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ABSTRACT Internet of Things (IoTs) has emerged to motivate various intelligent applications based on
the data collected by various ‘‘things.’’ Cloud computing plays an important role for big data processing
by providing data computing and processing services. However, cloud service providers may invade data
privacy and provide inaccurate data processing results to users, and thus cannot be fully trusted. On the other
hand, limited by computation resources and capabilities, cloud users mostly cannot independently process
big data and perform verification on the correctness of data processing. This raises a special challenge on
cloud computing verification, especially when user data are stored at the cloud in an encrypted form and
processed for satisfying the requests raised in different contexts. But the current literature still lacks serious
studies on this research issue. In this paper, we propose a context-aware verifiable computing scheme based
on full homomorphic encryption by deploying an auditing protocol to verify the correctness of the encrypted
data processing result. We design four optional auditing protocols to satisfy different security requirements.
Their performance is evaluated and compared through performance analysis, algorithm implementation, and
system simulation. The results show the effectiveness and efficiency of our designs. The pros and cons of all
protocols are also analyzed and discussed based on rigorous comparison.

INDEX TERMS Cloud computing, full homomorphic encryption, privacy protection, verifiable cloud
computing.

I. INTRODUCTION
Internet of Things (IoT) is going to create a world where
physical objects are seamlessly integrated into information
networks in order to provide advanced and intelligent services
for human-beings. The interconnected ‘‘things’’ such as sen-
sors and mobile devices sense, monitor and collect all kinds
of data about human social life. These data can be further
aggregated, fused, processed, analyzed and mined in order to
extract useful information to enable intelligent and ubiquitous
services. The IoT is evolving as an important part of next
generation networking paradigm and service infrastructure.
Various applications and services of IoT have been emerging
into markets in broad areas, e.g., surveillance, health care,
security, transport, food safety, and distant object monitor and
control.

On the other hand, cloud computing offers a new way
of service provision by re-arranging various resources
(e.g., storage, computing and applications) and providing
them to users based on their demands. The cloud computing

provides a large resource pool by linking network resources
together. It has desirable properties, such as scalability, elas-
ticity, fault-tolerance, and pay-per-use. Thus, it has become
a promising service platform by rearranging the way that
information technology services are provided and consumed.

A. MOTIVATIONS
In practice, cloud computing can cooperate with IoT by
providing computing services in order to release the load
of big data processing at user devices and some service
providers. One practical scenario is that the data monitored
or sensed from the ‘things’ can be aggregated and sent to
the cloud to process in order to provide data computation
and processing results to requesting parties (e.g., IoT service
providers). However, Cloud Service Provider (CSP) is a party
that cannot be fully trusted by IoT data providers and data
requesting parties. The CSP could disclose the privacy of data
providers or owners by maliciously miming data. It may pro-
vide wrong data processing results to the requesting parties to
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intentionally destroy IoT service quality. In this case, how
to ensure the facticity and genuine of data sources and the
correctness of IoT data processing, computation, and mining
becomes a practically crucial issue that greatly impacts the
continuous success of IoT and cloud computing, as well as
the future Internet.

Since the CSP cannot be fully trusted and the privacy
of monitored objects should be preserved, data collected
by ‘things’ are generally provided to the CSP in an en-
crypted form for further processing. In practice, different
types of data could be collected and processed at the cloud.
For example, a personal mobile phone can collect its user
information about location, calling, radio connec-tivity qual-
ity, inbound/outbound data traffic, personal heart beat rate,
blood pressure, breathing vol-ume/frequency and so on. The
collected data can be fur-ther processed and used by differ-
ent IoT services to offer a diversity of smart services. The
algorithms used for computing or processing different types
of data could be different at the cloud. For the purpose of
preserving data privacy, the cloud processes the encrypted
data and pro-vides processing results to requesting parties
mostly in an encrypted form. How to ensure, audit and verify
the facticity and correctness of data provision and process-
ing in different contexts is a practically significant issue.
In the literature, verifiable computing with context aware-
ness is still an open research topic that has not been well
investigated [1], [31], [37], [40].

B. MAIN CONTRIBUTIONS
In this paper, we propose a scheme of verifiable
compu-ting with context awareness and privacy preservation
in IoT cloud computing. We first apply full homomorphic
encryption (FHE) technologies to process data in an en-
crypted form at CSP in order to protect the privacy of data
providers and data owners. We further deploy an auditing
protocol to verify the correctness of encrypted data process-
ing by applying a Trusted Auditing Proxy (TAP). Concretely,
a Data Provider (DP) encrypts its col-lected data with the
homomorphic key offered by the TAP and signs it with a
data context identifier (ID). Then it transmits the encrypted
data, context ID and the signa-ture to the CSP as an input of
multi-party computation. The CSP computes the encrypted
data from all DPs based on the context IDs by selecting a
corresponding algorithm and signs the computation result
(which is in an encrypted form). For accessing the compu-
tation result, a requesting party (RP) requests the result from
the CSP with regard to a context, the CSP passes the request
to the TAP to check its eligibility in order to allow the RP to
access the data processing result.

When the RP wants to verify the correctness of data pro-
cessing and computation of CSP, it reports the pro-cessing
result signed by the CSP and its hash code to the TAP. The
TAP queries the CSP to get the encrypted data with regard
to the RP request in order to audit the data processing at
the CSP. For supporting the CSP to check the facticity and
genuine of data sources, the scheme re-quests that DP signs

its provided data regarding a context in order to allow the
TAP later on to figure out malicious DPs during auditing
by finding malicious data input through analysis and mining.
We design four auditing protocols to satisfy different security
requirements. Their performance is evaluated and compared
in order to show the pros and cons of each protocol and its
feasibility in different scenarios.

Specifically, the contribution of this paper can be summa-
rized as below:

1) We motivate context-aware verifiable computing for
cloud and propose an effective scheme to achieve both cloud
data privacy and verifiability of cloud data processing.

2) To the best of our knowledge, our scheme is one of
the first to realize verifiable cloud computing with con-text-
awareness. It supports various data processes by applying full
homomorphic technologies and deploying an auditing pro-
tocol to verify the correctness of encrypted data processing.
The proposed scheme can play as a generic framework for
verifiable computing in cloud.

3) We propose four optional auditing protocols in or-der
to satisfy different security and performance re-quirements.
Three of them can ensure system security in case that
RPs could collude with CSP.

4) We analyze scheme security and evaluate the per-
formance of the proposed protocols through rigorous analysis
and comparison in order to show their pros and cons, as well
as applicability.

II. RELATED WORK
A. PRIVACY-PRESERVING DATA MINING (PPDM)
Privacy-Preserving Data Mining (PPDM) aims to support
data mining related computations, processes or operations
with privacy preservation [31]. PPDM is a ‘must-solve’ prob-
lem in IoT for securely and intelligently supporting various
IoT services in a pervasive and personalized way. From the
practical point of view, PPDM is still a challenge, considering
trustworthiness, computation complexity and communication
cost [31].

Mishra and Chandwani proposed an architecture to enable
Secure Multi-party Computation (SMC) by hiding the iden-
tities of the parties that take part in the process of Business
Process Outsourcing [3]. A class of functions was proposed
to provide additional abilities to a party to split its huge
data before providing it for computation, making it almost
intractable for other parties to know the actual source of the
data in order to achieve secure and privacy-preserving data
mining. Liu et al. proposed a secure multi-party multi-data
ranking protocol and a secure multi-party addition protocol
to complete private-preserving sequential pattern mining [4].

