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A B S T R A C T

Today, GPS-free drone localization is increasingly gaining attention in various applications, but it faces
significant accuracy challenges in three-dimensional (3D) space due to various impairments. This study
investigates the effects of carrier frequency offset (CFO), phase noise (PN), and down-tilted base station (BS)
antennas on drone positioning and tracking. Additionally, we explore the impact of inter-site distance (ISD) and
BS density on drone position estimation accuracy. In our methodology, we consider a flying drone equipped
with a single transmission antenna and BSs configured with 4 × 4 antennas under specific impairments. We first
analyze the effects of these impairments on the signal’s covariance matrix. Then, using the MUSIC algorithm,
we estimate the azimuth and elevation angles, which serve as the basis for drone localization using the Least
Squares (LS) method across all BSs. Finally, the estimated positions feed into an Extended Kalman Filter (EKF)
for tracking. Our results present a sequential analysis of the impact of all impairments on the off-diagonal
covariance matrix, on the Angle of Arrival (AOA) estimation and 3D drone localization. We use simulations
to demonstrate how hardware impairments affect 3D drone localization accuracy under varying ISD and BS
densities.

1. Introduction

Accurately localizing a drone is a critical requirement for ensuring
safe and efficient operations for several applications. Traditionally,
Global Positioning System (GPS) has served as a prominent method
for the localization of aerial vehicles, including airplanes [1]. Relying
only on GPS can result in localization failures, particularly when the
transmitter and receiver are not in direct line of sight (LoS). The topic
of network-based drone localization has been active research for several
years. However, it has numerous challenges within GPS-free aero-
nautical positioning systems requiring substantial efforts to improve
accuracy. Some of the challenges for network based localization are
sensor errors, signal multipath, and integration complexity, which ne-
cessitate complex data fusion and frequent system calibration. Besides,
dependency on external infrastructure, and increased vulnerability to
interference, impacting their accuracy and reliability.

Numerous techniques have been introduced to enhance the preci-
sion of 3D UAV (Unmanned Aerial Vehicle) localization. To enhance
the positioning accuracy of unmanned aerial vehicles (UAVs), a new ap-
proach is proposed that utilizes multiple received signal strength (RSS)
measurements from various base station (BS) receiver and multiple
points along a defined trajectory path [2]. The process begins by fixing
one of the BSs and conducting multiple measurements along the defined
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trajectory. Subsequently, the location of the UAV is estimated using
the Maximum Likelihood (ML) technique. Similarly, the calculated
UAV locations from all participating BSs are combined to estimate
the position of the UAV. However, high-speed movement of the UAV
can introduce Doppler shifts, a result of its relative motion to the BS
transmitters. Such frequency offsets can reduce the location estimation
accuracy, which the authors did not consider.

The challenges associated with the performance and complexity
of network-based drone localization have gained significant research
interest. Studies in [3] & [4], have explored the utilization of cascading
CAPON and Beamspace MUltiple SIgnal Classification (MUSIC) for
direction estimation. However, Angle of Arrival (AOA) estimation still
faces difficulties, especially when the UAV experiences fast dynamic
states during hovering. Receiver carrier frequency offset (CFO) is a
common occurrence in communication systems and this can impact po-
sition estimation accuracy. The research presented in [5], has primarily
focused on investigating the effects of CFO on AOA based estimation
for Bluetooth Low Energy (BLE) location estimation. Additionally, the
authors derived the Cramer–Rao bound (CRB) to assess accuracy es-
timation. Although the research is compelling and has been validated
in both experimental and simulation, its application to 3D estimation
performance remains unexplored.
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Literature in [6] have explored the use of The Estimation of Signal
Parameters via Rotational Invariance Techniques (ESPRIT) for estimat-
ing AOA by leveraging the synthetic ESPRIT algorithm and applying
it to Code Division Multiple Access (CDMA) signals. To address the
challenge of the size of antenna array in data collection for ESPRIT-
based estimations, the authors introduced a synthesis technique. This
method enabled the antennas to locate in flexible positions, which solve
the constraints of the actual antenna array sizes.

Researchers in [7] discussed UAV detection and positioning built on
multi-dimensional signal, which is executed in two stages. The initial
step involves monitoring the communication channel between the UAV
and its controller. For detection, machine learning algorithms were
employed, integrating wavelet energy entropy (WEE), signal frequency
spectrum (SFS), and power spectral entropy (PSE) to extract informa-
tion. Once the UAV is identified, it is localized using the azimuth angle
and elevation angle. The study also compared the precision of two
dimensional (2D) and 3D location estimations over short distances.

