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Probabilistic Mapping of human 
Visual attention from head Pose 
estimation
Andrea Veronese1, Mattia Racca1, Roel Stephan Pieters1,2* and Ville Kyrki1

1 Intelligent Robotics Group, Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland, 
2 Automation and Hydraulic Engineering, Tampere University of Technology, Tampere, Finland

Effective interaction between a human and a robot requires the bidirectional perception 
and interpretation of actions and behavior. While actions can be identified as a directly 
observable activity, this might not be sufficient to deduce actions in a scene. For exam-
ple, orienting our face toward a book might suggest the action toward “reading.” For a 
human observer, this deduction requires the direction of gaze, the object identified as a 
book and the intersection between gaze and book. With this in mind, we aim to estimate 
and map human visual attention as directed to a scene, and assess how this relates to 
the detection of objects and their related actions. In particular, we consider human head 
pose as measurement to infer the attention of a human engaged in a task and study 
which prior knowledge should be included in such a detection system. In a user study, 
we show the successful detection of attention to objects in a typical office task scenario 
(i.e., reading, working with a computer, studying an object). Our system requires a single 
external RGB camera for head pose measurements and a pre-recorded 3D point cloud 
of the environment.

Keywords: object detection, attention detection, visual attention mapping, head pose, 3D point cloud, human–
robot interaction

1. inTrODUcTiOn

Modern-day robots are being developed to provide assistance and interaction with people. Such 
interaction can be physical (De Santis et  al., 2008), social (Dautenhahn, 2007), or informative 
(Goodrich and Schultz, 2007), and involve robotic systems with varying degrees of complexity 
(Leite et  al., 2013). Particular examples include support for the elderly in assisted living envi-
ronments (Mast et al., 2015; Fischinger et al., 2016) and collaborative robots in manufacturing 
environments (Michalos et  al., 2014). While the capabilities that a robot should have depend 
largely on its task and the context, the execution of these capabilities depends on the human. That 
is, when and how interaction or assistance occurs is coordinated (in)directly by human actions. 
The quality and effectiveness of human–robot interaction (HRI) therefore depends mainly on 
communication between the human and the robot. Similar to humans, effective interaction 
between humans and robots relies to great extent on the mutual understanding of actions and 
behavior (Gazzola et al., 2007; Fiore et al., 2013; Loth et al., 2015). The skills of communicating 
and recognizing actions apply for both the robot and the human. Expressive gestures will aid in 
correct recognition of actions and help proceed toward a common goal. Besides gestures, other 
actions can be used as a means of communication. Human attention, for example, is a mechanism 
that allows for selectively concentrating on individual components or tasks in the present world. 
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As such, tracking human attention allows to deduce (or at least 
estimate) the actions of a human.

Our approach is to enable the estimation of human actions 
by tracking human attention over time, and assume that pay-
ing attention for an extended period of time to a certain object 
implies engagement with it. Attention is modeled probabilisti-
cally in order to take into account the inaccuracy of using head 
pose as measure of attention. Head pose is chosen over gaze 
as gaze tracking glasses can hinder the natural behavior of the 
user, and the fact that tracking gaze by external cameras can 
be difficult. Additionally, head pose relates to human attention 
as humans align their head to their direction of gaze when 
something of interest is found and requires more attention.  
A weighted Normal distribution, centered around the head pose, 
is projected into a 3D point cloud of the environment in order to 
assign weight to individual points and build an attention map. 
This attention map is segmented by modeling as a Gaussian 
Mixture Model (GMM), where each component of the mixture 
corresponds to an object in the scene. Each object can then 
be related to a predefined user action. Tracking attention over 
time allows a Bayesian inference to objects that enable ignoring 
measurements that do not correspond to the current activity. 
For example, brief glances elsewhere in the scene or incorrect 
measurements do not lead to a misclassification of the current 
object of interest.