A number of operations on securely input data are sup-
ported in PPDM. Zhu et al. proposed schemes for securely
extracting knowledge from two or more parties’ private
data [5]. They presented three different approaches to
privacy-preserving Add to Multiply Protocol, as well as
further extended it to privacy-preserving Adding to Scalar
Product Protocol. Wang and Luo studied a private preserving
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shared dot product protocol that is a main building block
of various data mining algorithms with privacy concerns,
and provides fundamental security guarantee for many
PPDM algorithms [6]. They constructed a privacy-preserving
two-party shared dot product protocol based on some
basic cryptographic techniques, which is provably secure
in a semi-honest model. Shen, Han and Shan pro-
posed a Horizontal Distribution of the Privacy Protection
DK-Means (HDPPDK-Means) algorithm based on Hori-
zontal partitioned database and DK-means idea to realize
distributed clustering and applied a secure multi-party com-
putation protocol to achieve privacy preservation [7].

Many studies focused on supporting specific data mining
techniques with privacy preservation. Statistical hypothesis
test is an important data analysis technique. Liu and Zhang
investigated nonparametric Sign Test (NST) theory in such a
context that two parties, each with a private dataset, would
like to conduct a sign test on their joint dataset, but neither
of them is willing to disclose its private dataset to any other
third parties [8]. Their proposed protocol does not make use
of any third party nor cryptographic primitives.

Association rule mining is one of the hottest research
areas, which investigates the automatic extraction of pre-
viously unknown patterns or rules from large amounts of
data. Zhan et al. developed a secure protocol for multi-
ple parties to conduct this desired computation in a dis-
tributed way and to exchange the data while keeping it
private by using homomorphic encryption techniques [9].
Kantarcioglu and Clifton [10] proposed two protocols to
implement privacy-preserving mining of association rules
over horizontally partitioned data. Zhang and Zhao [11] fur-
ther revised its security proof. Privacy-preserving association
rule mining was surveyed by Wang [12] with regard to basic
concepts, general principles and methods.

In the case that agencies want to conduct a linear regression
analysis with complete records without disclosing values of
their own attributes, Ashish et al. described an algorithm that
enables agencies to compute the exact regression coefficients
of the global regression equation and also perform some basic
goodness-of-fit diagnostics while protecting the confidential-
ity of their data [13]. This work can be applied for distributed
computation for regression analyses in data mining.

Finding the nearest k objects to a query object
(k-NN queries) is a fundamental operation for many data
mining algorithms to enable clustering, classification and
outlier detection tasks. Efficient solutions for k-NN queries
for vertically partitioned data were proposed by Amirbekyan
and Estivill-Castro [17]. These solutions include L ∞ (or
Chessboard) metric as well as detailed privacy-preserving
computation of all other Minkowski metrics, privacy pre-
serving algorithms for combinations of local metrics into a
global metric that handles large dimensionality and diver-
sity of attributes common in vertically partitioned data, a
privacy-preserving SASH (a very successful data structure
for associative queries in high dimensions) for managing very
large data sets. Liu et al. [14] presented privacy preserving

algorithms for DBSCAN clustering for the horizontally,
vertically and arbitrarily partitioned data distributed between
two parties. DBSCAN [15] is also a popular density-based
clustering algorithm for discovering clusters in large spatial
databases with noise.

Gradient descent is a widely used method for solving opti-
mization and learning problems. Wan et al. [16] presented
a generic formulation of secure gradient descent methods
with privacy preservation. It underlies many commonly used
techniques in data mining and machine learning, such as
neural networks, Bayesian networks, genetic algorithms, and
simulated annealing.

Current solutions of PPDM are still not practical. The
existing methods are impractical, ineffective, inefficient
or inflexible with regard to generality, trustworthiness,
computation complexity and communication cost. Seldom,
a PPDM protocol can satisfy all essential requirements for
practical usage. Particularly, existing studies have not inves-
tigated all data mining related operations with privacy preser-
vation. In addition, few studies touched the issue of verifiable
computing if the input data are encrypted and the data mining
process is conducted in an encrypted form by CSP that cannot
be fully trusted. Existing work has not studied how to verify
whether the encrypted data processing result is correct when
the processed data is in an encrypted form. A generic and
feasible framework for verifiable computing is still missed in
the literature.

B. SMC APPLICATIONS
Secure Multi-party Computation (SMC) deals with the prob-
lem of secure computation among participants who are not
trusted with each other, particularly with the preference of
privacy preserving computational geometry. SMC refers to
the parties, who participate in the computation with their
own secret inputs, wish to cooperatively compute a function.
When the computation is over, each party can receive its
own correct output with correctness insurance, and know its
own output only with privacy preservation. It is an important
research topic in IoT. The problems of SMC are specifically
different in different scenarios. Based on the problems solved,
SMC mechanisms can be classified into four categories:
privacy-preserving database query, privacy-preserving sci-
entific computation, privacy-preserving intrusion detection
and privacy-preserving data mining. A detailed survey on
SMC technologies is provided in [31].

SMC together with homomorphic encryption is widely
applied into many areas, such as distributed electronic con-
tract management [18], smart meter based load manage-
ment [19], healthcare frauds and abuses [20], policy-agile
encrypted networking for defense, law enforcement, intel-
ligence community, and commercial networks [21], privacy
preserving path inclusion [28], privacy preserving string
matching [22], privacy-enhanced recommender system in a
social trust network [23], user profile matching in social net-
working [24], credit check applications [25], private collabo-
rative forecasting and benchmarking [26], privacy-preserving
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genomic computations [27], protection against insider threats
(e.g., business partners) [29], privacy preserving electronic
voting [30], and so on. But one important issue missed in
the above studies is verifiable computing that can audit the
correctness of encrypted data processing.

C. CLOUD COMPUTING AUDITING
Current researches about verifiable cloud computing focus
on auditing cloud data storage and data integrity with
regard to data management, such as insertion, deletion, and
addition [1], [37], [40]. It has not yet investigated data cal-
culation and computation seriously. Yang et al. proposed an
approach to fast detect data errors in big sensor data sets based
on a scale-free network topology and most of detection oper-
ations can be conducted in limited temporal or spatial data
blocks instead of a whole big data set [38]. Some researchers
applied a MapReduce framework to anonymize large-scale
data sets in cloud [39].

We notify that all above presented work did not consider
how to solve the problems of verifiable computing with con-
text awareness as described in Section 1. The literature still
lacks a generic and feasible framework to provide verifiable
computing on encrypted data processing and computation in
cloud.

FIGURE 1. System model.

