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Spacing Vector and Varying Distance Constrained
Positioning Using Dual Feet-Mounted IMUs

Xiaofeng Ma , Graduate Student Member, IEEE, and Simo Särkkä , Senior Member, IEEE

Abstract— The zero velocity update (ZUPT) offers an effective
correction method for sensor drift in indoor positioning systems
using foot-mounted inertial measurement units (IMUs). However,
the heading drift is still a problem in positioning systems using
IMUs. This article develops methods for positioning using two
foot-mounted IMUs to solve this problem. The proposed method
is based on the use of a time-varying distance constraint (VDC)
and a spacing-vector constraint. Our methods are experimentally
compared against other distance-constraint-based methods using
a dataset that we collected for this purpose. The results show
that our method has better control of the separation between
the trajectories of the feet.

Index Terms— Distance constraint, dual inertial measurement
units (IMUs), foot mounted, indoor positioning, spacing-vector
constraint.

I. INTRODUCTION

INERTIAL measurement units (IMUs) are highly effective
for positioning in environments where infrastructure-based

positioning systems (e.g., GPS [1] or Wi-Fi [2]) are not
available. In particular, MEMS-based IMUs are popular in
personal positioning systems because they are economical,
self-contained, and compact enough to be wearable or inte-
grated into a smartphone [3]. IMU-based pedestrian dead
reckoning (PDR) systems can be classified into step-and-
heading systems (SHSs) and strap-down inertial navigation
systems (SINSs) [3], [4]. The former is specific to pedestrians
and computes a 2-D planar trajectory by accumulating the
distance by counting the steps and tracking the heading with
a gyroscope or magnetometer. The latter obtains 3-D displace-
ment by double integration of the acceleration expressed in the
navigation coordinate system. However, the accumulation of
sensor errors makes both types of PDRs unreliable for longer
periods of time [5].

Using a foot-mounted IMU is an effective solution to the
error accumulation problem. The periodic contacts of the foot
with the ground can be used as pseudo-measurements for drift
corrections. This technology is known as zero velocity updates
(ZUPTs) [5]. Hou and Bergmann [3] reviewed hundreds of
papers related to pure IMU-based PDRs and found that studies

Received 2 June 2024; revised 13 August 2024; accepted 2 September 2024.
Date of publication 3 October 2024; date of current version 18 October 2024.
The work of Xiaofeng Ma was supported in part by the Program of China
Scholarships Council (CSC) under Grant 202106020074 and in part by the
Research Council of Finland. The Associate Editor coordinating the review
process was Dr. Gabriele Patrizi. (Corresponding author: Xiaofeng Ma.)

The authors are with the Department of Electrical Engineering and
Automation, Aalto University, 02150 Espoo, Finland (e-mail: xiaofeng.
ma@aalto.fi; simo.sarkka@aalto.fi).

Digital Object Identifier 10.1109/TIM.2024.3472776

using foot-mounted IMUs generally have a higher accuracy.
However, the heading-related states are not observable from
the zero velocity pseudo-measurements, which leads to a
heading drift in the calculated trajectory. To reduce this drift,
recent research has focused on using additional devices such
as distance sensors, magnetometers, and fusing multiple IMUs
with physical constraints. We discuss these in the following.

As it is difficult to observe the heading-related states
by relying only on the IMU itself, additional sensors can
be used to provide reference measurements. For example,
Xia et al. [6] use an ultrasonic sensor to detect changes in
foot-to-wall distance to determine if there is a heading drift
in the current calculated trajectory. However, adding more
sensors like this may result in a bulky and cumbersome device.

Magnetometers are also often used to obtain heading infor-
mation as they can be integrated into an IMU. However,
indoor environments may contain ferromagnetic materials that
can interfere with the Earth’s magnetic field [2]. One way to
aid IMU-based positioning is to treat the disturbed magnetic
field as a map of fingerprints [2]. To avoid the large effort
of collecting a magnetic fingerprint map, Gaussian process
regression can be used to estimate the magnetic field [7], [8].
Viset et al. [9] developed a method for simultaneous localiza-
tion and mapping of magnetic field using an extended Kalman
filter (EKF). Nevertheless, Gaussian process regression meth-
ods for magnetic field-based positioning have difficulties in
providing good predictions for unexplored areas.

The use of multiple IMUs on a single leg is another research
area. In [10], the joint equality constraint between the lateral
side of the shoe and the calf is analyzed and used as an
observation for EKF. Li et al. placed IMUs on the upper
sides of the ankle and the toe in paper [11] and added one
more IMU on the heel in paper [12]. The authors analyzed
the geometry of the placements during the swing and stance
phases. The velocity and position relationships between the
IMUs are then used as observations for measurement updates.
Wang et al. [13] placed IMUs on the calf and the ipsilateral
instep, and derived an angle constraint, a degree-of-freedom
constraint, and a relative-position constraint existing between
the two IMUs due to the structure of the human body. These
constraints were then used for state estimation of the two
IMUs. However, the observability of drift due to heading in
the above constraints or measurements is yet unclear.