As scenario we adopt a table-top office environment where 
a person is assigned a task that involves reading, writing, and 
studying an object. The person is allowed to use a computer, and 
can move freely while staying seated. The task is explained on 
two pages that are fixed to the table and contains questions that 
the person should answer by writing them down on the paper. 
Information can be retrieved by accessing the computer and 
by studying the object. This arrangement assigns three distinct 
areas to which attention will be directed when performing the 
task: the documents on the table, the computer, and the object. 
Additionally, when thinking or distracted to the current task, 
the person can be directing attention elsewhere in the scene. 
This should be classified as outliers to the current task at hand. 
With this scenario, we aim to study whether objects of interest 
can be segmented from a person’s attention to the scene, and 
whether human actions can be deduced from these segmented 
objects.

The main contributions of this work are: (1) the probabilistic 
modeling of human attention based on head pose, (2) the mod-
eling (GMM) and tracking of attentional objects in the scene, 
and (3) a discussion on the relation between head pose, atten-
tion, and actions. We continue by first reviewing several related 
works that have studied attention and actions regarding HRI.

2. relaTeD WOrK

The recognition or detection of behavior has been studied in the 
past from both a psychological point of view, i.e., how humans 
show, share and process intention (Dominey and Warneken, 
2011; Margoni and Surian, 2016), and from a robotics point of 
view, i.e., the role of intention in cognitive robotics (Dominey 
and Warneken, 2011; Anzalone et al., 2015; Vernon et al., 2016). 

As such, actions and perceptions depend heavily on context 
and setting. For example, social interaction unconsciously 
directs human perception to detect cues and patterns that are 
related to the social behavior at hand, and within its current 
setting. Considering a human–robot interaction scenario, it 
should therefore be identified that both the expression and 
recognition of actions are equally important. Regarding the 
expression of actions, robots and machines can do this either 
physically or via some method of projection. In the work by 
Gulzar and Kyrki (2015), it was shown that expressive gestures, 
such as whole-arm pointing, can benefit interaction. Deictic 
gestures can be used to anchor symbols to perceived objects 
and, by evaluating possible pointing locations, avoid geometric 
ambiguities. Experiments in a multi-agent scenario with the 
humanoid robot NAO and a Kuka YouBot shows that, when 
referring to a single object in a cluttered scene, communica-
tion can effectively be guided via gestures. Actions expressed 
by projecting a path or direction of motion has been the topic 
of research of Chadalavada et  al. (2015). Future motion and 
shared floor space of autonomous vehicles is projected onto the 
floor for communication from robot to human. The approach 
increases the safety of bystanders and improves the efficiency 
of logistics, as vehicles are less halted due to personnel that is 
unaware of the robot’s (future) behavior.

The (artificial) recognition of actions, on the other hand, is 
a more difficult task, as it depends on many different factors  
(e.g., visibility of the scene and the people in it, quality of 
training data and camera for recognition). One approach is to 
deduce actions from other, more easily measurable features, 
such as motions (Poppe, 2010; Herath et  al., 2017), activities 
(Vishwakarma and Agrawal, 2013), or attention (Lemaignan 
et  al., 2016). Visual attention is useful for estimating human 
attention in  situations where people are visually interacting 
with objects. The human Field Of View (FOV) directs visual 
attention and can be extracted from camera images by detecting 
eye gaze (Palinko et al., 2016). The most robust techniques for 
gaze tracking require images of the human eyes and therefore 
use wearable devices, e.g., glasses as presented in Kassner et al. 
(2014). These kind of devices can be invasive and not suitable 
for certain scenarios, hindering the natural behavior of the user. 
Using external devices like cameras to track gaze is ineffective 
due to, for example, the relative dimension of the eyes in the 
image (the farther the camera, the smaller the eyes appear), 
illumination issues and occlusions (e.g., users with conventional 
glasses). When gaze tracking is not an option to infer attention, 
the typical alternative is head pose tracking (Palinko et al., 2016). 
As head pose estimation does not include information about eye 
movement most methods model the FOV as a pyramid or cone, 
growing from the user’s face and following the direction of the 
head. The aperture of the pyramid or cone thus accounts for 
this missing gaze information (Sisbot et al., 2011; Palinko et al., 
2016) and has to be set considering physiological, psychological, 
and application constraints. Several related works have adopted 
this approach of detecting human cues (such as visual attention) 
for the understanding of and assistance in human–robot inter-
action. As this is the approach in our work, these are explained 
in more detail in the following.
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FigUre 1 | Overall scheme of the proposed framework.
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Human attention, as the cognitive process of concentrating  
on one particular task or activity, is a complex behavioral action 
and has been under study for many decades. Based on psychologi-
cal studies (Rayner, 1998) it is identified that a person’s direction 
of gaze correlates to what they pay attention to. Similarly, this is 
identified in Lemaignan et al. (2016) where the degree of interac-
tion (or attention) has been studied for infants interacting with 
robots. The found level of interaction is of interest particularly for 
infants in a teaching scenario or for infants suffering from autism 
or any other related attention deficit disorder. According to the 
level of interaction, a robot can adjust or motivate an infant and 
provide better support. The chosen scenario consists of a Nao 
robot, two tablets and a human supervisor, and associates head 
pose to attentional targets in the scene.

