estimate of the Faraday rotation angle [53,54] was within the 2◦ range indicating
no expected influence on biophysical parameter retrieval [55].

To compensate for the slope effect, the polarization orientation angles (POAs) were derived from
the circular polarization algorithm [56], as shown below:

θ =
1
4

[
arctan

(
2Re{T23}
T22 − T33

)]
, (12)

where θ is the phase difference between the right-right and left-left circular polarizations, and Tpq is a
corresponding element of polarimetric coherence matrix. After the POA estimation, a new coherence
matrix is formed using unitary line of sight rotation matrix:

[T3_θ] = [I_θ] ∗ [T3] ∗ [I_θ]−1, (13)

With line of sight (LOS) matrix

[I_θ] =

 1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

. (14)

All analysis was performed using stand-wise averaged SAR data. The averaged stand-wise values
of elements of polarimetric covariance/coherence matrix were calculated in the power domain by
averaging all pixel intensity values within each eroded stand (one-pixel erosion was applied).

3.5. SAR Based Estimation of Stem Volume

Forest stem volume was estimated based on two PolSAR parameters: cross-pol backscatter and
co-pol coherence. Both parameters exhibit nonlinear dependence on biomass, with many suitable
models available for their inversion [38,39,57].

In this study, due to presence of considerable reference data and to avoid peculiarities of, e.g.,
solving a system of two nonlinear equations, we used a non-parametric estimation technique: k nearest
neighbor (kNN) regression method. Different nearest neighbor regression approaches became popular
tools in estimating forest parameters from remotely sensed data [58–62]. Particularly, a multisource
national forest inventory (NFI) in Finland is based on k nearest neighbor (kNN) approach [60,61].
Within the kNN regression methodology, the distance functions (between neighbors), number (k) of
nearest neighbors and methods of their search, as well as weighting of the chosen neighbors, vary.

Here, we suggest estimating the forest stem volume of each stand as an average of forest stand
values of the k nearest forest stands in the feature space of chosen PolSAR parameters. Here, we first
describe measures and procedures needed for the kNN regression approach, and then proceed to the
algorithm description.

Parameter k, the number of nearest neighbors, is an external parameter of the method. Distance
between stands is calculated in the feature space of PolSAR parameters. Here, we chose p = 2
meaningful PolSAR parameters: HV backscatter and HHVV coherence. As their dynamic range varies,
a linear stretching (standardization) was performed to have both coherence and backscatter within
the [0; 1] dynamic range. In principle, such procedure is applicable also to other PolSAR parameters
should they be chosen for predicting stem volume, such as e.g., RVI or various PolSAR ratios.

Distance d from evaluated stand x to reference stand y (in the feature space of dimensionality p),
is, in general case, a Minkowski distance:



Remote Sens. 2017, 9, 999 9 of 24

d =
(
∑ p

i=1(|xi − yi|)q
)1/q

. (15)

Here, we used q = 2, that is simply the Euclidean distance.
Finally, an estimate of the forest stem volume Vest

x was obtained as

Vest
x = (1/k)∑ k

y=1Vy, (16)

where x and y are forest stand indices, Vy is the stem volume of y-th nearest forest stand, and k is the
number of nearest stands and the parameter of the kNN algorithm.

The idea of the kNN regression algorithm is schematically shown on the flowchart in Figure 4,
and the algorithm proceeds as described in Algorithm 1.
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Figure 4. The conceptual scheme of the kNN regression approach.

The algorithm proceeds as follows:

Algorithm 1 kNN regression approach

1. Fix parameters of the algorithm (k, p)
2. Normalize/standardize the data in the feature space
3. For each forest stand, repeat:

a. Find its k nearest neighbors in the feature space. This requires:
i. Calculate pair-wise distances between the given stand and all reference stands using

Equation (15),
ii. Arrange/rank reference stands in ascending order using calculated distances

b. Select k first reference stands, and supply their stem volume figures to (c).
c. Calculate an estimate of stand volume using Equation (16).

Parameter k was chosen within the range [2, N/2] where N is the number of training stands,
based on the accuracy statistics calculated within the training dataset.