The work in [8] presents a method for 2D Direction of Arrival (DOA)
estimation for incoherently distributed signal sources using Uniform
Rectangular Arrays (URA). They introduce an estimation technique for
2D incoherent distributed sources and employ the ESPRIT algorithm.
Through simulations, they analyze the efficiency of their proposed
method, especially in contexts involving sources with varying angu-
lar power density functions, sensor distances, and boundary region
sources. Their investigations range with different scenarios, including
varying Signal to Noise Ratio (SNR), angular power density functions,
sensor distances, and the number of sources. Considerably, their tech-
nique proves capable of estimating a higher number of sources when
given an adequate number of sources, especially when using large
dimensional arrays.

Based on specific application needs, extensive research has been
conducted on UAV communication networks, focusing on UAV-to-
ground and direct UAV-to-UAV communications. To ensure optimal
coverage for ground users, local BSs are typically downtilted. Research
has been done in [9] to assess the effects of downtilting BSs on ultra-
dense networks (UDNs) performance. To accomplish this, they employ
a two-step approach: initially, they model the channel between an
elevated BS and a ground user as a 3-D line-of-sight channel, consid-
ering the effect of the height of the BSs. The communication between
UAV and ground is modeled by considering height of the UAV and the
corresponding path loss [10].

To address the constraints in GPS-free localization, numerous stud-
ies have explored the integration of various methods. One study in [11]
introduced an innovative approach to localize targets using a combi-
nation of RSS and AOA measurements. This technique employs ap-
proximated error covariance matrix for a weighted least squares (WLS)
solution that does not require the prior ground truth locations or noise
variance estimations. Simulation validations demonstrate its superior
performance. Multiple methods have been employed in localizing the
mobile aerial transmitters. Many well-known passive localization meth-
ods are based one the Time Difference Direction of Arrival (TDOA) and
AOA of the signals at the BSs receivers as studied in [12] & [13]. In
the paper [14], a model is presented that localizes aerial transmitters
in Line-of-Sight (LoS) communication using two TDOA-based methods
and one AOA-based method. The study further examines the impact of
various BS topologies and the number of required BSs on localization
accuracy.

BS transceivers are typically down-tilted to serve terrestrial users
effectively. Contrary to this, BSs intended for aerial vehicles require
specific adjustments. Research [15] suggests that antennas need to be
up tilted to optimally serve aerial vehicles through the main beam. The
study provides approximate expressions for Signal-to-Interference Ratio
(SIR)-based coverage probabilities for both aerial and ground users.

In our previous paper [16], we equipped the drone with two an-
tenna elements to measure the signals from multiple BSs. Using this
setup, the drone estimates the AOA by mechanically rotating the two

antenna elements. After estimating the AOA from various BSs, the
location of the drone is determined on a 2D plane utilizing the LS
algorithm. We evaluated the method in scenarios where the drone is
both stationary and hovering and subsequently compared the results.
In our follow up study [17] & [18], we explored drone positioning
and tracking through measurements using a drone fitted with a single
antenna for signal transmission and two 4X4 URA receivers for signal
reception. The drone was flown in zigzag and up-and-down patterns,
covering a distance of less than 25 meters. For positioning and tracking,
we employed the MUSIC and Extended Kalman Filter (EKF) methods,
respectively.

1.1. Main contribution

In this paper, we conduct simulations on network-based drone local-
ization and tracking, focusing on evaluating localization accuracy un-
der various impairments, such as phase noise (PN), CFO, ISD, the num-
ber of BSs in the coverage area and BS tilting. Our key contributions
are summarized as follows:

• By maintaining constant spacing of the antenna elements in the
URA, we model and analyze the impact of impairments on the 3D
steering vector of the arrays.

• Analysis and modeling the effect of impairments on the covari-
ance matrix.

• Analysis the impairments on AOA estimation using the MUSIC
algorithm, location using LS method for every snapshot over all
participating BSs for the positioning.

• Modeling drone localization and tracking with impairments.
• BS antennas are typically downtilted, which impacts AOA-based

localization. Our study assesses how downtilt angles influence the
accuracy of drone location estimation.

• We conducted a comparative analysis to evaluate the influence
of number of BS receiver and ISD on positioning accuracy in both
2D and 3D space.