Inferring engagement from non-verbal cues in human– 
robot interaction is studied with two cases in Anzalone et  al. 
(2015). The first case experimentally analyses head and trunk 
poses both statically and dynamically. That is, single measure-
ments and the temporal evolution of poses are processed by 
methods such as heat-maps, k-means, and temporal diagrams. 
The second case of study measures the engagement of children 
with an autism disorder. Behavior and joint attentional patterns 
are analyzed in a human–robot interactive task, considering 
both the robots Nao and iCub. While the scenario and tasks are 
relatively simple, and the attentional targets have to be known 
beforehand, pronounced differences between children with and 
children without autism can be detected.

Detecting visual attention from multiple people engaged in 
a meeting is studied in Murphy-Chutorian and Trivedi (2008). 
The aim of the study is to assess the person that receives the  
most visual attention among all meeting members. In particular, 
the joint attention of the participants is considered as a cue of 
saliency assigned to objects in the environment. The experi-
mental scenario is a 5 min meeting between four people taking 
place in a room equipped with four RGB cameras. The presented 
system is fully automatic and builds the environment model  
(i.e., the positions of the members) and focus of attention model 
of each participant from head pose tracking.

Doshi and Trivedi (2010) introduce an approach for locating 
the attention of a human subject by observing both the subject 
and the environment. The images of the human are used to 
extract head pose and gaze direction, while the images of the 

scene are analyzed for modeling saliency maps. The task that 
the human is assigned to (i.e., a driving scenario) influences the 
attention and is included in the approach as well.

Summarizing, visual attention addressed by a person to 
the environment is of interest as this allows the recognition of 
objects and persons of interest in the scene (Sheikhi and Odobez, 
2015). Gaze estimation is in most cases based on the direction 
provided by the head pose, as the analysis of eyes is difficult to 
perform in real-world scenarios, especially without obtrusive 
devices such as eye trackers. Our approach is different from 
existing works as our probabilistic attention model allows for 
a distribution of attention centered around the head pose of the 
human, and enables the modeling of the targets of attention as 
Gaussian Mixture Models (GMM). Moreover, our approach 
does not require the objects of interest to be known beforehand.  
The tracker gives as output the most likely viewed object in 
real-time, which can then be used to infer actions. The system 
requires a single external RGB camera for head pose measure-
ments and a pre-recorded 3D point cloud of the environment.

This document proceeds in Section 3 with the modeling and 
tracking of attention. This includes the modeling of the targets of 
attention as a Gaussian Mixture Model (GMM) and the subse-
quent tracking of attention with respect to these targets. Section 
4 describes the scenario and the evaluation of both the attention 
map and the attention tracking. Section 5 presents a discussion 
and conclusions are drawn in Section 6.