III. PROBLEM STATEMENT
A. SYSTEM AND THREAT MODELS
We consider an IoT cloud computing system that involves
four different kinds of entities, as illustrated in Fig.1: the
Data Providers (DPs) that interact with the physical world,
detect/monitor/sense information of objects in different con-
texts and provide collected data to a CSP for processing;
the CSP that has functions and capabilities that the DPs do
not have and can process the data provided by the DPs.
It could be curious to explore the privacy of physical objects
based on the data provided by the DPs although CSP follows
the design of system protocols. Thus, the DPs encrypt the
data provided to the CSP; the TAP is responsible for issuing
essential keys to DPs for homomorphic encryption, checking
the eligibility of data access at the CSP, issuing access keys

to eligible Requesting Parties (RPs), and auditing the facticity
and genuine of data sources and the correctness of CSP data
processing and computation; the RP that requests CSP’s data
processing results in different contexts for offering intelligent
and ubiquitous services to IoT end users. We assume that
all system entities communicate with each other via a secure
channel (e.g., OpenSSL).

In the system, TAP and CSP do not collude. RP can
only access the final data processing results from CSP. CSP
has no rights to offer the data collected from DPs to RPs.
RP can request TAP and delegate TAP to audit the facticity
and genuine of data collection and processing. We assume
that the algorithms used at CSP can be supported by full
homomorphic encryption. That is the output of the multiple
encrypted data that input into a computing algorithm is equal
to the encrypted result of corresponding multiple plain data
input into the same computing algorithm. And the encrypted
result can be decrypted with a corresponding decryption key.
CSP cannot be fully trusted. It could be curious on raw data
provided by DPs and may provide wrong data processing
results to RPs.

Collusion between CSP and its users (e.g., RPs) is quite
possible. In practice, such collusion could make CSP lose
reputation due to information leakage. A negative impact of
bad reputation is CSP will lose its users. The deduction of
the number of CSP users will finally make it lose profits.
On the other hand, CSP users could lose their convenience
and benefits of outsourcing data and data processing at
CSP due to its bad reputation. Thus, the collusion between
CSP and its users is not profitable for both of them. Concrete
analysis based on Game Theory is provided in [36]. There-
fore, we have a good reason to hold such an assumption: CSP
does not collude with its users, e.g., colluding with some RPs
to gain raw data and allow other RPs to access data stored
at CSP. But some incidental collusion between CSP and RPs
could happen, which requests higher level security assurance
in the system design.

B. DESIGN GOALS
To achieve trustworthy data processing and avoid potential
risks in cloud services, our design should achieve the follow-
ing security and performance goals: 1) Security and safety:
it is hard or impossible for CSP to get the raw data during
data processing; the data processed at the cloud can only
be accessed by eligible system entities; 2) Generality: the
proposed scheme supports various data processes in different
contexts in the cloud. 3) Reasonable overhead: the scheme
fulfills data processing and auditing with reasonable compu-
tation and communication costs.

IV. TAP 4 PROPOSED SCHEME
A. PRELIMINARIES, NOTATIONS AND DEFINITIONS
1) FULL HOMOMORPHIC ENCRYPTION
Full Homomorphic Encryption (FHE) mainly consists of four
algorithms: Key-Generate (KG), Encrypt (E), Decrypt (D)
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TABLE 1. Notations.

and Evaluate (EV (pk,Cir, c), where pk is a public key
used to calculate ciphertexts. In these four algorithms, the
Evaluate algorithm does computation on a set of ciphertext
c = 〈c1, . . . , ct 〉(ci = E(pk,mi)), which is the input of circuit
Cir. Circuit Cir represents a function or an algorithm. Based
on these four algorithms, we define FHE as below.

For any key pair (pk, sk) generated by KG algorithm,
any circuit Cir, any plaintext m = 〈m1, . . . ,mt 〉, and any
ciphertext c = 〈c1, . . . , ct 〉 (ci = E (pk,mi)):

if c
′

= EV (pk,Cir, c) (1)

then D
(
sk, c

′
)
= Cir(m1, . . . ,mt ). (2)

This means that we can do operations on the ciphertext in
order to get the encrypted version of the result of plaintext
operations. In scheme implementation and evaluation, we use
Brakerski Gentry Vaikuntanathan (BGV) FHE [32].

2) LIMITATIONS OF PARTIAL HOMOMORPHIC ENCRYPTION
Partial Homomorphic Encryption (PHE) is a cryptographic
algorithm that can achieve the same goal of processing
ciphertexts as that of the FHE. It preforms much better than
FHE in terms of computation and storage overhead. However,
it can only support some specific operations, e.g., addition
and subtraction. This means it is only applicable in some
specific scenarios. The goal of our work is to design a generic
scheme of verifiable cloud computing that can adapt to vari-
ous operations, thus can be applied into different applications.
Due to this reason, we choose the FHE to demonstrate the
design of our scheme, even though it has high computational
complexity and high storage consumption.

3) NOTATIONS
For easy presentation, the notations used in the proposed
scheme are summarized in Table 1.

B. SYSTEM SETUP
During system setup, each system entity x generates its own
public and private key pairs: PK x and SK x . TAP generates
PKH and SKH , and issues PKH to DPi(i = 1, . . . , I).
Note that this key can be dynamically changed or differ-
ent with regard to different contexts. Multiple PKH keys
could exist in the system. Herein, for simplification, we
only use PKH to denote the homomorphic encryption key
and SKH the homomorphic decryption key. Meanwhile, each
system entity announces its public key PKX to other system
entities.

C. SYSTEM PROCEDURE
System procedure is briefly described in Fig.2. DPs provide
sensed data in different contexts to CSP. CSP processes and
computes those data based on the context ID by applying dif-
ferent algorithms. If RP requests the result of data processing
fromCSP, CSP passes the request to TAP for eligibility check.
If the check is positive, TAP issues the decryption key to RP
that can be gained with the RP’s private key. Thus, RP can
access the requested data. In case that RP wants to check
the correctness of data processing and computation at CSP, it
approaches TAP and provides the evidence that allows TAP
to conduct auditing.
Protocol 1:

1) DATA PROVISION
For DPi to provide data Di,j collected in context Cj
to CSP and in order to preserve the privacy of the
monitored objects and the data itself, DPi encrypts Di,j
using PKH issued by TAP as E(PKH ,Di,j). Meanwhile,
it signs the hash code of data package P(Di,j) =

{E(PKH ,Di,j),Cj} for non-repudiation verification on data
provision. DPi then sends P(Di,j), Sign(SKDPi ,P(Di,j))
to CSP.
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FIGURE 2. System procedure.

2) PRIVACY PRESERVING DATA COMPUTING
CSP processes data, it selects algorithm Fj based on Cj to
process the collected encrypted data E(PKH ,Di,j) in context
Cj and gains the encrypted form of data processing result
E(PKH ,DM j), that is: E(PKH ,DM j) = FjE(PKH ,Di,j)},
(i = 1, . . . , I ).

3) RP DATA REQUEST AND AUTHORIZATION
RPk requests CSP for the result of data processing and com-
putation in Cj by sending a requesting message that contains
Rk = {PKRPk ,C j} and Sign(SKRPk ,Rk ). Once receiving
the request, the CSP passes the request to TAP for check-
ing its access eligibility. If the check based on the current
access policy is positive, the TAP issues encrypted SKH , i.e.,
E ′(PKRPk , SKH ) with RPk ’s public key based on a public key
encryption scheme (e.g., RSA). TAP issues E ′(PKRPk , SKH )
to RP directly or through CSP.