3.6. Multi-Scene Aggregation

To achieve better stability of the estimation, we used a multitemporal aggregation technique
similar to those described in [63,64]. In the latter, Quegan and Yu have suggested a method for speckle
filtering of SAR imagery by combining several channels or scenes. This approach is implemented as:

Jz(x, y) =
〈Iz(x, y)〉

N

N

∑
i=1

Ii(x, y)
〈Ii(x, y)〉 with k = 1, . . . , N (17)
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where, at pixel position (x,y), Jz(x, y) is the intensity of composite image (coherence matrix element),
Ii(x, y) is the intensity of i-th input image, <Ii(x, y)> is the local average intensity of i-th input image,
and N is the number of combined images.

Similar methodology is used here to combine PolSAR scenes in the intensity domain, before
calculating PolSAR parameters of interest and performing stem-volume estimation. For each pixel
location (x, y), each element of the coherence matrix is combined using Equation (17). We expect this
approach to work best with images acquired in similar environmental conditions (where there is no
bias caused by change of scattering mechanism due to, e.g., frozen state of forest or flooded terrain).
Particular combinations of PolSAR scenes tested in the study, along with the results of the biomass
estimation, are reported in Section 4.2.

3.7. Accuracy Analysis

Performance of the estimation approach was quantitatively evaluated using Root Mean Square
Error (RMSE) as

RMSE =

√
1
N ∑ N

i=1

(
Vmeas

i −Vest
i
)2, (18)

where N is the number of forest stands, and Vmeas
i and Vest

i are measured and estimated values of
forest stem volume for i-th stand, respectively. Further, relative RMSE was calculated by dividing
absolute RMSE values by mean stem volume within the study site.

RMSE% = (RMSE ∗ N)/
(
∑ N

i=1(V
meas
i )

)
. (19)

In addition, the Pearson correlation coefficient r and coefficient of determination R2 were used for
interpretation, as traditionally adopted for this purpose in the remote sensing literature.

4. Results

Here, we first describe and discuss inter-dependencies between stand-wise estimates of different
PolSAR parameters, as well as their relation to forest stem volume. Then, we chose two representative
PolSAR parameters to predict the forest stem volume, namely co-polarization coherence and
cross-polarization backscatter. Later, forest stem volume is estimated using the kNN method based on
different combinations of these PolSAR parameters, as well as their multitemporal composites.

4.1. Temporal Dependence of PolSAR Parameters and Relation to Stem Volume

The PolSAR parameters presented earlier in Section 2 are analyzed here for each acquired scene.
Figure 5 shows dependence of different PolSAR features as a function of forest stem volume. A scene
acquired in August 2006 was chosen as a representative example. Here, most consistent monotonic
behavior is demonstrated by HV-backscatter, RVI, co-polarization coherence magnitude and surface
scattering fraction. As expected, the dependence is often nonlinear, increasing with saturation level for
some parameters, and decreasing for others. Canopy scattering measure, instrumental in forest class
differentiation, as a measure of the relative importance of vertical against horizontal structure (or vice
versa), seems to be less adequate in capturing the stem volume dependence. Particularly, the CSI-HH
version appears less suitable. Dependence for HH and VV backscatter on forest stem volume, and
especially co-polarization coherence phase seems more “noisy” compared to other PolSAR parameters.
For the latter, the reason can be forest understory, rich forest floor and presence of hilly terrain within
the scenes; these factors make double bounce scattering mechanism due to ground–trunk interaction
hindered. This is, however, in contrast to another polarimetric indicator, the relative even-bounce
scattering mechanism, where clear dependence on the forest stem volume (albeit not as good as for
HV-backscatter) is visible.
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It is important to keep in mind that low correlation between forest stem volume and a specific
PolSAR parameter does not necessarily suggest that the given parameter is suboptimal (e.g., for further
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biomass retrieval), as the dependence can be nonlinear. In fact, Figure 5 clearly demonstrates that
the assumption [11,26] on linear dependence between the forest stem volume and the majority of
PolSAR parameters often fails; such approximation seems possible only over a certain range of the
forest biomass values.