3. MaTerials anD MeThODs

We propose a probabilistic approach to model the attention dis-
tribution of the user on the environment. Our method requires 
the tracking of the user’s head and a 3D point cloud representa-
tion of the environment. The general idea is to allocate a measure 
of attention on the environment, by means of analyzing the user’s 
head pose. To supply for the missing gaze information, we model 
the attention distribution inside the FOV as a 2 dimensional 
Normal distribution with varying covariance. Combining the 
head pose tracking and the point cloud, we obtain an attention 
map of the environment. We can then model the targets of 
attention in the scene by segmenting the attention map. Figure 1 
summarizes the components of the proposed framework.

http://www.frontiersin.org/Robotics_and_AI
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FigUre 2 | Attention measure va(p) computed at different distances from the user’s face. Parameter τ is set to 4.
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3.1. Probabilistic attention allocation
First, we model the FOV as a pyramid of aperture αFOV, start-
ing from the area between the eyes of the user. Any point lying 
outside the FOV is considered unseen and therefore not further 
processed. Our probabilistic model follows our assumption that 
most of the gazes are directed in the central area of the FOV, 
without however completely ignoring points in the peripheral 
area of the FOV. The attention measure va(p) of point p ∈ FOV is 
modeled with a 2D normal distribution as
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where (x y z)′ are the coordinate of point p in the FOV frame and 
Σ ( , )τa z FOVα  is the distribution covariance matrix. The parameter 
τ determines how strongly we assume that user’s gazes are con-
centrated in the center of the FOV. High values of τ will produce 
more peaked distribution, increasing the attention measure of 
points directly in front of the user’s face while decreasing it for 
points in the peripheral areas of the FOV. Small values of τ will 
produce flat attention distributions.

The covariance matrix Σa depends both on the distance of 
the point from the user’s face z and on the fraction of the FOV’s 
aperture αFOV

τ
. In particular,
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With this choice of Σa, the same amount of attention measure 
is allocated for points inside the central area of the FOV of 
aperture αFOV

τ
, at different distances from the user’s face. As Σa 

increases with the distance z, the attention will be more spread, 
as can be seen in Figures 2 and 3. This reflects our observation 
that the farther the targets, the more difficult estimating the 
user’s attention on them becomes. Figures 2 and 3 show how the 
attention va is computed inside the FOV for different distances 
from the user’s head, for two different values of τ. Following the 
assumption that the user’s attention is concentrated around the 
center of the FOV, points located along the center will receive 
more attention measure. However, as this assumption becomes 
weaker for points far away from the user, also the attention 
distribution becomes flatter and flatter.

3.2. Targets of attention Modeling
As previously mentioned, our approach represents the environ-
ment with a 3D point cloud representation, captured with an 
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FigUre 3 | Attention measure va(p) computed at different distances from the user’s face. Parameter τ is set to 8, decreasing the area where most of the attention is 
concentrated.

5

Veronese et al. Mapping Attention from Head Pose

Frontiers in Robotics and AI | www.frontiersin.org October 2017 | Volume 4 | Article 53

RGB-D camera. The projection of the FOV into the scene and 
the attention measure allows us to allocate attention over time. In 
practice, we augment the point cloud D by adding to each point 
xi a cumulative measure of attention over time Va(xi). We refer to 
the augmented point cloud as attention map.

Each point xi starts with attention measure Va ix1 0( ) = . At 
each timestep t, we compute the measure of attention va(xi)  
and we sum this value to the attention measure from the previ-
ous timestep as

 V a ia
t

i
t

i a ix V x v x x( ) = ( ) + ( ) ∈ .−1        if FOV  (3)

As mentioned earlier, if a point is not lying inside the FOV, no 
attention is allocated to it. The combination of the point cloud  D 
and the cumulative measure of attention at time t, Va

t , creates the 
attention map At. Once At is available, we can perform attention 
analysis over the environment and extract the attention targets 
automatically, increasing the flexibility and the robustness of our 
approach.