4) DATA ACCESS
CSP receives E

′ (
PKRPk , SKH

)
, which means TAP issues

RPk the right to access DM j. It then delivers the data
packageE

(
PKH ,DM j

)
, E

′ (
PKRPk , SKH

)
, Sign(SKCSP,

E(PKH , DM j),E ′(PKRPk , SKH ),Cj), and Cj to RPk . After
receiving the package, RPk can decrypt E ′(PKRPk , SKH )
with its SKRPk to get SKH , which is further used to get the
plaintext of DM j.

5) DATA AUDITING
RP may not trust the processing result of CSP. In this case,
it requests TAP to audit the correctness of data processing
and computation by providing Cj, the hash code of DM j,

h
(
DM j

)
, the signature of CSP data provision, i.e., SignCSP =

Sign(SKCSP,E(PKH ,DM j),E ′(PKRPk , SKH ),Cj). Notably,
the auditing request should be signed by RP to ensure
non-repudiation. Thereby, we get the package of an
auditing request ARk = {Cj, h

(
DM j

)
, SignCSP,

Sign(SKRPk , {Cj, h
(
DM j

)
, SignCSP)}. After receiving ARk ,

TAP handles it by querying CSP to get Fj and all
E(PKH ,Di,j) used for generating E(PKH ,DM j). TAP
decrypts E(PKH ,Di,j) to get allDi,j and input them into Fj to
get plain DM j, that is DM j = Fj({Di,j}) (i = 1, . . . , I ). TAP
further compares the hash code ofDM j output fromFj and the
one provided by RP in order to judge if the data computation
and processing at CSP is correct.

TAP can also further investigate the facticity and genuine
of data sources (DPs). It studies the abnormality of data col-
lection based on historical data mining and pattern learning.
Fig.3 shows the detailed protocol as described above.

D. CSP-RP COLLUSION ATTACK AND SCHEME
IMPROVEMENT
In this sub-section, we improve the above protocol in order
to resist CSP-RP collusion attack although the incentive of
this collusion is not high based on our previous analysis [36].
In the CSP-RP attack, CSP may collude with RPk to gain
the data processing result DM j. Based on the above protocol,
eligible RPk can finally get E ′(PKRPk , SKH ) encrypted with
its own public key, and further get the homomorphic secret
key SKH . If RPk colludes with CSP, it discloses SKH to CSP.
Thus, CSP is able to decrypt data package P(Di,j), which
means the raw data provided by DP is exposed to CSP and
the security of the system is broken. For enhancing system
security, we propose Protocol 2 that improves Protocol 1 and
resists the CSP-RP collusion attack. In this protocol, it is
impossible for RP to know SKH , thus it can overcome the
risk raised by RP to disclose SKH to CSP. The details of this
protocol are illustrated in Fig. 4 and described below.
Protocol 2:

1) DATA PROVISION
This step is the same as the data provision described
in Fig. 3.

2) PRIVACY PRESERVING DATA COMPUTING
This step is the same as the privacy preserving data computa-
tion as described above in Fig 3.

3) RP DATA REQUEST AND AUTHORIZATION
RPk requests CSP for the result of data processing and com-
putation in Cj by sending a requesting message that contains
Rk = {PKRPk ,C j} and Sign(SKRPk ,Rk ). Once receiving the
request, the CSP passes the request to TAP for checking
its access right. If the check based on the current access
policy is positive, the TAP requests the data processing result
E

(
PKH ,DM j

)
from CSP. After receiving E

(
PKH ,DM j

)
with SignCSP = Sign(SKCSP, {E(PKH ,DM j)}), the TAP first
decrypts E

(
PKH ,DM j

)
to get DM j, and then re-encrypts
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FIGURE 3. Protocol 1 - context-aware verifiable computing protocol with auditing.

FIGURE 4. Protocol 2 - improved verifiable computing protocol for resisting CSP-RP collusion attack.

DM j with theRPk ’s public keyPKRPk to getE
′(PKRPk ,DM j)

based on a public key encryption scheme (e.g., RSA) and
issues E ′(PKRPk ,DM j) to RP with its signature SignTAP =
Sign(SKTAP,E ′(PKRPk ,DM j)}).

4) DATA ACCESS
After receiving E ′(PKRPk ,DM j), RPk can decrypt
it with its own secret key SKRPk to get
of DM j.
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5) DATA AUDITING
RP can request TAP to audit the correctness of data pro-
cessing and computation by providing Cj, the hash code
of DM j, h

(
DM j

)
, and SignTAP. Note that the auditing

request should be signed by RP to ensure non-repudiation.
Thereby, the auditing request ARk contains ARk ={Cj,
h

(
DM j

)
, SignTAP, Sign(SKRPk , {Cj, h

(
DM j

)
, SignTAP})}.

In this case, TAP handles it by querying CSP to get Fj and
all E(PKH ,Di,j) used for generating E(PKH ,DM j). TAP
decrypts E(PKH ,Di,j) to get allDi,j and input them into Fj to
get plain DM j, that is DM j = Fj({Di,j})(i = 1, . . . , I ). TAP
further compares the hash code ofDM j output fromFj and the
one provided by RP in order to judge if the data computation
and processing at CSP is correct.

Comparing with the original Protocol 1, Protocol 2 per-
forms re-encryption at TAP to convert the encrypted ver-
sion of DM j from E

(
PKH ,DM j

)
to E

′ (
PKRPk ,DM j

)
,

which can be decrypted by corresponding RPk directly.
RPk will never have the chance to get access to the
homomorphic secret key SKH . Therefore, this protocol
can reduce the risk caused by the CSP-RP collusion
attack.

E. FURTHER OPTIMIZATION
In this section, we show a potential problem of Protocol 2
and then propose two optimized protocols to overcome it.
As specified in our design goals, data should be processed
and computed in a confidential measure at CSP and only
eligible parties can access the processing results. TAP is
responsible for issuing access rights and auditing. Normally,
we do not expect TAP to know DM j during data request
and access. In Protocol 2, TAP gets to know the data pro-
cessing result DM j before auditing during the procedure of
re-encryption. This could cause some problem since TAP
may not be an eligible party to access DM j even though
it is fully trusted for auditing when RP delegate it for this
purpose.

In order to avoid this problem, we further proposed
two optimized protocols. In these two protocols, we let CSP
fuzzifies DM j by selecting a random denoted ra as a mask,
computing E(PKH ,DM∗j ra), and then using different meth-
ods to remove ra and finally get DM j. The detailed protocols
are described below.

Protocol 3:

1) DATA PROVISION
This step is the same as the data provision described
in Fig. 3.

2) PRIVACY PRESERVING DATA COMPUTING
CSP processes data, it selects algorithm Fj based onCj to
process the collected encrypted data E(PKH ,Di,j) in context
Cj and gains the encrypted form of data processing result
E(PKH ,DM j), that is: E(PKH ,DM j) = FjE(PKH ,Di,j)},
(i = 1, . . . , I ). The CSP then select a random ra and compute
E(PKH ,DM∗j ra).