• We validated our angle estimation approach against the theo-
retical performance bound by employing the Cramér-Rao Lower
Bound (CRLB), which serves as a benchmark for the minimum
variance an unbiased estimator can achieve.

1.2. Organization of the paper

The structure of the paper is organized as follows. Section 2 gives
the system model and phases of the localization system. Section 3
briefly describes the methodology used for positioning and tracking.
Section 4 presents the simulation setup and analytical results. Lastly,
Section 5 concludes the paper.

2. System modeling

In this section, we present an overview of the system model used
for drone positioning and tracking. We consider, as shown in Fig. 1, a
hexagonal cellular layout with 𝐵 BSs.

Each BS, located at the center of its respective cell, is equipped
with an 𝑀 = 𝑀𝑦 × 𝑀𝑧 linear antenna array receiver. All BS receivers
are positioned in a known location ensuring a direct line of sight
communication with the drone, and every BS collects 𝑛 samples.

In this paper, we propose the array configuration shown in Fig. 2(a),
incorporating a 𝜆

4 shift of the antenna elements along the 𝑦-axis. This
adjustment ensures unobstructed LOS visibility for the drone across all
antenna elements, preventing potential obstructions that could compli-
cate the estimation process. Without this shift, the antenna elements
could obstruct each other and block the LOS to the drone, thereby
complicating the estimation process. We evaluated the accuracy im-
provement of 3D drone location estimation by comparing results from
the shifted configuration against those from an unshifted configuration
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Fig. 1. Model of the drone trajectory path and known position information of BS
layout.

Fig. 2. Array configuration:(a) the 4 × 4 URA antenna employed in this study. (b)
Comparison the estimation accuracy of the array when it is shifted by 𝜆∕4 versus
without any shift.

as shown in Fig. 2(b). In both scenarios, the BS location remained
unchanged, with adjustments made only to the positions of its elements.
We chose to utilize this antenna array in our simulation study as it
aligns with the array employed in our previous measurements [17,18].

2.1. System design

The system flow diagram presented in Fig. 3 outlines the process of
signal modeling, drone positioning and tracking. The drone, equipped
with a single transmitting antenna, follows a predefined spiral tra-
jectory. BS receivers capture the signal emanating from the drone.
However, this signal is often affected by CFO and PN impairments,
which can challenge the localization process. In this paper, we employ
the MUSIC algorithm for drone position estimation. Subsequently, using
the estimated 3D AOA from all the BSs, we apply the least squares
techniques to precisely estimate the location of the drone in 3D plane.
EKF is applied to track the trajectory of the drone movement over time.
The model process, from signal processing, positioning, and tracking,
is represented in Fig. 3.

3. Proposed methodology

Once the system has been modeled, the next phase involves the
parameter estimation of the 3D position of the drone. This section will
provide the model and methodology employed for the impact of the
impairments on drone positioning and tracking.

3.1. Signal model

Consider 𝐒 as the transmitted signal from the drone, and the re-
ceived signal at the 𝑖th BS can be described by the following model:

𝐲𝑖(𝑘) = 𝐹𝑖(𝑘)𝐚𝑖(𝜃𝑖𝑘, 𝜙𝑖𝑘)𝐒(𝑘) + 𝐧𝑖(𝑘), (1)

where 𝐲𝑖(𝑘) is the received signal vector at the 𝑖th BS for the time step
𝑘. 𝐹𝑖(𝑘) is a matrix that models the impact of the phase CFO and PN,
which can be given as:

𝐹𝑖(𝑘) = diag
(

𝑒𝑗(𝑤𝓁𝑘+𝜓𝓁𝑘)
)

, (2)

where 𝑤𝓁 ∼  (−𝑊𝑚,𝑊𝑚) is a uniformly distributed random variable
modeling the CFO, and 𝜓𝓁 ∼  (0, 𝜎2𝜓 ) is a Gaussian distributed
random variable modeling the PN, both at the 𝓁th antenna element. The
array response vector of the 𝑖th BS receiver, denoted by 𝐚𝑖(𝜃𝑖𝑘, 𝜙𝑖𝑘), is
associated with the AOA angles 𝜃𝑖𝑘 and 𝜙𝑖𝑘. 𝐒(𝑘) denotes the transmitted
signal vector at time 𝑘, while 𝐧𝑖(𝑘) represents the additive noise vector
at the 𝑖th BS at time 𝑘. As shown in Fig. 2(a), the antenna elements are
positioned in 𝑦 − 𝑧 plane. Using the 𝑦-axis rotation matrix in [19], we
down tilt the antenna elements.