Another kind of approach, which we also study here, is to
place sensors on both feet. The drift can then be diminished
by limiting the distance between the feet [14], [15], [16], [17],
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Fig. 1. Illustration of the concept of this article. The trajectories of two
feet calculated in one stride by independent ZUPT-aided ErKF diverge due to
drifts, shown as unconstrained estimation where the footprints represent stance
phases. We develop new methods (in light yellow-filled boxes) to constrain
them, where VDC is a distance constraint applied to each instant shown as
a color gradient and SVC is a vector constraint applied to MinDIs shown as
purple arrows. Using these physical constraints, the drift in the final trajectory
estimate is reduced.

[18], [19], [20], [21], [22], [23]. In paper [14], the problem
is formulated as an optimization problem with an inequality
constraint. Prateek et al. [15] give a closed-form solution for
constraining the position of the swinging foot. Bolotin et al.
[16] regard the maximum distance as a pseudo-observation
for an EKF. Shi et al. [17] argue that an ellipsoidal boundary
is more suitable than a spherical boundary because the height
difference between the two feet in walking is more constrained
than the horizontal distance. Wang et al. [18] calculate the
distance between the feet using the estimated feet position
at the start of each stride (the two are both in stance phase)
as the maximum bound for the current stride.

In practice, the maximum distance constraint (MaxDC)
is rather loose and the constraint on drift is lagging. The
actual distance between the feet varies from a maximum to
a minimum and then increases again. To get a more real-time
distance between feet, Jao et al. [19] put two cameras at heels
with a chessboard pattern. Then, a relative position measure-
ment between the two is given when the cameras can see
each other. Zhu et al. [20] and Qi et al. [21] take the real-time
range measurement from two ultrasonic sensors mounted on
each foot as observations for EKF. Chen et al. [22] showed
that ultra-wideband (UWB) sensors can provide better mea-
surements in nonline-of-sight (NLoS) scenarios compared to
ultrasonic sensors. However, ground and orientation effects
still require extra processing due to the UWB being mounted
on feet. Moreover, these additional sensors and the correspond-
ing data processing make the whole system more complicated.

In paper [23], the minimum foot-to-foot distance, which
occurs when the moving foot passes by the standing foot,
is taken as a pseudo-measurement for EKF. The minimum
distance constraint (MinDC) bounds the drift in a more timely
manner than the MaxDC. In paper [24], we proposed an
inequality distance constraint that considers both maximum
and minimum bounds and even intermediate instant bounds,
using an assumed time-varying distance curve. In the same
paper, we also proposed a spacing vector constraint (SVC) that
is enabled when the feet are side-by-side. It takes into account
the spatial physical limitations of the left and right feet. In this

article, we replace the inequality constraints with equality
constraints using an experimentally determined distance curve.

Positioning using an array of IMUs is also possible and has
turned out to have a good practical performance [25], [26].
It allows using statistical means to obtain better positioning
results from the IMU array by canceling out the noise.
However, the cost, number of IMUs, and size of the module
affect the accuracy and relative performance of the IMU array-
based methods.

This article is an extension of our work [24]. Here, we focus
on the time-varying distance equality constraint without addi-
tional sensors. The flowchart of the system is illustrated in
Fig. 1. The contributions are summarized as follows.

1) We propose a dual-feet positioning method with
time-varying distance equality constraint requiring only
IMU sensors, which we call spacing vector and VDC
(SVDC), that can provide constraints for the feet at each
instant.

2) We perform a series of experiments to determine the
regularity patterns for the feet spacing to aid the con-
struction of an experimental distance curve model for
the feet.

3) Based on the experimental data, we propose a model
for the distance curve between two insteps and its
adaptive deformation. It provides time-varying distance
pseudo-measurements without additional sensors.

4) We experimentally compare our method with other
methods on different paths and different subjects. The
effect of different settings of the proposed distance curve
on the results is also shown. The dataset will be made
publicly available after this article is accepted.

The structure of this article is the following. In Section II,
we explain some of the terms related to walking movements
that will be used throughout the text and describe the imple-
mentation of the ZUPT-only method which we use as a
baseline. The proposed methods are explained in Sections III
and IV. The collected datasets are explained and the methods
are compared in Section V. Finally, we conclude our work in
Section VI.

II. ZUPT-AIDED PEDESTRIAN POSITIONING

In this section, we define some terms related to walking
and also define the basic dual-foot model that uses only ZUPT
method.

A. Gait Cycle

Human walking is a periodic movement known as the gait
cycle which can be divided into gait phases by gait events [27].
Fig. 2 shows a healthy gait pattern represented by frontal
angular velocity, and the corresponding gait phases and events
based on papers [27], [28], [29]. For ease of statement, the
often-mentioned terms in this article are explained as follows.

1) Step: The distance between two feet while standing.
2) Stride: The distance between two consecutive footfalls

of one foot, which generally equals two steps (see
Fig. 1).

3) Zero Velocity Interval (ZVI): The foot is almost static
and the ZUPT technology is implemented in this period.
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Fig. 2. Illustration of a gait cycle, important terms, and the corresponding
feet angular velocity of the frontal axis.