3) RP DATA REQUEST AND AUTHORIZATION
RPk requests CSP for the result of data processing and
computation in Cj by sending a requesting message that
contains Rk = {PKRPk ,C j} and Sign(SKRPk ,Rk ). Once
receiving the request, the CSP passes the request to TAP
for checking its access right. If the check based on the
current access policy is positive, the TAP then requests
the data processing result from CSP. After receiving the
package E

(
PKH ,DM∗j ra

)
, signCSP, the TAP first decrypt

E
(
PKH ,DM∗j ra

)
to getDM∗j ra, and then re-encryptDM

∗
j ra

with the RPk ’s public key PKRPk to get E(PKRPk ,DM
∗
j ra)

based on a homomorphic encryption scheme and issues
E(PKRPk ,DM

∗
j ra) to RPk through CSP. Note that PKRPk

used herein is a homomorphic public key of RPk and SKRPk
is a corresponding homomorphic secret key of RPk .

4) DATA ACCESS

CSP receives E
(
PKRPk ,DM

∗
j ra

)
, which means TAP issues

RPk the right to access DM j. CSP uses a homomorphic mul-

tiplication algorithm to erase ra from E
(
PKRPk ,DM

∗
j ra

)
:

E(PKRPk ,DM
∗
j ra)
∗E(PKRPk , 1/ra)=E(PKRPk ,DM j). (3)

And then it issues E(PKRPk ,DM j) and SignCSP =

Sign(SKCSP,E(PKRPk ,DM j),Cj) to RPk . The RPk can
decrypt it with its own secret key SKRPk to get the plaintext
of DM j.

5) DATA AUDITING
RP may not trust the processing result of CSP. In this case,
it requests TAP to audit the correctness of data processing
and computation by providing Cj, the hash code of DM j,
h

(
DM j

)
, the signature of CSP data provision, i.e., SignCSP =

Sign(SKCSP,E(PKRPk ,DM j),Cj). Note that the auditing
request should be signed by RP to ensure non-repudiation.
Thereby, the auditing request ARk contains ARk ={Cj,
h

(
DM j

)
, SignCSP, Sign(SKRPk , {Cj, h

(
DM j

)
, SignCSP})}.

In this case, TAP handles it by querying CSP to get Fj and
all E(PKH ,Di,j) used for generating E(PKH ,DM j). TAP
decrypts E(PKH ,Di,j) to get allDi,j and input them into Fj to
get plain DM j, that is DM j = Fj({Di,j}) (i = 1, . . . , I ). TAP
further compares the hash code ofDM j output from Fj and the
one provided by RP in order to judge if the data computation
and processing at CSP is correct.

Fig.5 shows the detailed procedures of Protocol 3.
In this protocol, we let CSP fuzzify DM j by selecting a
random ra and computing E(PKH ,DM∗j ra). For defuzzi-
fying E(PKRPk ,DM

∗
j ra) to get E(PKRPk ,DM j), we use a

homomorphic multiplication algorithm to remove ra from
E

(
PKRPk ,DM

∗
j ra

)
. In Protocol 3, TAP is unable to getDM j

during re-encryption, which solves the problem as mentioned
above.
Protocol 4:
Homomorphic operation normally has a high computa-

tional cost. In order to achieve sound performance, we try to
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FIGURE 5. Protocol 3 - optimized verifiable computing protocol for avoiding TAP to know DMj
before auditing.

avoid it. We further propose Protocol 4 that removes the mask
ra by avoiding homomorphic operation in order to improve
Protocol 3.

6) DATA PROVISION
This step is the same as the design in other protocols.

7) PRIVACY PRESERVING DATA COMPUTING
This step is designed the same as that in Protocol 3.

8) RP DATA REQUEST AND AUTHORIZATION
RPk requests CSP for the result of data processing and
computation in Cj by sending a requesting message that
contains Rk = {PKRPk ,C j} and Sign(SKRPk ,Rk ). Once
receiving the request, the CSP passes the request to TAP
for checking its access right. If the check based on
the current access policy is positive, the TAP requests
the data processing result from CSP. After receiving the
package E

(
PKH ,DM∗j ra

)
, signCSP, the TAP first decrypt

E
(
PKH ,DM∗j ra

)
to getDM∗j ra, and then re-encryptDM

∗
j ra

with the RPk ’s public key PKRPk to get E ′(PKRPk ,DM
∗
j ra)

based on a public key encryption scheme (e.g., RSA) and
issuesE ′(PKRPk ,DM

∗
j ra) to RPk through CSP. Note that

PKRPk used herein is a public key of RPk and SKRPk is a
corresponding secret key of RPk .

9) DATA ACCESS

CSP receives E
′
(
PKRPk ,DM

∗
j ra

)
, which means TAP

issues RPk the right to access DM j. It then computes

E
′ (
PKRPk , ra

)
, and delivers the data package

E
′
(
PKRPk ,DM

∗
j ra

)
, E

′ (
PKRPk , ra

)
, SignCSP =

Sign(SKCSP, {E
′
(
PKRPk ,DM

∗
j ra

)
, E

′ (
PKRPk , ra

)
, Cj}),

and Cj to RPk. After receiving E ′(PKRPk ,DM
∗
j ra), RPk can

decrypt it with its own secret key SKRPk to getDM
∗
j ra. While

receiving E ′(PKRPk , ra), RPk can decrypt it to get ra as well.
Finally, RPk compute DM∗j ra/ra to get the plaintext of DM j.

10) DATA AUDITING
RP may not trust the processing result of CSP. In this case,
it requests TAP to audit the correctness of data processing
and computation by providing Cj, the hash code of DM j,
h

(
DM j

)
, the signature of CSP data provision, i.e., SignCSP =

Sign(SKCSP, {E
′
(
PKRPk , DM

∗
j ra

)
, E

′ (
PKRPk , ra

)
, Cj}).

Note that the auditing request should be signed by
RP to ensure non-repudiation. Thereby, the auditing
request ARk contains ARk ={Cj, h

(
DM j

)
, SignCSP,

Sign(SKRPk , {Cj, h
(
DM j

)
, SignCSP)}. In this case, TAP han-

dles it by querying CSP to get Fj and all E(PKH ,Di,j) used
for generating E(PKH ,DM j). TAP decrypts E(PKH ,Di,j) to
get all Di,j and input them into Fj to get plain DM j, that is
DM j = Fj({Di,j}) (i = 1, . . . , I ). TAP further compares the
hash code of DM j output fromFj and the one provided by RP
in order to judge if the data computation and processing at
CSP is correct.

For defuzzifying E ′(PKRPk ,DM
∗
j ra) to get

E
′ (
PKRPk ,DM j

)
, CSP shares E ′(PKRPk , ra) with RPk

together with E ′(PKRPk ,DM
∗
j ra). This allows RPk to get

both DM∗j ra and ra. Thus, it can get the plaintext of DM j
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FIGURE 6. Protocol 4 - optimized verifiable computing protocol for avoiding TAP to know DMj
before auditing.

through a simple division. Fig.6 shows the detailed protocol
as described above.

Although Protocols 2, 3, and 4 improve system security,
they all result in extra costs on computation and/or commu-
nication. In the next section, we will analyze all the four
protocols proposed above and compare them with each other
to show their pros and cons in details with regard to different
application scenarios and security requirements. Under the
same system model and platform, we should flexibly deploy
a suitable protocol in practice by balancing the requirements
between security and performance.