3.2. Impact of impairments on covariance matrix

Here, before we estimate the 3D AOA at each of the BS receivers
given in Fig. 1, we will analyze the impact of the impairments on the
covariance. The estimation of the 3D AOA involves the computation of
the covariance matrix of the received signal (1):

𝑅𝑦𝑦,𝑖(𝑘) =
1
𝑛

𝑛
∑

𝑘=1
𝐲𝑖(𝑘)(𝑘𝑇𝑠)𝐲𝑖(𝑘)𝐻 (𝑘𝑇𝑠), (3)

where 𝐻 and 𝑇𝑠 are Hermitian transpose and sampling time, respec-
tively. The AOA estimation relies on the coherence and consistency of
the signals received across the antennas.

In this paper, we analyze a scenario where a drone transmits a set
of 𝑛 = 20 samples. To evaluate the signal characteristics from these
transmissions, we compute the covariance matrix by taking the average
of the sample set. An accurate covariance matrix relies on precise phase
information to determine how the signal power is distributed across
different directions. Phase errors can lead to an incorrect assessment of
signal coherence and correlation, impacting the ability to distinguish
between signals from different directions. In the MUSIC algorithm, the
diagonal elements of the covariance matrix represent the power of
the signals received at each antenna element, while the off-diagonal
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Fig. 3. Considered system flow diagram.

Fig. 4. Phase error (radians) of the off-diagonal elements under various CFO.

elements indicate the correlation between signals received at differ-
ent antenna elements. Accurate AOA estimation are achieved when
the covariance matrix effectively captures the correlation structure
(off-diagonal elements) of the incoming signals across the antenna
array.

The off-diagonal elements are critical for precise AOA estimations
as they provide essential information about the relative phases between
signals arriving at each antenna. Impairments in the antenna elements
can significantly degrade the performance of the MUSIC algorithm.
Figs. 4, 5, and 6 demonstrate the impact of CFO, PN, and down tilt on
phase accuracy, respectively. As shown, increasing impairment values
lead to a rise in phase error in the off-diagonal elements, which distorts
the covariance matrix. This distortion subsequently causes inaccuracies
in AOA estimation, as direction-finding algorithms rely on an accurate
covariance matrix.

Referring to Figs. 4(a), 4(b), and 4(c), it is evident that the phase er-
ror associated with the off-diagonal matrix increases with CFO
increments—from 10 kHz to 20 kHz, and up to 30 kHz. This demon-
strates how the phase error escalates as the CFO impairment increases.

Similarly, Figs. 5(a), 5(b), and 5(c) illustrate how the received
signal, when rotated due to PN introduced at each antenna element,

causes the off-diagonal elements of the covariance matrix to deviate
from the ideal case without impairments. Additionally, these figures
demonstrate that the phase error in the off-diagonal elements increases
as the PN rises.

Unlike PN and CFO, which require a Gaussian random variable to
apply different impairments to each antenna element, BS downtilt only
slightly alters the positions of the antenna elements, resulting in a lesser
impact on the off-diagonal elements of the covariance matrix.

As a result, its effect on AOA is less significant compared to PN and
CFO. The impact of BS downtilt is given in Fig. 6(a), 6(b), and 6(c),
which show small increments in phase error.

3.3. Impact of impairments on AOA estimation

To accurately determine the 3D coordinates of the drone, accu-
rate estimation of both angle of azimuth and elevation is essential.
For this purposes, researchers have commonly employed the MUSIC
algorithm, as outlined in [20] & [21]. However, the MUSIC algorithm
have its drawbacks as it involves the computation of eigenvectors from
correlation matrices, which can become computationally intensive,
particularly computing large matrix dimensions.
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Fig. 5. Phase error (radians) of the off-diagonal elements under various PN.

Fig. 6. Phase error (radians) of the off-diagonal elements under various tilt angles.