On the other hand, it is important to investigate the temporal dependence (or stability) of PolSAR
parameters in relation to stem volume, as well as levels of correlation between different PolSAR
parameters. The latter can help to seed out unnecessary (or unstable) parameters, while the former
can suggest optimal conditions for the image acquisition, and hint on possible ways to aggregate
different PolSAR scenes. As the Kuortane vicinities belong to intensively managed forest areas, it was
easy to detect effects associated with clearcutting, particularly on the stand level. Several stands were
detected as clear-cut especially within the last two-three scenes compared to other images, with the
majority of PolSAR parameters being suitable to detect these changes. An example with cross-pol
backscatter is shown in Figure 6. It is important to note that only non-cut stands (during the time span
of 2006–2009) were used in calculating multitemporal statistics shown further, as well as in the forest
stem volume retrieval.
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Figure 6. Temporal dynamics of cross-polarization backscatter reveals changes on stand level, with
removal of at least six stands detected: (a) 11 August 2006; (b) 14 May 2007; and (c) 5 June 2009.

Figure 7 shows cross-correlation matrices for different PolSAR parameter in question, to assess
the temporal stability between scenes. Another typical approach is to visualize these correlations
explicitly as scatter-plots (e.g., as in [38]). In this situation, a level of 1 corresponds to fully
linearly correlated dependence between corresponding two scenes (modulus of Pearson’s correlation
coefficient). Each pixel in respective correlation matrices corresponds to one scatterplot. As altogether
there were seven ALOS PALSAR scenes, the correlation matrices for each PolSAR parameter have
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dimension 8 × 8 due to stem volume being included. To illustrate this approach in more detail, we
show the 1st row of correlation matrix for σhv parameter as an ensemble of scatterplots in Figure 8.
Here, even if a PolSAR parameter depends nonlinearly on stem volume, still high levels of correlation
can indicate robustness of corresponding dependence (be it linear or nonlinear) across the seasons.Remote Sens. 2017, 9, 999  13 of 24 
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Figure 7. Correlation matrices illustrating levels of temporal correlation between stand-wise aggregates
(averages) from different PolSAR scenes (for each studied PolSAR parameter), along with stem volume.
As there were seven scenes, these correlation matrices have dimension 8 × 8.
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HV-backscatter from Figure 7.

Most PolSAR parameters behave steadily across the time, though noticeable change occurs for
November 2007 scene, as well as for two last scenes (stand-wise estimates of PolSAR parameters for
which are highly correlated). In fact, it seems possible (most notably for RVI, polarimetric coherence
and surface scattering fraction) to divide the time series into at least two groups: scenes acquired
in 2006–2007 and scenes acquired in 2009. The reason for this dependence could be that the initial
assumption on forest stem volume stability (for non-cut stands) starts to fail as we approach three-year
difference between forest inventory and SAR measurements. This point is discussed further in Section 4.
As far as specific PolSAR parameters are concerned, HH, VV and HH-VV phase as well as CSI-VV show
low or modest levels of temporal cross-correlation, while other parameters seem to be quite stable.

In principle, a similar cross-correlation approach can be used to investigate interdependence
between different PolSAR parameters (for each acquired scene), keeping in mind precautions about
adequacy of such measure for nonlinear dependencies. Figure 9 shows linear cross-correlation matrices
of different PolSAR parameters (as well as forest stem volume) for different PolSAR scenes.