F. JUSTIFICATION OF DESIGN
The proposed schemes were designed due to the following
advantages.

Privacy preservation: the scheme ensures data min-
ing/processing/computing privacy at CSP. CSP has no way to
learn the plain data of DPs’ input and their processing output.
Thus, it is impossible to intrude the privacy of data and related
objects. DPi cannot know DM j, thus one DPi is impossible
to obtain the data of other DPs. Meanwhile, only eligible RPs
can access the result of data processing and computation and
check its correctness if wanted. In particular, we designed
Protocol 3 and Protocol 4 to conceal the data processing
result from TAP in order to gain advanced security. Notably,
Protocol 4 was further proposed in order to improve the
efficiency of Protocol 3 in order to avoid homomorphic oper-
ations when removing the mask ra.
Verifiable computing: the correctness of the data process-

ing result of CSP can be verified by TAP triggered by RP.
Thus it is impossible for CSP to behave dishonestly or mali-
ciously during data processing and computation.

Facticity enhancement: introducing TAP enhances the fac-
ticity of DP. TAP can mine the collected data of CSP and
analyze if the data source has some abnormal behaviors by
comparing newly generated data patterns with historical ones
and analyzing collected data from different DPs.
Context awareness: the scheme supports data processing

under different contexts by applying different algorithms,
requesting data processing results based on context IDs,
and auditing the correctness of data processing in different
contexts.
Generality: the scheme supports various data process-

ing/computing/mining cases served at the cloud. Meanwhile,
it supports auditing data processing/computing/mining at a
distrusted or semi-trusted CSP under any situations and con-
texts. Limitation could be caused by the shortcomings of FHE
operations. But our scheme provides a generic framework to
perform verifiable cloud computing. It is flexible to adopt the
proposed four protocols to satisfy different security demands,
as analyzed in Section 5.6.

V. PERFORMANCE ANALYSIS AND EVALUATION
We evaluated the performance of four protocols by analyzing
and comparing their security, computational complexity, and
communication cost. We then report the results of experimen-
tal performance tests on operation time and further analyze
their scalability. The pros and cons of all protocols are ana-
lyzed and discussed based on rigorous comparison.

We implemented the proposed protocols in a workstation
with Intel(R) CoreTM i7 4710HQ CPU and 8-GB RAM,
running Ubuntu 14.04 that virtually executes the functions
of DP, CSP, TAP and RP based on libraries NTL [33],
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GMP [34], and FHE [35]. In our implementation, we applied
BGV full homomorphic encryption [32], RSA for Pub-
lic Key Cryptosystem (PKC) and SHA-1 hash function.
We used a function provided by the FHE library to randomly
generate plaintext with a length of 8 bytes to simulate the
raw data provided by DP. Then we encrypted plaintexts into
ciphertexts and conducted a number of multiplications and
additions to simulate data processes at CSP. For simulating
the audit process, we decrypted the ciphertext of data at TAP,
calculated the result of data processing based on plaintexts,
then compared its hash code with the one provided by an
auditing requestor. In our implementation, RSA key size
is 256 bytes. SHA-1 hash code has 20 bytes. FHE public
key (PKH ) size is 180 bytes and secret key (SKH ) size is
192 bytes.

A. SECURITY ANALYSIS
The security of this scheme is ensured by FHE theory and
Public Key Infrastructure (PKI) theory. In addition, we apply
an auditing protocol based on TAP to ensure the correctness
of data processing result. Although CSP cannot be fully
trusted, we achieve security as analyzed below.
Proposition 1: It is impossible for CSP to get the raw data

during data processing.
Proof: In the designed scheme, only E(PKH ,Di,j) is pro-

vided by DPs to CSP. The FHE theory allows CSP to process
the data in ciphertexts, thus no plaintext shows up at CSP
during data processing. At the same time, it is hard for CSP
to achieve SKH to decrypt the ciphertext and further get Di,j
and DM j since TAP is a trusted party. It does not disclose
SKH and DM j to CSP. In our scheme, data confidentiality
is achieved by FHE and PKI. We apply digital signature
using PKI Digital Signature algorithm (e.g., RSA) to ensure
the integrity and correctness of the data processing results,
achieve non-repudiation in each step of the four protocols and
realize DM j re-encryption for eligible access in Protocol 2
and Protocol 4.
Proposition 2: DM j can only be accessed by eligible sys-

tem entities.
Proof: TAP is responsible for issuing the right to access

DM j. It controls SKH disclosure in Protocol 1 and handles
DM j re-encryption in Protocols 2-4. All above are based on
the eligibility check on RP performed at TAP. Only the RP
that passes this check can be issued SKH or get re-encrypted
DM j from TAP to finally gain DM j.

B. COMPUTATIONAL COMPLEXITY
We analyze the computational complexity of the scheme
at different system entities: DP, CSP, RP, and TAP. Since
generating and verifying digital signature do not cost much
computation, we ignored them in the following analysis.
DP: DP is responsible for data provision by encrypting the

data and signing the encrypted data package in all of the four
protocols. The schemes uses full homomorphic encryption
algorithm to encrypt raw data, the computational cost of data
encryption depends on the size of the underlying data and

it is inevitable in any cryptographic methods. According to
the BGV algorithm, it requires one vector multiplication and
one vector addition to complete each encryption. Thus the
computation complexity of DP is O (1) in all four protocols.
CSP: In our scheme, CSP has no knowledge of stored data.

Due to the variety of algorithms that could be applied in data
processing, it is hard to judge the computational complexity
of CSP. Herein, we only discuss the most cost-consuming
operation: Multiplication. The reason is two-ciphertext mul-
tiplication takes about 10000 milliseconds, which con-
sumes much longer time than two-ciphertext addition
(4 milliseconds). Multiplication between two ciphertexts
requires one vector addition and three vector multiplications.
And the computation complexity of CSP relies on the num-
ber of data (N ) input for processing, thus it is O (N ) in
Protocol 1 and Protocol 2. In Protocol 3, CSP needs to add
mask ra and erase it from E

(
PKRPk ,DM

∗
j ra

)
by computing

E
(
PKRPk ,DM

∗
j ra

)∗
E(PKRPk , 1/ra) = E(PKRPk ,DM j)

later on. In Protocol 4, CSP needs to add mask ra and encrypt
ra with PKRPk as E ′(PKRPk , ra). But the above computa-
tion consumptions only perform once. Thus, the computation
complexity at CSP in Protocol 3 and Protocol 4 is also O (N ).
TAP: TAP is a trusted third-party responsible for checking

the integrity and the correctness of data processing results
in all of the four protocols. For auditing data processing
in Protocol 1, it requests all the ciphertexts from CSP and
decrypts them. Each decryption requires one vector multi-
plication and two vector modules. Then it deals with the
plaintexts and does the similar computations as CSP does,
which requires only one vector multiplication between two
plaintexts. The computation complexity of TAP relates to the
number of data, thus it is O (N ). In Protocol 2, one more
homomorphic decryption is needed at TAP during DM j re-
encryption to get E ′(PKRPk ,DM j). In Protocol 3, one more
homomorphic decryption and one homomorphic encryption
are needed at TAP when re-encrypting E(PKH ,DM∗j ra)
to get E(PKRPk ,DM

∗
j ra). In Protocol 4, one more homo-

morphic decryption and one public key encryption are
needed at TAP when re-encrypting E(PKH ,DM∗j ra) to get
E ′(PKRPk ,DM

∗
j ra). As can be seen from the above, the

computation complexity of TAP in all four protocols isO (N ).
The expense spent in auditing is the same in the four protocols
RP: RP only needs to decrypt the result of data processing,

which requires one vector multiplication and two vector mod-
ules in Protocol 1 and Protocol 3 caused by homomorphic
decryption. In protocol 2 and Protocol 4, RSA decryption is
performed at RP, which requires one exponential operation in
Protocol 2 and two RSA decryptions in Protocol 4. Thus the
computation complexity of RP is O (1) in all four protocols.