Considering from the derivations presented in [20] & [7], MUSIC
algorithm focuses on estimating the noise subspace of the correlation
matrix given in (3). This process entails performing an eigenvalue de-
composition (EVD) and selecting the eigenvectors corresponding to the
𝐾 smallest eigenvalues. The noise subspace matrix is then represented
as 𝐄𝐢 = [𝐞𝐾+1,… , 𝐞𝑀 ], where 𝑀 represents the number of antenna
elements in the BS receiver. Following the derivation [7], the azimuth
and elevation are estimated by identifying maximum peak values in the
spectrum 𝑃 (𝜃, 𝜙) of the covariance matrix:

𝑃𝑖(𝜃𝑖𝑘, 𝜙𝑖𝑘) =
1

𝐚𝐻𝑖 (𝜃𝑖𝑘, 𝜙𝑖𝑘)𝐄𝑖𝐄𝐻𝑖 𝐚𝑖(𝜃𝑖𝑘, 𝜙𝑖𝑘)
, (4)

where 𝐚𝑖(𝜃𝑖𝑘, 𝜙𝑖𝑘) represents the response vector for the 𝑖th BS
receiver at the 𝑘 sampling time, while 𝐄𝑖 corresponds to the noise
subspace matrix obtained through the eigenvalue decomposition of the
correlation matrix.

The AOA estimation solely depends on the accuracy of the off
diagonal covariance matrix. In this work, we explore the effects of
various impairments on azimuth and elevation error estimations. Figs. 7
and 8 illustrate that increased impairments lead to rise in angle vari-
ance, which refers to the extent to which the angle estimations deviate
from the mean angle. A higher variance indicates that the angle es-
timations are more spread out around the mean, indicating greater
uncertainty in angle estimations. Specifically, as observed in Fig. 7,
the presence of three distinct impairments contributes to the error in
azimuth estimation.

Once the off-diagonal elements of the covariance matrix are im-
pacted by the impairments, as shown in Figs. 7(a), 7(b), and 7(c), the
resulting phase errors lead to uncertainty in AOA estimations. Overall,
as demonstrated in Fig. 7, with higher impairments, the variance
of the azimuth error estimation worsen. Fig. 8 demonstrates that as
impairment values rise, like that of in azimuth, there is a slight increase
in error estimation for the elevation angle. Table 1 presents the mean
errors for both azimuth and elevation.

3.4. CRLB analysis for AoA estimation

The channel parameter estimation state–vector at the 𝑖th BS at
time–instant 𝑘, denoted by 𝜻 𝑖𝑘 ∈ R2, can be given as:

𝜻 𝑖𝑘 =
[

𝜙𝑖𝑘 𝜃𝑖𝑘
]𝑇 . (5)

Given the signal model, the general deterministic CRLB on the
covariance matrix of unbiased channel parameter estimator of 𝜁 is
stated in [22]:

𝐂𝐑𝐋𝐁𝜻 =
𝜎2𝑤
2

{

ℜ
{

𝑺†𝑫†𝜫⊥
𝑨𝑫𝑺

}}−1 , (6)

where 𝜎2𝑤 the noise variance, 𝑺 denotes a diagonal matrix that contain
the transmitted signal, 𝜫⊥

𝑨 represent the projection onto nullspace of
𝐴 given as 𝛱⊥

𝐴 = 𝑰 − 𝑨(𝑨†𝑨)−𝟏𝑨†, where 𝑨 is the beampattern of 𝑚
far–field sources, and † denote the conjugate transpose. 𝑫 is the partial
derivative of 𝐴 with respect to 𝜻 :

𝑨 = [𝒂(𝜙1, 𝜃1),𝒂(𝜙2, 𝜃2),… ,𝒂(𝜙𝑚, 𝜃𝑚)] (7a)

𝑫 = [𝒂′𝟏,𝒂
′
𝟐,… ,𝒂′𝒎],𝒂

′
𝒎 =

𝜕𝒂𝒎
𝜕𝜁𝑚

. (7b)

Fig. 9 shows the AOA estimation performance for one BS in the
presence of impairments, showing that the variance of the azimuth and
elevation estimations is close to the CRLB, indicating an efficient esti-
mator. It should be noted that the level of closeness between the CRLB
and the variance varies depending on the BS position. For visualization
purposes, we considered a single BS, so the observed closeness may not
apply to other BSs. From the CRLB plot, the azimuth angle is close to
10−5 degrees, while the variance under impairments fluctuates between
10−2 and 10−1 degrees. Similarly, for the elevation angle, the CRLB
is mostly within 10−7 degrees, with the variance also ranging from
10−2 to 10−1 degrees. The magnitude of closeness, calculated as the
logarithm of the ratio between the variance and the CRLB, is nearly 3
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Fig. 7. Impacts of the impairments on Azimuth considering the BS at the center of Fig. 1.

Fig. 8. Impacts of the impairments on Elevation considering the BS at the center of Fig. 1.

Fig. 9. CRLB vs estimated variance of angles using MUSIC based on the technical impairments.