Many PolSAR parameters exhibit high correlation to forest stem volume, as well as are correlated
between themselves, and few exhibited good correlation also in temporal domain. Thus, it could be
enough to choose only few representative parameters for further stem volume retrieval. One good
candidate parameter is HV-backscatter widely used for assessment of forest biomass [65,66], as it
is highly correlated to forest stem volume. Another representative PolSAR parameter we adopt is
polarimetric coherence investigated in several earlier studies [42,43]. Another rationale for such choice
is incorporating two PolSAR parameters with distinctly different dependence on stem volume, into
the stem volume prediction. These two PolSAR parameters demonstrate different dynamics (both
positive and negative correlation) as a function of forest stem volume. One more reason is that such
combination (cross-polarization backscatter and co-polarization coherence) can be offered only by fully
polarimetric SAR data, while assessment of such data potential is a primary concern of this study.
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As there were altogether 11 PolSAR parameters, corresponding matrices have size 12 × 12.
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4.2. Forest Stem Volume Estimation

Here, we estimate forest stem volume based on different combinations of two polarimetric
parameters—cross-pol backscatter and co-pol coherence. To exclude temporal change effects, we
have removed several stands (six altogether) where apparent change has happened during the
observation time.

We use a non-parametric nearest neighbor technique for biomass estimation (described in
Section 3.6), testing different scenarios of the PolSAR scene aggregation. As we had only seven
scenes, an exhaustive search was used to find the best combinations in terms of RMSE. Other possible
strategies for selecting scenes to be aggregated are discussed in Section 5.2. Interestingly, it was found
better to aggregate four scenes for HV-backscatter, and five scenes for co-polarization coherence. One
possible explanation is relatively high correlation between stem volume and co-polarization coherence
of November 2008 scene (about the same as for previous four scenes), while HV-backscatter for the
same scene has remarkably low correlation to stem volume.

Due to high correlation between the PolSAR scenes, effectiveness of multitemporal filtering was
somewhat limited. Particularly, for the HV-backscatter (four scenes combined), the ENL increase
factor was around 1.6–1.9 (times) compared to original scenes. Accuracy statistics for all scenes and
parameters are collected in Table 2, with several notable results with best accuracies are highlighted.
Scatterplots illustrating the best combinations are shown in Figure 10.

Polarimetric coherence for “winter” scenes was more suitable, with summer co-polarization
coherence delivering generally worse accuracies. For HV-backscatter, scenes acquired over forests
in “non-frozen” state were more suitable, as also supported by previous studies [5,7,42]. Overall,
polarimetric coherence appeared to be a better predictor of the forest biomass for “frozen” scenes,
as well as in winter conditions in the boreal zone (wet snow on March 2007 scene), while for other
scenes the difference was quite marginal, aside from August 2006 scene (summer conditions) when the
cross-pol backscatter performed better.

Table 2. Forest stem volume estimation with accuracy statistics.

PolSAR Parameter Scene RMSE, m3 ha−1 RMSE, % r R2 Notes

σhv

11 August 2006 41.0 43.2 0.81 0.66
11 November 2006 40.8 42.9 0.81 0.66

29 March 2007 44.6 46.9 0.77 0.59
14 May 2007 43.2 45.5 0.79 0.62

14 November 2007 56.4 59.1 0.59 0.35
19 May 2009 52.1 54.8 0.66 0.44
5 June 2009 49.7 52.3 0.70 0.49
multitemp 39.1 41.2 0.83 0.69 first 4 scenes combined

ρhhvv

11 August 2006 44.9 47.3 0.75 0.56
11 November 2006 38.8 40.8 0.84 0.71

29 March 2007 39.8 41.9 0.82 0.67
14 May 2007 42.6 44.8 0.80 0.64

14 November 2007 48.1 50.6 0.72 0.52
19 May 2009 47.7 50.2 0.74 0.55
5 June 2009 51.6 54.3 0.68 0.46
multitemp 34.0 35.8 0.88 0.77 first 5 scenes combined