4) Minimum Distance Instant (MinDI) or Maximum Dis-
tance Instant (MaxDI): The instants when the feet are
closest to each other or farthest from each while walking.

The detection of gait phases and events can help the posi-
tioning method to find the instants at which constraints or
measurements are implemented. The specific detection meth-
ods will be described in Section IV-A.

B. Positioning With ZUPT

Next, we describe the model often used in foot-mounted
IMUs, the error-state Kalman filter (ErKF) [30], which we also
use in the dual-foot case. Taking position, velocity, quaternion,
and accelerometer biases as the states of j th system ( j ∈

{R, L} means right or left), the navigation model is [31]
p j
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where Ts is the sampling time, Cn
b is the direction cosine

matrix from the body frame to the navigation frame, gn
=

[0 0 − g]
⊤ is the gravity, u j

k = [ f j⊤
k ω

j⊤
k ]

⊤ is the output
of IMU including the specific force and the angular veloc-
ity, and b j

a,k is the accelerometer bias vector. Furthermore,
w

j
k = [w

j⊤
a,k w

j⊤
g,k w

j⊤
ba,k]

⊤ are Gaussian noises with zero
means and covariances Q j

= diag(σ 2
a I3, σ 2

g I3, σ 2
ba I3)

for the accelerometers, gyroscopes, and accelerometer biases,
respectively. Above, ⊗ denotes the quaternion product and
exp(·) is the quaternion exponential.

The ZUPT model [5] is

y j
k = v

j
k + r j

k (2)

where the pseudo-measurement y j
k ≜ 0 and r j

k is a zero-mean
Gaussian measurement noise with covariance R j which can
be set to a suitable small value, for example, R j

= 0.0001I3.
Note that we have not included the gyroscope biases in

the model. This is because estimating IMU biases simultane-
ously does not always enhance the performance [32]. In our
experience, including gyroscope biases may even make the
performance worse as they are not observable from the zero-
velocity measurements [5], [33]. Therefore, we only include

biases of the accelerometer into the state in addition to the
navigation states.

In a dual feet system, the navigation states are xk =[
(x R

k )
⊤ (xL

k )
⊤
]⊤, where x R

k and xL
k are the states, similar

to (1), for the left and right feet, respectively. The ErKF [30]
estimates error-state δxk (error in xk) by a Kalman filter
and uses it to update the nominal state. The procedure is as
follows [30], [34].

1) Perform a dynamic update of nominal state by

x̂−

k =

{
f
(
x̂ R+

k−1, uR
k−1

)
f
(
x̂L+

k−1, uL
k−1

) (3)

where − denotes a priori or predicted, + denotes a
posteriori or corrected, and ∧ indicates an estimate.

2) Predict the error state and covariance

δ x̂−

k = Fk−1δ x̂+

k−1 = 0 (4a)

P−

k = Fk−1 P+

k−1 F⊤

k−1 + Lk−1 Qk−1 Lk−1 (4b)

where (4a) holds because δ x̂+

k−1 was reset to zero in
the last loop [also see (6b)], Pk is the state covariance,
Qk = blockdiag(QR, QL), Lk = blockdiag(L R

k , LL
k ),

and Fk = blockdiag(F R
k , FL

k ). For the details of F j
k

and L j
k , see [14], [15], [31], and [35].

3) Perform measurement update on the error state (below,
ZVD refers to zero velocity detection)

Hk =



[
H0 03×12

]
, only right ZVD is true[

.5pc
][

03×12 H0

]
, only left ZVD is true[

.5pc
][ H0 03×12

03×12 H0

]
, both ZVDs are true

(5a)

K k = P−

k H⊤

k

(
Rk + Hk P−

k H⊤

k

)−1
(5b)

δ x̂+

k = −K k Hk x̂−

k (5c)

P+

k =
(
I − K k Hk

)
P−

k (5d)

where H0 =
[
03 I3 03×6

]
and Rk is the block diagonal

matrix of RR and RL .
4) Update the nominal state and reset the error state

x̂+

k = x̂−

k + δ x̂+

k (6a)

δ x̂+

k = 0. (6b)

III. DISTANCE CONSTRAINTS FOR TWO FEET

When using the method above, there are still increasing
errors in the position and yaw estimates over time when using
ZUPT, because the position, the yaw angle, and the vertical
gyroscope bias are unobservable from zero velocity measure-
ments [5], and because in the model, the motions of the two
feet are independent. In this section, we introduce and propose
methods for the dual feet-mounted IMU case that model the
dependence between the feet. First, two range-constrained
methods, MaxDC [36] and MinDC [37] are reviewed. Then,
we develop a new SVDC method, which is a combination and
improvement of our separate VDC and SVC proposed in [24].
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A. Constant MaxDC

The underlying idea of MaxDC is that the distance between
two feet should be less than a constant value γ . Here, we intro-
duce one implementation proposed in work [36], which will
also be compared with in the experimental results in Section V.