Table 1
Mean AOA error estimation.

Error CFO PN Tilting angle

0 KHz 10 KHz 20 KHz 30 KHz 0◦ 1◦ 2◦ 3◦ 0◦ 1◦ 2◦ 3◦

Azimuth (◦) 0.65 1.26 1.8 2.4 0.65 1.2 2 2.8 0.65 1 1.5 1.7
Elevation (◦) 0.55 0.65 0.75 0.78 0.6 0.65 0.75 0.85 0.58 0.6 0.63 0.65

to 4 orders of magnitude:

Magnitude of Closeness = log10

(

Variance
CRLB

)

≈ 3 to 4 (8)

While the variance is not as tight as the CRLB, it remains relatively close
in terms of orders of magnitude. Similarly, the magnitude of closeness
of the elevation is approximately 5 to 6.

3.5. Impact of number of available BS and ISD on positioning accuracy

Since 3D positioning is dependent on AOA, any inconsistencies on
the covariance and angles impacts positioning. Additionally, factors
such as ISD and the number of BS receivers play a critical role in
determining positioning accuracy.
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Fig. 10. Location estimation performance with respect to number of BS and ISD without the impairments.

To examine the effects of ISD and the density of participating BS
receivers on positioning accuracy, we initially set a defined area with
a fixed spiral trajectory. We then varied both the ISD and the number
of BS.

Additionally, careful design consideration for the number of BSs,
ISD, and trajectory is crucial, as simply increasing the number of BSs
does not necessarily yield significant improvements in drone location
accuracy, as seen in Figs. 10. To determine the optimum number of BS,
we need to consider the area of interest, the type of antennas used, and
the number of antennas utilized in both the transmitter and receiver.

Figs. 10(a) and 10(b) compare the distribution of positioning errors
in 2D and 3D localization systems under different configurations, by
varying the number of BS and ISD. Fig. 10(a) shows location accuracy
in 2D and 3D as a function of BS count and ISD. Generally, it can be
observed that more BSs and smaller ISDs result in better positioning
accuracy. Fig. 10(b) presents the localization error distribution for
different numbers of BS while keeping ISD constant. Overall, Figs. 10(a)
and 10(b) illustrate that increasing the number of BSs tends to enhance
localization accuracy in both 2D and 3D configurations. Fig. 10(c)
presents the overall configuration and results of a simulation aimed at
assessing the accuracy of 2D location estimations. It depicts the true
spiral trajectory and the estimated 2D positions using 7 BS with ISDs
of 250 meters and 500 meters. The plot shows the position of set of
BSs and the accuracy of the location estimations compared to the true
trajectory in the 2D plane.

3.6. Drone location estimation

Let us assume that we have a set of BSs B with known coordinates
(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and corresponding elevation and azimuth angles (𝜃𝑖, 𝜙𝑖) for
each BS. To estimate the location of the drone using the least square
method, with the following steps:

𝐝𝑖 =
[

cos(𝜙𝑖) cos(𝜃𝑖) cos(𝜙𝑖) sin(𝜃𝑖) sin(𝜙𝑖)
]

, (9)

where 𝑑𝑖 is the direction vector for the 𝑖th line in space. The equation
for the line from BS 𝑖 towards the drone can then be represented as:

𝐫𝑖(𝑡) =
[

𝑥𝑖 𝑦𝑖 𝑧𝑖
]𝑇 + 𝑡𝑖 ⋅ 𝐝𝑖, (10)

where 𝑡𝑖 is a scalar that extends along the direction vector, and ⋅ denotes
the dot product.

The goal is to find a point 𝐏 =
[

𝑋 𝑌 𝑍
]𝑇 in space that

minimizes the distances to each of the lines. This translates to solving
the following optimization problem:

min
𝑋,𝑌 ,𝑍

𝐵
∑

𝑖=1

‖

‖

(𝐏 − 𝐫𝑖(𝑡𝑖)) × 𝐝𝑖‖‖
2 , (11)

where × denotes the cross product and 𝐵 is the number of BSs. The
coordinates (𝑥, 𝑦, 𝑧) gives the estimated location of the drone based on
the 3D AOA estimation over all BSs.