σhv and ρhhvv

11 August 2006 40.7 42.8 0.82 0.67
11 November 2006 37.4 39.4 0.85 0.72

29 March 2007 39.2 41.3 0.83 0.69
14 May 2007 40.1 42.2 0.82 0.67

14 November 2007 45.9 48.3 0.75 0.56
19 May 2009 46.7 49.2 0.74 0.55
5 June 2009 49.2 51.8 0.70 0.49

multitemp 32.2 33.9 0.89 0.79 two multitemporal
composites combined
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On the other hand, practically for all scenes, combining two PolSAR parameters was useful.
Notably, there were no scenes where combined parameters provided worse results than using any
parameter separately. The improvement observed reached 5–6 m3/ha for separate scenes, though
mostly it was relatively marginal. Implications, potential of combining PolSAR parameters and other
relevant work are further discussed in Section 5.1. Considerable improvement was observed for
selected multitemporal composites of the PolSAR scenes, with decreased RMSEs (up to 10–15 m3/ha)
compared to the worst single-scene estimates. However, the improvement was relatively minor
compared to the best estimates from single PolSAR scenes (2–5 m3/ha improvement). The best
retrieved accuracy was on the order of 32 m3/ha and relative RMSE ≈ 34%. Peculiarities of
multitemporal aggregation and possible strategies for selecting suitable scenes are further discussed in
Section 5.2.

5. Discussion

5.1. Combining Polarimetric Coherence and Cross-Polarization Backscatter

In principle, this approach can be effectively implemented using one fully polarimetric scene
(under suitable seasonal conditions), but multitemporal combination is preferable, as indicated by
Table 2. In several earlier studies, it was noted that, in general, combining interferometric and intensity
SAR data might be useful in estimating forest parameters. Particularly, in [57], the ERS InSAR data were
combined with JERS-1 backscatter, and in [44,67], interferometric coherences of the ALOS PALSAR
scenes acquired during winter were combined with summer backscatter intensities. The advantage of
the approach explored in this study is that effective forest stem volume estimation can be performed
from a separate/single PolSAR scene (unlike, e.g., SAR interferometry, where two scenes with suitable
perpendicular and temporal baselines are needed). Here, we used a non-parametric approach that
allowed avoiding explicit model training (though reference data were needed), in contrast to popular
WCM (Water Cloud Model) based or semi-empirical parametric models often used in the forest
biomass retrieval. Evaluating parametric approaches for PolSAR based biomass estimation using both
polarimetric coherence and HV-backscatter, as well as use of ensemble learning methods (e.g., random
forest regression in [68]) can be a further interesting extension of the study.

Other particularly promising PolSAR parameters were RVI and surface scattering fraction that
demonstrated good stability in temporal analysis. This indicates potential towards use of them for
robust forest parameter retrieval or forest stratification. Due to the orientation angle compensation of
Equation (13), which is equivalent to minimizing the T33 term of the coherence matrix, an estimate
of HV-backscatter can be considered conservative, with no contribution from slopes in the azimuth
direction. As there are no major buildings (with walls non-parallel to the flight direction), or prominent
rocks in the study area, no considerable cross-polarization scattering of oblique-dihedrals type is
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expected (which is a common reason for strong HV backscatter in urban areas). The incidence angle
was relatively steep, which could explain observed surface scattering sensitivity over forested areas.
However, volume scattering dominates over both sparse and dense forested areas even with such
incidence angle in "non-frozen” scenes, as explored in detail in our earlier study over Kuortane [15].
This was not the case under “frozen” conditions in November, when high levels of both volume
and surface scattering were observed over sparsely forested areas. For larger incidence angles that
are available from ALOS-2 PALSAR-2, we could expect larger sensitivity to volume scattering (and
thus even better performance of HV-backscatter) and reduced contribution of backscattering from the
ground. Comparing polarimetric signatures of ALOS PALSAR and ALOS-2 PALSAR-2 can constitute
a potentially interesting extension of this study.

5.2. Multitemporal Aggregation and Forest Growth

It is important to keep in mind that the time series observation period was relatively long, and
aside from abrupt changes such as clearcutting, a steady forest growth and biomass accumulation
took place. In the study area, forest stem volume accumulates in the order of 4.7 m3/ha per year [69].
This should affect early scenes less, as corresponding growth factors are quite small and can be
accounted by introducing a small multiplier to stem volume figures. Particularly, for scenes acquired
in 2006–2007 this factor can be neglected due to up to date forest inventory.