The MaxDC is formulated as an optimization problem with
a nonlinear inequality constraint

p̃k = arg min
p∈R6

(
∥ p̂+

k − p∥
2
2

)
, s.t. ∥ pR

k − pL
k ∥

2
2 ≤ γ 2

max (7)

where p̃k =
[

p̃R⊤

k p̃L⊤

k

]⊤ contains the position estimates of
the right and left feet and γmax is the preset upper bound of the
distance between two feet.

The solution to the problem obtained using the Lagrange
multiplier method is [36] when d̂2

k > γ 2
max

p̃R
k =

1
2

(
p̂R

k + p̂L
k

)
+
γmax

2d̂k

(
p̂R+

k − p̂L+

k

)
(8a)

p̃L
k =

1
2

(
p̂R+

k + p̂L+

k

)
−
γmax

2d̂k

(
p̂R

k − p̂L
k

)
(8b)

where d̂k = ∥ p̂R+

k − p̂L+

k ∥2 is the distance between the two
feet computed using the Kalman a posteriori estimate.

Finally, when d̂k > γmax, the coordinates calculated from (8)
are used as pseudo-measurements with noise covariance Rpos
for a further measurement update after ZUPT.

B. Minimum Distance Constraint

Liu et al. [37] show that the maximum distance between
the feet is not stable. It varies with speed or even with
different strides at the same speed. It can also lead to untimely
constraints if the bound γ is set too loosely. The fluctuation of
the minimum distance is proved to be smaller in various walk-
ing speeds and pattern scenarios [37]. Hence, Liu et al. [37]
proposed to use a MinDC. The minimum distance was exper-
imentally determined to occur at 60% of the ZVI in their
work. Note that the conclusion in this article is drawn in a
configuration that the IMUs are placed at heels and the ZVIs
are detected using the SHOE method.

The constraint is formulated as an optimization problem

x̃k =arg min
xk∈R18

(
∥x̂+

k −xk∥
2
P−1

k

)
, s.t. ∥ pR

k − pL
k ∥

2
2 =γ 2

min (9)

and the solution of the problem by projection approach is

x̃k = x̂+

k − Pk A⊤

k

(
Ak Pk A⊤

k

)−1(Ak x̂+

k − b
)
. (10)

Then, the navigation states are updated iteratively at k =

MinDI starting from the a posteriori estimate of ErKF-ZUPT
at MinDI (for more details, see [37]).

C. Proposed SVDC

We proposed two constraints in paper [24]. The first is
VDC, which follows the idea of MaxDC but replaces the fixed
maximum bound γmax with a simulated time-varying bound γk .
The second is SVC, which can correct the wrong crossing of
the left and right feet as shown in Fig. 1. These two methods

are used as separate methods in [24]. Here, we combine and
improve them which leads to the proposed SVDC method.

The constraints in our method are incorporated by including
a nonlinear constraint to a Kalman filter. Suppose that we have
a nonlinear constraint on xk

g(xk) = c (11)

where c is a constant. Linearize (11) around x̂+

k

g(xk) ≈ g
(
x̂+

k

)
+ Gk

(
xk − x̂+

k

)
(12)

the corresponding linearized constraint on the error states
δxk = xk − x̂+

k can be derived as

Gkδxk = ck (13)

where Gk = (∂g(x)/∂x)|x=x̂+

k
and ck = c − g(x̂+

k ).
The constraints can be incorporated into the Kalman filter,

for example, by a projection method, augmented perfect
measurements, or as a soft constraint [38]. The projection
and perfect measurements approach are suitable for strict
mathematical constraints and the soft approach is suitable for
constraints that are heuristic rather than rigorous [38], [39].

Here, the constraints are implemented as soft constraints
considering they are heuristic. The problem is then to minimize
the following cost function for δ x̃k :

J = ∥δ x̃k − δ x̂+

k ∥
2
W k

+ ∥ck − Gδ x̃k∥
2
R−1

c
(14a)

= ∥δ x̃k∥
2
W k

+ ∥ck − Gδ x̃k∥
2
R−1

c
(14b)

where Rc is the noise covariance of the constraint and W k

is a symmetric positive definite weighting matrix [38]. The
setting of W k will be discussed in Section III-D. Note the
constraint is implemented after (6a), δ x̂+

k is therefore equal to
0. By (∂ J/∂δ x̃k) = 0, we get

P̃k = P+

k − P+

k G⊤

k

(
Gk W−1

k G⊤

k + Rc
)−1Gk (15a)

δ x̃k = W−1
k G⊤

k

(
Gk W−1

k G⊤

k + Rc
)−1

ck . (15b)

Finally, the state covariance will be updated according to (15a),
and the error state will be updated according to (15b), after
which we proceed similar to (6).

The SVDC contains two parts.
1) Spacing Vector Constraint: This constraint is active at

the MinDI. Due to physical constraints, the trajectories of the
feet should not cross when a person walks. Fig. 1 illustrates
wrongly inverted trajectories of the feet in the unconstrained
estimation. Although the distance constraint method can limit
the positions of the two IMUs to a reasonable range, it does not
ensure this physical requirement is met. The spacing vector,
illustrated by the purple vector s in Fig. 1 which is the
horizontal vector between two feet when the feet are side by
side (that is at MinDI), is designed to solve this problem.