We model the set of attention targets as a Gaussian Mixture 
Model (GMM), i.e., a linear combination of Normal distribu-
tions. In particular, each component of the GMM will model 
one target of attention, based on the information stored in the 
attention map. The choice to use a GMM is supported by the fol-
lowing reasons: (1) the probabilistic nature of the approach makes 
it robust to noisy readings both from the point cloud and from the 
head tracking system, (2) the Normal distribution makes the least 

assumptions on the shape of the object, and (3) once trained, the 
information about the GMM can be stored in a memory efficient 
way, as each component has a 3  ×  3 covariance matrix and a 
3-vector of the mean position.

Our GMM consists of a set of K three-dimensional Normal 
distributions N. The number of components K can be set 
a priori or chosen with model selection techniques like Bayesian 
Information Criterion (BIC). Each component Nj of the mix-
ture has its own parameters, i.e., mean μj and covariance Σj. 
Additionally, each component has a mixing coefficient πj that 
describes the weight of the component in the mixture (with 

k
K

k= =1 1∑ π ). The GMM’s parameters are usually learned from 
data by mean of the Expectation-Maximization algorithm (EM) 
(Dempster et  al., 1977). However, since we want to take into 
account both the position of the points in the point cloud and 
their assigned attention, we use a weighted version of the EM 
algorithm.

EM is an iterative algorithm that performs Maximum 
Likelihood Estimation (MLE) or Maximum a Priori (MAP) 
estimation of the parameters θ of statistical models with latent 
variables. It alternates two steps: the expectation step (E) and the 
maximization step (M). The E step uses the current parameters’ 
estimates and the data to compute the expected complete-data 
log-likelihood Q(θ, θt–1). By maximizing Q(θ, θt–1), the M step 
computes new values for the parameters. The EM algorithm 
yields to locally optimal parameters.
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For GMMs (Bilmes, 1998), the EM algorithm works as fol-
lows. In the E step, the responsibility rij for each data point xi is 
computed. rij is the probability that data point xi is generated 
by the j-st component of the mixture. The responsibility rij is 
defined as

 
r p j x p j p x j

p x
x

x
ij i

i

i

j i j j
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k i k

= ( | ) =
|

( )
=
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,Σ
=

( ) ( ) π µ

π µ

N

N

( )
(
|

|∑ 1 kk )
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(4)

If D  =  {x1, …, xN} is a set of N points, their log-likelihood 
function ln P(D | θ) is defined as
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1 1
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In the M step, the parameters πj, μj, and Σj of each component 
are updated in order to maximize the likelihood defined in 
equation (5) as follows
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In the standard form, EM applied to our problem would 
only consider the points’ locations, regardless of the atten-
tion measure they received. To obtain a weighted version of 
EM, we consider each point xi with attention measure Va(xi) 
conceptually as a set made of M = Va(xi) points xi with unitary 
attention measure. As an example, if a point xi has Va(xi) = 4, 
we would instead consider 4 points located in xi with unitary 
attention measure. With this trick, we can train the GMM 
while taking into account the allocated attention. First, we 
define the probability of a point xi with cumulative attention 
measure Va(x) to be generated by the j-component of the  
mixture as

 
p x V x j x xi a i
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By plugging equation (9) into standard EM, we can redefine 
the E and M steps. In the E step, the responsibilities rij for each 
component j = 1…K and data point xi become
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In the M step, we update the parameters for each component 
j = 1…K as
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Before running EM, the GMM’s parameters must be ini-
tialized. We initialized the mean μ of each component with 
weighted k-means (Kerdprasop et  al., 2005). As no prior 
information on the target’s volumes is given, the covariance 
matrices Σ are initialized with the identity matrix I. The mixing 
coefficients π are set to 1

K
. In our implementation of EM, we 

perform all computations in log space in order to avoid the 
numerical errors.