Table 2 lists the computational operations carried out by
different entities and their computation complexity of the
four protocols. Although the computation complexity of the
four protocols is the same in each system entity, Protocol 1
outperforms at CSP and TAP. Considering the powerful com-
putation and processing capability of CSP and TAP, the extra
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TABLE 2. Computational operations and computation complexity.

costs introduced in Protocol 3 and Protocol 4 at CSP and TAP
are not heavy. At RP, Protocol 2 and Protocol 4 outperform
Protocol 1 and Protocol 3.

C. COMMUNICATION COST
The communication cost of the scheme is analyzed below.
Since each DP only has to share its public key once and TAP
only has to send PKH (180 bytes) to each DP once at system
initialization, these costs can be ignored.
DP to CSP: When delivered from DP to CSP, data are

encrypted and signed in all four protocols. Our implemen-
tation shows that each piece of ciphertext has the length of
68 bytes if the plaintext data is 8 bytes. The size of a RSA
signature is 256 bytes. Thus, the total size of communication
package fromDP to CSP is 68+256=324 bytes. The commu-
nication cost from DP to CSP is proportional to the number
of DPs in the system.
CSP to RP: Each RP receives four pieces of data from

CSP – the homomorphic ciphertext with the length 68
bytes if the plaintext data is 8 bytes, a signature with the
length of 256 bytes, context identifier that has 8 bytes and
E(PKRPk , SKH ) that has 256 bytes (since we use RSA algo-
rithm to encrypt SKH with the length of 192 bytes, and the
RSA encryption key we chose has the length of 256 bytes)
in Protocol 1. Thus, the total communication package length
fromCSP to RP in Protocol 1 is 68+256+8+256=588 bytes.
In Protocol 2, no message is directly sent from CSP to RP.
While in Protocol 3, after the re-encryption operation, RP
receives three pieces of data from CSP – the homomorphic
ciphertext E

(
PKRPk ,DM j

)
with the length of 68 bytes, a sig-

nature with the length of 256 bytes and context identifier that
has 8 bytes. Thus, the total communication package length
from CSP to RP in Protocol 3 is 68+256+8=332 bytes.
In Protocol 4, CSP needs to send RP two RSA ciphertexts

with the length of 512 bytes, context identifier and a sig-
nature. Thus, the total communication package length from
CSP to RP in Protocol 4 is 256∗2+8+256=776 bytes.
RP to TAP: TAP receives 4 pieces of data from RP for

auditing in all the four protocols: context identifier that
has 8 bytes, h(DM j) that has 20 bytes (SHA-1 hash func-
tion was applied), and 2 signatures each with the length of
256 bytes. Thus, the total communication cost from RP to
TAP is 8+20+256∗2=540 bytes.

CSP to TAP: During auditing of all four protocols,
CSP needs to deliver all the ciphertexts collected from DPs
to TAP, each of which has the length of 68 bytes. The com-
munication cost is proportional to the number of ciphertexts.
If there are N pieces of ciphertexts, the communication cost
is 68∗N bytes. For supporting RP to request a data processing
result, the length of the communication package from CSP to
TAP is fixed as 520 bytes in Protocol 1, 520 + the size of
E(PKH ,DM j) and a signature that is 844 bytes in Protocol 2,
and 520 + the size of E(PKH ,DM∗j ra) = 588 bytes in
Protocol 3 and Protocol 4 based on our implementation.
TAP to CSP: TAP also needs to communicate with CSP

to issue E ′(PKRPk , SKH ) (256 bytes) in Protocol 1, pro-
vide re-encryption result E(PKRPk ,DM

∗
j ra) (68 bytes) in

Protocol 3 and E ′(PKRPk ,DM
∗
j ra) (256 bytes) in Protocol 4,

respectively. Note that the sizes of encryption results could
be very different due to the difference of input data sizes.
The above data sizes are reported based on the settings of our
implementation.

Other communication costs are introduced by queries or
requests, which mainly contain some commands, keys and
signatures that have fixed sizes. In total, they do not cause
much communication expense. Table 3 lists the main com-
munication costs of the proposed protocols based on our
implementation. We can see that they are not high in general.
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TABLE 3. Main communication costs.

TABLE 4. Total communication costs of four protocols (unit: byte).

Table 4 lists the total communication costs of the four pro-
tocols. We observe that the communication cost of Protocol 1
is the lowest, while Protocol 4 has the highest communica-
tion cost. But the communication cost difference of the four
protocols is trivial. Their costs are similar.

D. OPERATION EFFICIENCY
Wemainly tested the operation time of the scheme in terms of
different operations: encryption, data processing and decryp-
tion, as shown in Fig.7-9. The ‘‘data number’’ in Fig.7-9
refers to the number of data input byDPs. InTable 5, we report
the operation time carried out by some basic operations. Com-
pared with homomorphic operations, RSA operation time is
very trivial. This result supports our analysis on computation
complexity.
Encryption: Homomorphic encryption mainly takes place

at DPs. Each encryption costs 1200milliseconds. The encryp-
tion time is lineally increased with the number of data col-
lected by DP, as shown in Fig.6. Each DP encrypts its data
separately.
Data Processing: Data processing takes place at CSP and

TAP. CSP deals with data in encrypted forms, while TAP
in plaintext forms during auditing. Since most algorithms
can be divided into a number of additions and multiplica-
tions, we only tested these two operations. As shown in
Fig.8.a, the operation time of ciphertext addition almost

FIGURE 7. Operation time of homomorphic encryption.

proportionally increases with the number of data, which
costs about 4 milliseconds (ms) to add two ciphertexts. The
operation time of ciphertext multiplication proportionally
increased with the number of data too, which costs about
10000 milliseconds to multiply two ciphertexts, shown in
Fig.8.b. We found that main computation cost is caused by
multiplication at CSP. For TAP, data in plaintexts are pro-
cessed in a similar way to the computations at CSP based
on the same data processing algorithms. Fig.8.c shows that
the operation time of plaintext addition at TAP proportion-
ally increases with the number of data, which costs about
8 microseconds (us) to add two plaintexts. The operation
time of plaintext multiplications at TAP also proportion-
ally increases with the number of data, which costs about
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TABLE 5. Operation time of basic operations (unit: millisecond).

FIGURE 8. (a) Operation time of ciphertext addition; (b) Operation time of ciphertext multiplication; (c) Operation time of
plaintext addition; (d) Operation time of plaintext multiplication.

300 microseconds to multiply two plaintexts, shown in
Fig.8.d. We can see that multiplication operations cause the
main computational cost at TAP. Based on the above tests,
we found that multipli cation operation consumes much more
time than addition operation at CSP and TAP.
Decryption: The homomorphic decryption takes place at

RPs and TAP. The result shown in Fig.9 indicates that the
operation time of decryption proportionally increases with
the number of ciphertexts. RP needs to decrypt the ciphertext
of data processing result to get the final plaintext result.
During auditing, TAP needs to decrypt the ciphertexts of all
related data. It takes about 600 milliseconds to decrypt one
ciphertext to get the corresponding plaintext.