In multitemporal aggregation approaches over longer period, this can be a more crucial factor.
It can be one of the reasons why stand-wise estimates of practically all PolSAR parameters from two
last PolSAR scenes are highly correlated between themselves, and less correlated to a group of scenes
acquired in 2006 and 2007. This indicates that temporal difference of 3–4 years in intensively managed
boreal forest should be taken into consideration. Analysis of Table 2, however, reveals that even for
summer 2009 scenes use of HV-backscatter as a predictor was providing much higher RMSEs, which
can be attributed to accumulated forest growth during these three years (especially for regenerating
stands with near-zero stem volume in the year 2006 according to the forest inventory).

Addressing optimality of the multitemporal scene aggregation is an important feature of
the study. Here, the aggregation was performed for polarimetric coherence matrix element-wise,
before calculating PolSAR features (such as polarimetric coherence). An important requirement for
multichannel filtering of Quegan and Yu [64] is absence of bias [70]. While for HV-backscatter (which
is also element T33) the bias correction is straightforward, for PolSAR features that involve several
elements of coherence matrix the bias correction is less trivial. The problem is that if different bias
correction factors are applied to a given scene, it would alter scattering mechanism dependencies
of the “corrected” stand-averaged coherence matrix. The importance of preserving polarimetric
relationships within the coherence/covariance matrix is discussed in, e.g., Lee et al. [71] arguing that
every polarimetric matrix element should be processed in the same manner to preserve statistical
correlations between the polarimetric channels.

Alternatively, multitemporal aggregation could be implemented after calculating stand-wise
PolSAR parameters for each separate scene. This can be followed by decorrelation (whitening)
procedure of some kind, e.g., PCA [70]. One more approach, to avoid undesired bias due to seasonal
conditions (such as flooded or frozen state of forests), could be including into the multitemporal
averaging only scenes that are acquired under the same, optimal environmental conditions (verifying
that scattering mechanisms are preserved in this way).

Here, due to presence of only seven scenes, we have performed an exhaustive search of optimal
combination of scenes to achieve the best prediction of stem volume in terms of RMSE. Despite
observed bias for the November 2006 scene, its presence was deemed optimal even without the bias
correction, perhaps due to non-parametric nature of kNN. The reason could be also high correlation
between stand-wise estimates of HV-backscatter and stem volume for this scene. That is, the presence
of considerable bias did not disqualify the November 2006 scene. However, for another “frozen forest”
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scene (November 2007) we observed not only the bias (compared to August 2006) as shown in Figure 7,
but also stronger variance (that is more poor precision).

It could indicate, that possible criterion for including a scene into the multitemporal averaging
could be the level of correlation between the forest stem volume and considered PolSAR
scene/parameter on stand level. Such approach (maximizing the respective correlation at the forest
stand level) was pursued in, (e.g., [34]). It seems suitable, however, when dependence between
stem volume and PolSAR parameters is linear, which can be observed only for a limited range of
stem volumes. However, another possible approach is to base the selection criteria on analysis of
scatterplots such as shown in Figure 7. All scenes discarded from the multitemporal aggregation
had high level of variance (low precision) compared to other scenes. Here, there also seems to be a
trade-off between requirement of low variance between scenes (and thus higher correlation) and the
fact that high correlation between scenes makes multitemporal filtering less effective. Apparently, not
all of this variance can be simply explained by speckle (especially at stand level). Perhaps, different
environmental conditions, changes in forest transmissivity, moisture and ground floor condition (and
thus change of scattering mechanism) have a role to play.

Further benchmarking studies are needed to decide on the optimal multitemporal PolSAR data
aggregation scenarios, where the goal is not only speckle reduction, but also optimal estimation of
forest variables. Presently, such studies can be most easily organized using stacks of ESA Sentinel-1
dual-polarization data, as well as for ALOS PALSAR and ALOS-2 PALSAR-2 single/dual-polarization
data, to have much higher number of studied scenes (tens to hundreds). It is also interesting to see
if this approach is superior to another class of multitemporal approaches, where predicted forest
variables from separate scenes are aggregated using multiple regression [37,39].