3.3. attention Tracking
After the GMM attention model is learned from the attention 
map, the user’s attention can be tracked in real-time, starting 
from the head pose information and the environment’s point 
cloud representation. First, the probabilities of each point xi 
to belong to the different components of the GMM p(xi | j) are 
computed. If the point cloud is captured once and stay constant 
during the attention tracking phase, the aforementioned prob-
abilities can be computed once to enhance the real-time perfor-
mances of the algorithm. This results in a vector containing the 
K probabilities {p(xi | 1), …, p(xi | K)} that have been assigned 
to each point. Second, at each time step, the user’s FOV is 
computed from the head pose measurements and projected 
into the point cloud. As for the attention allocation phase, 
each point lying inside the FOV pyramid is given the attention 
measure va as explained in Section 3.1. The only difference is 
that in this case points do not accumulate attention over time, 
on the contrary their level of attention is reset at the end of 
each iteration. Finally, we compute the probability for each 
component j of the mixture to explain the computed attention  
map, i.e., p(j | At).

First, we compute the likelihood of the attention map At to be 
generate by each of the GMM’s j-st component as
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By using Bayes’ rule, we can obtain the desired p(j | A) as
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The result of equation  (15) is a vector containing K prob-
abilities, where each element represents the likelihood of GMM’s 
component j to be observed at time t by the user. With this 
result, we can track the user’s attention over the targets in the 
environment.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


FigUre 4 | Experimental setup.
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4. resUlTs

4.1. implementation
We implemented the entire framework with ROS as middle-
ware. For the head pose tracking, we rely on OpenFace,1 an 
opensource tool for facial behavior analysis (Baltrušaitis et al., 
2016). The scene was observed by a Microsoft Kinect One. 
High-resolution images (1,280 × 1,024) were stored along with 
the computed head poses. Such images are used to determine 
the ground truth data regarding the person’s real attention. The 
point cloud image of the environment is taken by the same sen-
sor with a resolution of 640 × 480 before the experiment.

4.2. experiment
The aim of the experimental study is to assess whether objects 
of interest can be automatically segmented from observing a 
person’s visual attention. To evaluate this, a scenario is devised 
that directs a person’s attention to different areas on the scene 
in such a way that it can be observed by an external camera.  
We consider a person placed in a working environment engaged 
in typical office tasks. In particular, these include reading a 
sheet of paper, writing on the sheet of paper, working with a 
computer and studying an object set on the desk. This scene 
therefore consists of three big objects (i.e., screen, paper, and 
building blocks object) and several smaller targets (i.e., mouse, 
keyboard, pen) as detailed in Figure  4. All objects, except 
the pen and the mouse are to remain stationary on the table. 
The subject is placed sitting in front of the desk and follows  
the instructions written in the sheets of paper. No external 
distractions are generated on purpose and the experiment is set 
up to last 5–10 min.

The sheets of paper contain 12 questions requiring written 
answers. Five questions have to be answered by searching for 
the answers on the internet, five questions require studying the 
building blocks object and two questions require the reading and 
writing of a paragraph of text (separately). The gaze shifts between 

1 https://www.cl.cam.ac.uk/tb346/res/openface.html.

the computer and the paper simulate the activity of studying both 
from a book and from a computer. The building blocks object is 
made of several components, varying in color and dimensions. 
The object’s shape was chosen to not replicate the parallelepiped-
shape of the screen and the sheets of paper. Questions regarding 
the building blocks object query the composition of the blocks 
(e.g., colors, number, and lengths).

All three targets, shown in Figure  4, are scattered on the 
desk: the screen on the left, the building block object on the 
right, and the question sheet in front of the subject. The pres-
ence of multiple and scattered objects allows the person to shift 
his/her head between the various targets. Such aspect is useful 
to validate in particular the attention tracker. Furthermore, 
objects are deliberately characterized by various shapes, to test 
the accuracy of the GMM in estimating the targets’ position 
and volume.