Note that here we define the right-front-up coordinate sys-
tem as the reference system, and the y-axis is pointing toward
the “north,” as shown in Fig. 2. Assume that two IMUs are
spaced γmin apart when they are side by side, then we have[

pR
x,k

pR
y,k

]
−

[
pL

x,k
pL

y,k

]
= C(ψk)

[
γmin

0

]
(16)



MA AND SÄRKKÄ: SPACING VECTOR AND VARYING DISTANCE CONSTRAINED POSITIONING 9518511

where pR
x,k is the x-coordinate of the right (R) foot, the

superscript L indicates the left foot, and similarly for the

subscript y. Above, C(ψk) =

[
cosψk − sinψk

sinψk cosψk

]
, where ψk is

the heading of the person. Here, we take the weighted circular
average of the two headings of the two IMUs as ψk

ψk = arctan
βR sinψ R

k + βL sinψ L
k

βR cosψ R
k + βL cosψ L

k
(17)

where ψ j
k is the heading estimate at k of the j th foot, and β j

is a priori weight of the heading which can be set to 1 if there
is no knowledge about them. Substituting (17) into (16)[

pR
x,k

pR
y,k

]
−

[
pL

x,k
pL

y,k

]
= γminz−

1
2

[
βR cosψ R

k +βL cosψ L
k

βR sinψ R
k +βL sinψ L

k

]
(18a)

z =
(
βR)2

+
(
βL)2

+ 2βRβL cos
(
ψ R

k − ψ L
k

)
.

(18b)

The above equation will be linear with respect to positions
if ψR,k and ψL ,k are set to some heuristic values such as
the mean of the heading in a window. In this case, Gk =[
I2 02×10 −I2 02×10

]
and ck is the difference between the

right-hand side minus the left-hand side of (18a). It will be
nonlinear with respect to positions and headings if ψR,k and
ψL ,k are assumed to be unknown. Then, the constraint needs
to be linearized to have the form of (13).

2) Varying Distance Constraint: This constraint is active at
each instant k except for MinDI. As we explained in Section I,
a constant distance constraint may not suffice for compensating
the drifting of the two feet. Therefore, we develop a varying
distance model that allows for changing the distance constraint
in time. Below, we use the notation γk for the time-varying
bound. The varying distance γk could be regarded as a simu-
lated output of the ultrasound module in paper [20] and [21]
of each step.

The time-varying constraint is of the form

∥ pR
1:2,k − pL

1:2,k∥
2
2 = γ 2

k (19)

where γk is the simulated reference distance which will be
described in Section IV. Equation (19) needs to be linearized
relative to the error state to have the form of (13), which leads
to ck = γ 2

k − ∥ p̂R+

1:2,k − p̂L+

1:2,k∥
2
2 and Gk =[

2( p̂R+⊤

1:2,k − p̂L+⊤

1:2,k ) 01×10 −2( p̂R+⊤

1:2,k − p̂L+⊤

1:2,k ) 01×10
]
.

D. Case Study: Weighting the Feet

The distance constraints can ensure that the two feet are
always moving approximately to the same direction. Espe-
cially, a distance constraint will correct the trajectories to the
truth when the drifts of the two happen to be contralateral,
as can be seen from examples in [18], [36], and [40]. However,
this direction might not always be correct since the drifts might
be ipsilateral, for example, when both the trajectories drift to
left. In this case, one of the constrained trajectories may be
closer to the truth, but the other may be further away.

It is claimed in [32] that the heading drifts of the two
feet are statistically symmetrical, with the majority of left

foot trajectories drifting toward the left and those of the right
foot drifting to the right side. The validity of this claim still
needs to be further evidenced considering more factors, such as
swapping the two IMUs, tests over longer distances (thousands
of meters), and more tests (hundreds). Besides, bias instability
and random walking of gyroscopes may also lead to different
performances between measurements on different time scales.

Our aim is to correct the trajectories closer to the truth
even if the drifts are ipsilateral. Intuitively, we hope that the
constraint will yield larger corrections to the estimates with
higher uncertainty and smaller corrections to the estimates
with higher confidence. From (15b), we know that the diag-
onal elements in W k with higher values result in smaller
corrections. However, the right and left feet usually have
approximately the same confidence in the usual setting of W k

(e.g., W k = P−

k ). Often, we set the same noise parameters
for both feet, such as initial state covariance, process noise,
or measurement noise. As a result, the amount of correction
is roughly the same for both feet, especially at the beginning.
Eventually, the two trajectories may only be constrained to the
approximate average direction (midway).