3.7. Drone trajectory tracking

Once the drone is positioned in 3D plane based on the above
sections, the next phase is tracking the drone. In this paper, we utilized
the EKF algorithm, which linearizes the nonlinear model based on the
current mean and covariance through a first-order Taylor series. As
detailed in [23] & [24], the linearized variant of the nonlinear state
is used for estimation of the state via EKF algorithm. Let the state of
the drone be represented as:

𝐱 =
[

𝑥 𝑦 𝑧 𝑥̇ 𝑦̇ 𝑧̇
]𝑇 , (12)

where (𝑥, 𝑦, 𝑧) and (𝑥̇, 𝑦̇, 𝑧̇) are the 3D position and velocity components,
respectively. The process model predicts the next state based on the
current state and control inputs:

𝐱𝑘+1 = 𝑓 (𝐱𝑘,𝐮𝑘) + 𝐰𝑘, (13)

where 𝑓 is the nonlinear state transition function and 𝐮𝑘 is the control
input vector, and 𝐰𝑘 is the process noise.

The measurement model relates the true state of the trajectory of
the drone to the measurements that are observed:

𝐳𝑘 = ℎ(𝐱𝑘) + 𝐯𝑘, (14)

where ℎ is the nonlinear measurement function, and 𝐯𝑘 is the measure-
ment noise.

The EKF linearizes the process and measurement models using a
first-order Taylor expansion about the current estimate:

𝐹𝑘 =
𝜕𝑓
𝜕𝐱

|

|

|

|

|𝐱=𝐱̂𝑘

, 𝐻𝑘 =
𝜕ℎ
𝜕𝐱

|

|

|

|

|𝐱=𝐱̂𝑘

, (15)

where 𝐹𝑘 and 𝐻𝑘 are the Jacobian matrix of the process and measure-
ment models, respectively. The EKF algorithm has two stages.

Prediction step

Let 𝑥̂𝑘|𝑘−1 be the predicted state estimate at time step 𝑘 based on
the previous estimate 𝑥̂𝑘−1|𝑘−1 and control input 𝑢𝑘, and let 𝑃𝑘|𝑘−1 be
the predicted error covariance matrix. Then, the propagation step can
be formulated as [25]:

𝑥̂𝑘|𝑘−1 = 𝑓 (𝑥̂𝑘−1|𝑘−1, 𝑢𝑘), (16)

𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹
𝑇
𝑘 +𝑄𝑘, (17)

where 𝑄𝑘 is the process noise covariance matrix.
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Fig. 11. Impact of CFO on 3D drone localizing and tracking.

Update step

Let 𝐾𝑘 represent Kalman gain, 𝑥̂𝑘|𝑘 be the updated state estimate,
and 𝑃𝑘|𝑘 be the updated error covariance matrix at sampling time 𝑘.
Then, the update phases of the EKF are provided as follows [25]:

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇
𝑘 (𝐻𝑘𝑃𝑘|𝑘−1𝐻

𝑇
𝑘 + 𝑅𝑘)−1, (18)

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 +𝐾𝑘(𝑧𝑘 − ℎ(𝑥̂𝑘|𝑘−1)), (19)

𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1, (20)

where 𝑅𝑘 represents the measurement noise. 𝐼 is the identity matrix.

4. Simulation results and validation

4.1. Simulation setup

The simulation parameters are defined as follows: The simulation
setup is configured with 7 and 13 BS receivers, with the ISD between
adjacent BS 250 meters and 500 meters. The BS receivers employ a 4X4
URA, positioned at a height of 3 meters. The simulation area covers a
square with a dimension of 1000 meters on each side. The drone utilizes
a single antenna for transmission, operating with a carrier frequency of
490 MHz and a bandwidth allocation of 1.4 MHz. It sends signal with
sampling interval of 0.5 s. In our simulations, the drone follows a spiral
trajectory within the 𝑥–𝑦 plane while hovering at altitudes ranging
from 7 to 11 meters, enabling us to analyze its 3D positional estimation
performance. For each snapshot along the given trajectory of the drone,
the distance to each BS receiver is initially computed, subsequently
enabling the determination of the SNR at every BS receiver In our

simulation, we examine the influence of various impairments on 3D
localization and tracking accuracy. We configure the simulation to
introduce a CFO ranging from 0 to 30 kHz, PN varying between 0 to
3𝑜 degrees, and a BS antenna tilt also within a range of 0 to 3𝑜. The
impact of these parameters is then assessed in terms of their effects on
the covariance, AOA, and the precision of localization estimations.