We conducted the experiment with 4 participants between 
20 and 30 years old. The participants were not instructed about 
the operating principle of the system (e.g., the fact that their 
head pose was tracked) and were not aware of our research 
questions.

4.3. experimental results
We separate the validation of our framework in two experiments. 
First, we evaluate the quality of the created attention map and 
the segmentation of the targets of attention. Second, we evaluate 
the online performance of the attention tracking. Following, 
we evaluate how well head pose is suited to detect and track 
attention.

4.3.1. Attention Map Evaluation
To evaluate our model for the targets of attention, we compare 
each component of the GMM with manually selected ground 
truth data. In particular, we manually segmented the point cloud 
in three set of points Si,truth, one for each target i of the experiment. 
Based on these sets, we fitted ground truth normal distributions 
Ni,truth, one for each set Si,truth. The FOV aperture αFOV was set to 
60°. The τ parameter was chosen to be 8, to narrow the area 
where we assume most of the eye gazes are concentrated. The 
attention model was built on the measurements from the whole 
experiment.

We evaluate the estimated position of the targets of atten-
tion. We compare the mean μ of the estimated components 
of our models with the mean of the ground truth normal 
distribution Ni,truth. We learned 4 attention models, one for each 
participant. Figure 5 presents the boxplot for the displacement 
between the means, expressed in meters. The smaller error is 
obtained for the screen and the building block object, since 
the participants were concentrating their attention on the 
center of these objects. The questions sheet target achieved 
the worst results. The higher error is caused by the relative 
position of the sheets with respect to the user. We observed 
that participants preferred to move their eyes instead of their 
head in order to read the questionnaire. Figure 6 shows the 
estimated components of the GMM for participant 2 and the 
ground truth Normal distribution Ni,truth, overlapped with the 
point cloud.
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Table 1 | Attention tracking performance measurements.

attention tracker 
failures (%)

head tracker 
failures (%)

Framework 
failures (%)

Participant 1 11.78 44.79 50.04
Participant 2 9.20 16.95 20.02
Participant 3 4.00 0.13 4.01
Participant 4 10.02 5.39 13.54
Mean 8.75 16.82 21.90

FigUre 6 | Representation of the estimated components of the GMM 
(ellipsoids in red) and the ground truth normal distributions Ni,truth (ellipsoids  
in green), overlapped with the point cloud.

FigUre 5 | Displacement between the estimated targets of attention and the ground truth normal distributions Ni,truth.
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The modeling of the targets of attention resulted to be accu-
rate. In particular, the screen and the building block object were 
correctly estimated within the environment. Despite the fact that 
objects with no pseudo-ellipsoidal shape may not be estimated 
correctly with Normal distributions, this choice of distribution is 
in our view best when considering no prior information on the 
shape of the object.

4.3.2. Attention Tracking Evaluation
We evaluate the attention tracking capabilities of our model by 
comparing them against annotated data from video recordings 

of the experiments. The parameters αFOV and τ were set as in the 
previous experiment. For each participant, the target of atten-
tion model (i.e., the GMM) was trained on the measurements 
captured during the first 60 s of the experiments. The duration 
of this initial phase was chosen in order to include significant 
glances to each target. During the rest of the experiment, the 
users’ attention was tracked according to the built model. At 
each timestep t, we compute the probabilities of each compo-
nent of the GMM to explain the current attention map, with 
equation (15).

We compared the estimated tracking of attention p(j | A) 
to the annotated tracking data. In particular, we computed the 
tracked target as the argmaxj p(j | A) and then compare it with 
the annotated target. Table  1 presents several tracking meas-
ures, separated for each participant. First column presents the 
percentage of tracking errors (i.e., when the estimated target of 
attention does not match the annotated data). For this measure, 
we did not consider failures of the head pose tracking system 
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FigUre 7 | Comparison of estimated and ground truth targets of attention for the Participant 2. The head pose tracker’s failures are not considered.
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(i.e., column two) as failures of our method. The attention 
tracker was affected by error for maximum 12% of the experi-
ment duration. The third column presents the percentage of 
framework failures (i.e., when our pipeline fails to detect the 
correct target of attention). Figure  7 shows the comparison 
between estimated and ground truth targets of attention for 
participant two. As can be seen, errors occur mainly due to the 
gaze shift between two targets.