Adding different confidence or uncertainty on different feet
may help to correct both trajectories to the truth. The problem
then is to decide on a logic for formulating an adaptive
confidence or uncertainty. For example, increasing process
variance Q in the Kalman filter is conceptually the same as
increasing state covariance P and gain K [34]. However, the
drift regularity of trajectories in reality is atypical and also
relates to a person’s walking pattern. It is hard to judge which
trajectory is relatively better without any absolute reference,
such as absolute position or direction. Although determining
the relative trajectory confidence is an open question, we show
in Section V-D that our method exhibits superior performance
to other methods assuming that the said confidence is known.

IV. DISTANCE CURVE CONSTRUCTION

In this section, we describe the construction of the pseudo
distance curve used for the method in Section III-C2.

A. Gait Event Detection

To model the varying distance γk , we analyzed experimental
data that we collected with OptiTrack1 system. In this section,
we will describe the observations from the real data, and based
on these, we decide the methods for detecting gait events.

The distances and ZVIs between the feet depend on the
marker/sensor placement. Fig. 3(b) shows measured distance
curves between two feet for three different marker place-
ments on the feet labeled in Fig. 3(a). The distance between
two insteps, between two toes, and between two heels are
shown by blue, orange, and yellow solid lines, respectively.
The dashed lines are the corresponding ZVIs of the three
marker placements constructed using OptiTrack data, where
the nonzero values (different amplitudes for clarity) indicate
the zero-velocity state of the corresponding placement of one
foot. We can see that the MinDIs for the three placements

1https://optitrack.com/
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Fig. 3. (b) True distance curves between (a) two insteps, toes, and heels,
respectively. The dashed lines are the corresponding ZVIs, where a nonzero
value indicates that one of the feet is static. (c) Histogram of the ratio of
MinDI to ZVI (κ = (tMinDI − tstart of ZVI/tend of ZVI − tstart of ZVI) [37]) varies
among the three placements. The above are reconstructed from OptiTrack.

differ just a little, but there are noticeable shifts in the MaxDIs.
In addition, the start and end of the ZVIs are also different
for the three placements.

The MinDI is the instant when the feet are closest to
each other, which is hard to detect. Liu et al. [37] found the
MinDI is at around 60% of the ZVI, for IMUs installed on
heels. However, it is evident from the above that this ratio
may vary from placement to placement, as ZVI varies by
placement. Fig. 3(c) shows the histogram of the ratio in the
three placements computed from OptiTrack data. It can be
seen that the ratio is around 45% for the instep and 40% for
the toe. For more accurate numbers, more samples should be
collected, however, the current evidence is sufficient to show
that this ratio varies across different placements. Therefore,
the concluded ratio in work [37] is not directly applicable to
our IMU placement (on the insteps).

The popular ZVI detector, SHOE, proposed by
Skog et al. [41], is used in this article. SHOE detector
works well, but sometimes gives incorrect classifications.
This can result in the ZVIs being broken by some incorrectly
short false MPs. Although these misdetections can be
corrected using a set of rules [42], for MinDI detection,
we used an alternative method.

To find a suitable method for detecting the MinDIs and
MaxDIs, we investigated several variables that were more
reflective of the feet’s status during forward walking as shown
in Fig. 4. From Fig. 4(a), it can be seen that the horizontal
velocity of the swinging foot will reach its maximum at
the MinDI. The MaxDI occurs approximately at the moment
when the speeds of both feet are equal but not zero. From
Fig. 4(b), we can see that MaxDI and MinDI do not occur
at extremes, over zeros, or intersections of pitch angle, so it
is not indicative of MaxDI and MinDI. Similarly, the norm
of the specific force is not suitable. From Fig. 4(d), we can
see that MinDI can be detected from the maximum peaks of
the frontal angular velocity. MaxDIs can be detected by the
lowest valleys of the frontal angular velocity. Since velocity
requires more calculations compared to the raw sensor data,
we use the angular velocity as an indicator of both MinDI and
MaxDI.

Furthermore, we compared the gaps between MinDIs and
MaxDIs detected from OptiTrack and using frontal angular
velocity, as shown in Fig. 4(e) and (f). Most of the differences
lie between −1 and 1 samples (the sampling rate is 60 Hz).
Henceforth, the instants of peaks and valleys can be used as
estimates of MinDI and MaxDI.

Fig. 4. Changes in (a) horizontal speed, (b) pitch angle, (c) norm of specific
force, and (d) frontal angular speed of the feet during walking. The blue, red,
dashed, and dotted lines represent the right foot, left foot, MaxDI, and MinDI,
respectively. Therein, the frontal angular velocity is suitable for detecting
MaxDI and MinDI, and (e) and (f) gaps between corresponding detection and
the truth are shown in blue histogram.

TABLE I
QUALITY COMPARISON OF DISTANCE CURVES FIT

BY DIFFERENT MODELS

B. Construction of the Time-Varying Bound

In this section, we propose a varying distance curve model
where the central idea is to model a standard pattern within
one stride and then deform it according to certain rules to
adapt it to different situations. The pattern and the adaptive
deformation rules will be explained in this section, and more
evaluation of the pattern will be shown in Section V.