Table 6 summarizes the operation time of each entity in
Protocol 1.

In protocols 2, 3, and 4, we introduce re-encryption oper-
ation to the protocols, which increase the operation time
of TAP and CSP in the access of data processing result.
Although TAP have to compute homomorphic decryption,
another homomorphic encryption or RSA encryption, RP
only has to conduct a RSA decryption in Protocol 2, a
homomorphic decryption in Protocol 3 and two RSA decryp-
tions and a simple division in Protocol 4 instead of a fully
homomorphic decryption. We can see that Protocol 2 and

TABLE 6. Operation time at each system entity in protocol 1(unit:
millisecond).

Protocol 4 improve the performance of data processing result
access at RP. In Protocol 3 and Protocol 4, we further hide
plain data processing result from TAP, which increases a bit
computation overhead at CSP in the access of data processing
result.

Table 7, Table 8 and Table 9 show the differences of oper-
ation time of the four protocols at TAP, RP and CSP in terms
of data processing result access. We can see from Table 7
that, Protocol 1 is the most efficient design with regard to the
computation cost at TAP, while Protocol 3 is the least efficient
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TABLE 7. Operation time at TAP in the access of data processing result
(unit: millisecond).

TABLE 8. Operation time at RP in the access of data processing result
(unit: millisecond).

TABLE 9. Operation time at CSP in the access of data processing result
(unit: millisecond).

and Protocol 2 and Protocol 4 sit in the middle. From Table 8,
we can conclude that the computation workload is not heavy
in each protocol. But Protocol 2 and Protocol 4 work very
efficiently at RP. With regard to the computation cost at CSP,
Protocol 3 is the least efficient, while Protocols 1, 2 and 4
have zero or a bit computation overhead.

E. SCALABILITY
In our scheme, most of the computations are carried out by
CSP and TAP, which are assumed to have sufficient capacity
and capability. DPs andRPs only perform data encryption and
decryption. They do not deal with complicated algorithms for
data processing. We analyze system scalability from the view
of different system entities as below.

DPs: In our scheme, DPs only need to conduct homomor-
phic encryptions that take about 1200ms on each data in our
test. Each signature generation only takes 0.3ms, which can
be ignored. Notably, the number of DPs does not affect the
above operation time. This means that no matter how many
DPs send their data to CSP, the time spent at each DP is fixed.

CSP: CSP takes responsibility to process ciphertexts. Since
the ciphertext is the data encrypted by a full homomor-
phic encryption algorithm, the computation of the ciphertext
could be very complicated. It is indicated that this cost is

proportional to the number of data uploaded to CSP regarding
a specific context that costs about 4ms for one addition and
10000ms for one multiplication. Assumed that the process-
ing capability at CSP is powerful, the scheme design shows
potential for big data processing, especially for the data pro-
cessing that only contains a huge number of addition oper-
ations and has limited number of multiplication operations.
Considering the cost introduced by data access control on
processing result, we can see from Table 9 that, Protocol 1
and Protocol 2 can perfectly support the data access requests
from a huge number of RPs (i.e., scalability). Protocol 4 can
also support scalability very well. But Protocol 3 performs
the worst with regard to scalability.

TAP: TAP is responsible for auditing that consists of
ciphertext decryption and plaintext processing. Our testing
result shows that it takes 600ms to perform one decryption,
much longer than the processing time of plaintexts. As TAP
has to decrypt each piece of ciphertext sent by CSP, this
time consumption is proportional to the number of cipher-
texts. Considering that the processing capability of TAP is
also powerful, the scheme design is suitable for such data
processing. Considering the cost introduced by data access
control on processing result, we can see from Table 7 that
Protocol 1 performs the best, Protocol 3 performs the worst,
while the performance of Protocol 2 and Protocol 4 is in the
middle.

RPs: RP takes about 600ms for each homomorphic decryp-
tion and 0.3ms for each RSA decryption. They are not
affected by the number of DPs. All of the four protocols sup-
port scalability, in which Protocol 2 and Protocol 4 perform
better than Protocol 1 and Protocol 3.

F. PROTOCOL COMPARISON
In this section, we summarize the above performance analysis
and comprehensively compare the four protocols in term of
security, computational overhead, communication cost and
scalability. Based on the comparison, we further discuss the
pros and cons of each protocol, and comment their applica-
bility. The comparison result is shown in Table 10.

Regarding security, Protocol 1 suffers from the CSP-RP
collusion attack, while other protocols can resist it. But
Protocol 2 discloses DM j to TAP before auditing, which is
not expected in many situations. Protocol 3 and Protocol 4
overcome this problem, thus they can achieve a high level
of security. In terms of computational overhead, the four
protocols hold the same computational complexity. But con-
sidering the concrete computation operations, the computa-
tional overhead of Protocol 1 is the lowest, Protocol 2 and
Protocol 4 rank in the middle, while Protocol 3 performs the
highest. The communication costs of the four protocols are
quite similar, in which Protocol 1 is the lowest, Protocol 4
is the highest, and other two protocols are in middle levels.
Talking about scalability, Protocol 1 is the best and Protocol 3
is the worst, while Protocol 2 and Protocol 4 perform in
the middle. In Table 10, we assign the points to each pro-
tocol based on their performance (the best: ∗∗∗ points; the
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TABLE 10. Protocol Comparison (unit: millisecond).

worst: ∗ points; and the middle: ∗∗ points). Through com-
parison, we can see that Protocol 1 can be applied into
the situation when security requirement is not high since it
can achieve good performance with regard to computation,
communication and scalability. In the case that the security
requirement is high, we recommend to adopt Protocol 4 since
it ensures high security and at the same time offers sound
performance on efficiency and scalability.

VI. CONCLUSION
In this paper, we proposed an effective context-aware ver-
ifiable computing scheme with four auditing protocols for
enhancing the trust of cloud computing. By introducing the
TAP and applying full homomorphic encryption, we audit
the correctness of data processing at cloud even though data
computation is conducted in an encrypted form. The proposed
auditing protocols can help a requesting party to check the
integrity and correctness of the data processing conducted at
the CSP. Based on full homomorphic encryption, it is hard
for the cloud to get the raw data that DPs do not want to
expose. In addition, based on digital signature, other secu-
rity properties such as integrity and non-repudiation can be
ensured. The proposed scheme can serve as a generic frame-
work to support verifiable computing based on different data
processing algorithms for the cloud in various contexts. Four
optional auditing protocols were designed to satisfy different
security requirements. Their performance was evaluated and
compared through serious analysis with regard to security,
computational overhead, communication cost and scalability.
The evaluation results show the effectiveness and efficiency
of our designs. Through rigorous comparison, we further
summarize the pros and cons of each protocol and comment
their applicability.

Regarding future work, wewill further improve the scheme
in case that TAP cannot be fully trusted to obtain raw data
from DPs. How to perform cloud computing auditing in an
encrypted form is an interesting and challenging research
topic worth our further investigation.
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