4.2. Localization and tracking results

4.2.1. Impacts of CFO
We evaluate the accuracy of 3D localization and tracking, with

the simulated results presented in Fig. 11. Doubling the ISD while
maintaining the number of BS receivers, Fig. 11(b), the median errors
for positioning and tracking are 6 meters without CFO. However, intro-
ducing a 30KHz CFO the errors rise to around 24 meters for positioning
and tracking. Comparatively, the 90th percentile error increases as the
ISD increases and the number of BS decreases. This trend is indicative
of the impact of both BS density and ISD on the accuracy of 3D
positioning in the presence of CFO. Fig. 11(a) shows that when CFO
is not considered, the median errors for positioning and tracking are
approximately 3 meters. However, with a 30KHz CFO, these errors
increase to approximately 16 meters for positioning and 14 meters for
tracking.

4.2.2. Impacts of PN
Fig. 12 shows the influence of PN on 3D drone positioning and

tracking for two different ISDs and two BS setups. Notably, for both 13
and 7 BS configurations, as the ISD increases from 250m to 500m, the 3D
positioning and tracking errors tends to increase. The 90th percentile
values from Fig. 12(a) indicate a positioning error of 7.5 meters without
PN and 21 meters with a PN of 3𝑜.
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Fig. 12. Impact of PN on 3D drone localizing and tracking.

Table 2
90th Percentile of 3D location (m) error for different impairments.

No. BS ISD [m] CFO PN Tilting angle

0 KHz 10 KHz 20 KHz 30 KHz 0𝑜 1𝑜 2𝑜 3𝑜 0𝑜 1𝑜 2𝑜 3𝑜

13 250 8 17 26 28 7.5 12 17 21 8 11 13 14
500 10 21 42 54 9 18 27.5 33 10 16 19 24

7 250 10 18 30 36 9 15 20 26 9 12 13 14
500 10 27 35 43 8 14 22 27 8 12 17 22

Meanwhile, Fig. 12(c) shows a 90th percentile positioning error of
9.5 meters without PN and 26 meters with a PN of 3𝑜. This concludes
that for the same ISD, a reduction in the number of BS results in an
increase error. For the same area of interest, reducing the number of
BS leads to increased errors due to fewer BS providing less diverse angle
coverage and fewer measurements. This reduction also stretches each
BS’s coverage area, heightening susceptibility to signal quality issues
like multipath conditions.

4.2.3. Impacts of tilt angle
Fig. 13 highlights the relationship between the down tilt of the

BS antenna receiver and its influence on 3D drone localization and
tracking for different setups. At the 90th percentile, Fig. 13(a) suggests
a positioning error of around 8 meters when the BS antenna is not tilted,
increasing to 14 meters with a 3𝑜 tilt.

Conversely, Fig. 13(d) demonstrates that increasing the ISD while
decreasing the number of BS leads to higher errors at the same per-
centile, with positioning errors of 9 meters without tilt and 21 meters
with a 3𝑜 tilt. Essentially, increasing the down tilt of the BS antenna
receiver, especially in less dense BS setups, leads to a noticeable drop
in drone localization accuracy. Fig. 13 generally shows that the posi-
tioning and tracking curves diverge as the tilting angle increases. The

90th percentile of 3D location error under all considered hardware
impairments is presented in Table 2.

5. Conclusion

In this paper, we analyze our approach, which employs a spiral
trajectory drone equipped with a single antenna for signal transmission,
and 4X4 URA receivers positioned at known locations. We examine
the impact of CFO, PN, and tilting of BS antenna receivers on AOA-
based drone localization and tracking. To validate our methodology,
we introduce different PNs and CFOs for each antenna element in the
computation of the steering vector at each sampling time. To visualize
the impact of these considered impairments on drone localization and
tracking, we follow a three-step process in our paper. Firstly, we
examine the impact of impairments on the off-diagonal elements of
the covariance matrix of the received signal at each BSs. The second
step involves visualizing the impact of these impairments on 3D AOA
estimation using the MUSIC algorithm for each BS receiver. Finally,
having estimated the noisy 3D AOA, we estimate the position of the
drone using a LS approach across all the BS receivers, and track the
drone using EKF algorithm.
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Fig. 13. Impact of down tilt of BS antenna receiver on 3D drone localizing and tracking.

Furthermore, we evaluate and compare the corresponding CRLB
for all BSs with the sample variance of the 3D AOA using MUSIC,
demonstrating that our results validate the lower bound. Moreover,
we investigate how the configuration of the number of BSs and their
ISD influences AOA-based drone localization accuracy. Our simulation
study reveals that impairments can significantly affect the accuracy of
drone location estimation.
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