According to the traditional and natural strides division
as described in Section II-A, one stride is between two
consecutive MaxDIs. We modeled the change in this division
in our previous work [24]. However, the maximum distances
show greater fluctuations compared to the minimum distances,
as shown in Fig. 5(a) and paper [37]. This brings problems
for modeling and adaptive deformation. Therefore in this
article, we choose to model a standard pattern between two
consecutive MinDIs, which is modeled as γn = fn(u) + wγ ,

where wγ is a zero-mean Gaussian random variable with
variance σ 2

γ , u is an auxiliary variable for constructing the
distance curve which is limited to {u|0 ≤ u ≤ π, u ∈ R} for
ease of fitting, and fn(u) is the standard curve.

We used straight walking data from OptiTrack system to
fit the curve. The data were split at MinDIs, and were all
standardized to [0, π] as shown in gray dot lines in Fig. 5(a).
We compared fitting the average curve (green solid line) using
polynomial, Fourier, Gaussian, and the sum of sines models,
and the qualities of the fits are shown in Table I. Among these
four types of models, Fourier and the sum of sines models have
higher R2 and smaller RMSE, of which the Fourier model
requires fewer coefficients. Therefore, we chose the Fourier
model to generate the pattern. Next, the curve is normalized
to [0, 1] in the y-axis direction. The fit distance curve is

fn(u) = 0.1219 sin(1.862u)− 0.4935 cos(1.862u)

− 0.08383 cos(3.724u)+ 0.04255 sin(3.724u)

+ 0.5857. (20)
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Note that using the proposed in-stride curve in an estimator
introduces one step (half-stride) delay to the estimator in
space as it needs to wait for the arrival of the next MinDI
before continuing the run. As a step is only a few tens of
centimeters, the delay does not affect the real-time nature of
pedestrian positioning. However, the IMU data received in the
current step should be temporarily stored until a new MinDI
is detected, and only then the navigation state estimation
starts. Taking the rear step of a certain left stride as the
current step as an example, Fig. 1 illustrates the time-evolving
trajectories and distance curve γk using a color bar from orange
to green to encode time. At each instants, the positions of the
trajectories and the distance between two feet are marked with
a corresponding color from the color bar.

The standard pattern can be adaptively deformed to each
stride according to the detected MaxDI and MinDI described
in Section IV-A by an affine transformationu∗

d
γ ∗

d
1

 =

a11 a12 a13
a21 a22 a23
0 0 1

u∗

γ ∗
n
1

 (21)

where (u∗, γ ∗
n ) is a discrete point uniformly sampled from the

standard pattern at a custom frequency (higher than that of
IMU, e.g., 2/Ts), and (u∗

d , γ
∗

d ) is the point after deformation.
The elements of the affine matrix ai i can be computed from
known three pairs of points. The three points can be the
vertices of the triangles as shown in Fig. 5(b), which are
the points at the maxima and with horizontal coordinates
0 and π , respectively. The deformation is for discrete points
and the discrete auxiliary variables (horizontal coordinates)
are no longer uniformly distributed after the deformation.
We need a new uniformly distributed auxiliary variable u∗

S
for interpolating (e.g., linearly) samples in the data points
after deformation to generate distance measurements at the
same frequency as the IMU. That is, assuming that one stride
contains S IMU samples, then we need to sample S points
on the deformed curve uniformly between 0 and π . These
auxiliary variables are illustrated in Fig. 5(c) and the respective
values are shown in Fig. 5(b). We call this full deformation.

The variation of MaxDIs in strides can be neglected since
they are at the ends of the stance phase of two feet and the
amplitude variation is very small. In this simple deformation,
(21) is simplified to a scale change in the y-axis directionu∗

S
γk

1

 =

1 0 0
0 γmax − γmin γmin
0 0 1

u∗

γ ∗
n
1

. (22)

The setting of γmin and γmax is flexible. As mentioned
in work [23], the standard deviations (1σ ) of γmin between
feet are less than 15 mm for one person and they set this
bound to be the mean of the first three gait cycles after the
user begins to walk. However, the initial positions of the feet
are set artificially and the estimated coordinates of the first
three cycles are drifting because they are not constrained, and
hence the calculated minimum distances also gradually diverge
although not significantly. The γmax is actually the step length
which itself is hard to estimate. Many linear and nonlinear
formulations as well as machine learning methods [3] have

Fig. 5. (a) All one-stride distance curves (gray) between two insteps are
normalized in the same interval, and their mean value is displayed in green.
(b) Fit standard distance curve, the auxiliary points, and (c) auxiliary variables
arising from the deformation process employed to obtain the final distance
measurements are illustrated. (u∗, γ ∗

n ) is deformed to (u∗

d , γ
∗

d ). Then, the final
desired (u∗

S, γk) is interpolated based on the IMU sampling time.

been proposed for this purpose, but most of them still involve
individual parameters or training. Furthermore, these algo-
rithms heavily depend on the sensor position. A foot-specific
method can be used to compute adaptive per-step γmax, but
we will empirically set it to a constant in our experiments.
For example, the γmin and γmax of a user can be roughly
estimated by asking the user to arbitrarily walk straight ahead
for a few steps at a constant pace during idle time. The results
in Section V show that our method still outperforms other
methods with this simple setting.