Additionally, we assess our attention estimation approach by 
considering Cohen’s κ coefficient, which measures the inter-rater 
agreement, between our estimate and the ground truth. The 
Cohen’s κ values can be seen in Table 2. The calculated agreement 
values exclude head pose tracking failures, and are moderate to 
good (between 0.60 and 0.96), depending on the participant.

4.3.3. Head Pose As Measure of Attention
Selecting head pose as directed attention is not a standard in 
human–robot interaction, as gaze is often a preferred measure 
(Rayner, 1998; Doshi and Trivedi, 2010). Besides the difficulty 
in tracking human gaze from real-world scenarios (e.g., resolu-
tion, mobility of participants), we see the following benefit for 
tracking the head pose. Human gaze results often from fast eye 
saccades, abruptly changing the point of fixation in the scene. 
While the continuous tracking of this would allow to deduce 
exactly what a person is looking at, it does not necessarily 
lead to acquiring human attention. Aligning our head to our 
direction of gaze, on the other hand, follows after something 
of interest is found that requires more attention (Doshi and 
Trivedi, 2012). For example, the decoupling between head 
pose and gaze occurred around 4% of the time (around 15 s) 
in the experimental scenario of participant 3. This misalign-
ment happened when looking at the keyboard while keeping 
the head oriented toward the screen and when looking at the 
building blocks object, while keeping the head oriented toward 
the question form. Considering the head pose tracker, in the 

worst case (participant 1) tracking failed for 45% of the experi-
ment. Despite this high failure rate, our system proved to be 
robust and could track attention. Our results are in accordance 
with (Stiefelhagen, 2002) and (Lemaignan et al., 2016) which 
report a high agreement between attention from head pose and 
ground truth data. Considering this, as well as the results in 
the previous section, we therefore conclude that head pose is 
suitable for inferring human attention.

5. DiscUssiOn

As shown by the experimental results, our method can detect 
and track human visual attention to objects in a scene well.  
As main input, it relies on a current head pose estimate and a 
pre-recorded 3D point cloud of the environment. Estimating 
human attention from head pose instead of gaze turns out to 
be a suitable choice, as proven by our results and as pointed out 
in related work, e.g., Stiefelhagen (2002) and Lemaignan et al. 
(2016). The main limitation we see in using gaze is the limita-
tions due to the sensor itself. Wearable glasses, as used in Kassner 
et al. (2014), hinder the natural behavior of the user, and cameras 
are limited with respect to range, due to the relative dimension 
of the eyes in the image. Regardless, future work will focus on 
a direct comparison between gaze and head pose as attention  
measure.

Regarding the attention allocation and the modeling of 
the targets of attention, our work distinguishes from others 
due to its probabilistic nature. Attention to the environment 
is distributed as a 2D Normal distribution, whereas works 
such as Lemaignan et  al. (2016) and Anzalone et  al. (2015) 
do not consider such distribution, when using head pose as 
attention estimate. Doshi and Trivedi (2010) do consider a 
probabilistic approach for attention allocation, however, use 
gaze as input and do not model the target. Similarly, modeling 
the attentional targets with a Gaussian Mixture Model (GMM) 
is not considered in other related work. The major benefit of 
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Table 2 | Attention tracking agreement: Cohen’s κ.

screen Question 
form

building 
blocks

Total without 
head pose 

failures

Total with 
head pose 

failures

Participant 1 0.74 0.60 0.73 0.70 0.42
Participant 2 0.86 0.80 0.68 0.85 0.77
Participant 3 0.96 0.92 0.86 0.93 0.93
Participant 4 0.86 0.75 0.79 0.85 0.81
Mean 0.86 0.76 0.77 0.84 0.73
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