5.3. Relative Performance of Biomass Estimation Approach

Our results compare favorably to other spaceborne SAR studies at L-band over boreal forest.
Most recent research on L-band SAR based forest biomass (AGB, growing stock volume, stem volume)
estimation is well summarized in ([5], Table 3.1) and in ([6], Table 2). Among recent studies, in [40],
the RMSE over natural taiga forest varied 25–32% of the mean biomass (R2 in the range of 0.35–0.49);
and, in [72], RMSE varied 31–46% of the mean biomass value and R2 was 0.4–0.6 in forest stands in
southern Sweden. The biomass prediction performance was also superior to earlier studies in Finnish
boreal forest with multitemporal JERS-1 [11].

The area of Kuortane was studied also earlier using different types of EO (Earth Observation)
data. Substantial improvement was achieved compared to our earlier study with dual-pol ALOS
PALSAR data [39], when even multitemporal aggregation provided relatively moderate accuracy
figures (RMSE of 43% and R2 = 0.61). Comparison with earlier studies relying on satellite optical and
other multisource data in [58,59] indicates advantage of suggested L-band PolSAR approach.

Multitemporal compositing approach in this study allowed improving stem volume prediction
compared to single PolSAR scenes. It acted primarily on the SAR data level by reducing speckle
as discussed above. There are also post-processing techniques that can contribute in improving
the accuracy statistics: linear compositing of retrieved estimates based either on training with
reference data (weights are assigned based on multiple regression) (as in, e.g., [37,39]), or SAR-derived
metrics [38].

Adopted non-parametric kNN regression demonstrated relatively good performance.
The limitation of this approach is, however, that predicted values of stem volume will always be
within the dynamic range dictated by the training (ground reference) data. Thus, this approach
is not suitable for extrapolation. If the training data are representative of expected stem volume
variation, it seems safe to use the kNN regression method, as additionally evidenced by high levels
of accuracies obtained in this study. Alternatively, parametric approaches as WCM with gaps [73],
semi-empirical [36] and RVoG based models [74] can be recommended. Still widely used multivariate
regression (as in, e.g., [11,75,76]) might be used as well, however care should be taken to linearize
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respective relationships [77]. Comparison of different biomass-retrieval methodologies was not
pursued here as it was out of the study scope, and training data were representative enough.

6. Conclusions

We analyzed temporal behavior of several popular PolSAR parameters, as well as cross-correlation
between these PolSAR parameters, and their relation to stem volume of boreal forests in central Finland.
As expected, many polarimetric parameters had similar behavior (nearly monotonically increasing with
saturation for HV-backscatter, RVI, and even bounce scattering, and nearly monotonically decreasing
for polarimetric coherence, CSI and even bounce scattering fraction), but levels of their correlation
and temporal stability differed. Relation to forest stem volume was mostly nonlinear, suggesting
that nonlinear parametric models as well as non-parametric approaches can provide better results in
mapping forest variables.

Further, two representative PolSAR parameters, indicative of both positive and negative
correlation to forest stem volume, namely cross-polarization backscatter and co-polarization coherence,
were combined to provide an improved estimate compared to use of only one of these parameters.
Overall, combining polarimetric coherence and cross-polarization backscatter with improved results
in forest stem volume estimation for all PolSAR scenes, clearly indicates the advantage of a fully
polarimetric mission over dual-polarization (provided other factors are the same and not considering
resolution or swath width effects).

Results of multitemporal aggregation indicate that further, comprehensive effort might be
needed to clearly formulate optimal aggregation strategies and criteria for including scenes into
them. Feasible scenarios are selecting scenes based on similar environmental conditions during the
SAR data takes, high levels of correlation between scenes and forest parameter of interest, low levels of
variance between scenes, and absence of bias between scenes. The presence of bias was not important
here due to nonparametric nature of the kNN approach. In parametric model based approaches,
bias correction would be needed. Further research will be concentrated on improving parametric
based inversion scenarios, to overcome problems with representativeness of reference data for the
model training.
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PALSAR Phased Array L-band Add-on SAR
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PolSAR Polarimetric Synthetic Aperture Radar
RMSE Root Mean Squared Error
RVoG Random Volume over Ground
SAR Synthetic Aperture Radar
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