Although our simulated pseudo-measurements are not as
accurate as the real-time true measurements in papers [19],
[20], [21], [22], our method can constrain the divergence of the
trajectories at each instant without additional sensors, making
it more temporally accurate than using MaxDC and MinDC.

V. EXPERIMENTAL RESULTS

In this section, we describe our experimental datasets and
also report the results of comparing the proposed methods to
alternative methods.

A. Experimental Setup and Evaluation Overview

To evaluate the methods, we compared the results of the
MaxDC [15] method, the minimum constraint (MinDC) [37]
method, and our SVDC. We used two Xsens DOT sensors
to collect the movement data. The two IMUs were placed as
shown in Fig. 1. The data were sampled at 60 Hz and sent to
a mobile phone via Bluetooth. We evaluated the methods with
2-D (horizontal) errors in different cases: Subject1 walking
along a 4.5 × 6 m rectangle with normal pace, along an
S-shaped path containing many 180◦ turns, and along a
random path involving abnormal steps, and running along the
rectangle, which are with reference positions of the IMUs
captured by the OptiTrack system; Subject2 walking along a
400 m running track; and setting the methods with different
parameters. The details are explained in Sections V-C–V-G.
All datasets are publicly available.2

B. IMU Calibration and Initial Alignment

We calibrated the sensor biases before collection. For
gyroscopes, we used a static period before the movement to
calculate the biases. For accelerometers, we collected long

2https://github.com/xf-ma/DualFeetIMUDataset
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Fig. 6. Statistical errors for each test in the datasets of walking along the rectangular path when (a) IMU A is placed on the right foot and IMU B is on the
left foot (ARBL) and when the IMUs are swapped (BRAL), and (b) two selected tests when the right foot is informed to have a higher confidence level. Row
(1) shows box plots of each set of tests for the right foot and row (2) shows them for the left foot. Row (3) shows the average error bars, where the mean
and variance are the averages of the two feet. In the legend, “perfect” means that the distance curves, distance extrema instants, and zero-velocity intervals
are reconstructed using true data (from OptiTrack system), and “imperfect” means that they are estimated using the proposed method.

static data in random orientations and calculated biases using
nonlinear least squares through g =∥ f j

k−b j
a∥, where g is local

gravitational acceleration, and f j
k and b j

a are the vectors of the
outputs and the biases of j th accelerometer, respectively.

A wrong initial heading leads to a rigid rotation of the
whole trajectory. This may lead to heading and position errors
that outweigh the drift caused by the gyroscope errors. The
alignment of the initial heading angle is ignored (just set it as
0) or not explicitly stated in some studies of 6DoF-IMU-based
positioning methods. To focus on the position error caused by
IMU errors such as the deflection caused by z-axis gyroscope
bias, the setting of the initial heading should be done carefully.
Here, we use a similar method as in paper [37] and [40], where
the first stride is used for determining the initial heading.

C. Experiment 1: Walking Along a Rectangular Path

In this section, we evaluate the point-to-point errors of
walking along a rectangular path. The ground truth is provided
by the OptiTrack system. We took 20 sets of measurements
and the subject walked around the rectangle 20 laps for
about 400 m in each measurement. To avoid the effect of
residual bias error of the IMUs, between the experiments,
we exchanged the sensors on the feet, that is, placed IMU
A on the right foot and IMU B on the left foot (ARBL) for
Test 1–10, and placed IMU B on the right foot and IMU A
on the left foot (BRAL) for Test 11–20.

Since the performance of the methods is influenced by
several factors, such as the detection of GE, ZVI, and distance
curve model error, we evaluated the methods using both
perfect and imperfect detections. The perfect detection means
constructing the ZVI, MinDI, and foot-to-foot distance curve
from OptiTrack data directly. The purpose is to compare
the effects of the constraint methods per se. The imperfect
detection means detecting ZVI and GE via Section IV-A and
constructing a distance curve via Section IV-B, which might
be inaccurate but more realistic. Besides, we use fixed γmax,
fixed γmin, and simple deformation to generate the distance
curves.

Fig. 6(a) shows the point-to-point statistical error for
each measurement with ARBL and BRAL placements. Each

Fig. 7. Part of the estimated trajectories when (a) feet drift equally to different
sides, (b) feet drift to one side to different degrees, (c) feet drift equally to
one side, (d) feet drift to two sides to different degrees, (e) right foot is
informed to have a higher confidence level, (f) walking along an S-shaped
path, (g) walking along a random path contains abnormal gaits shown in
(i), and (h) running along the rectangular path. The distance curves, distance
extrema instants, and zero-velocity intervals are estimated using the proposed
methods. Our method is more capable than the other methods in correcting
both feet’s trajectories to be closer to the truth.

column is for one test. The first row shows the box plot of
the right foot in each test, and the second row shows that of the
left foot. Due to the zero-bias instability, random walk of the
gyroscope, or other random factors, several different cases may
occur where the trajectories: 1) drift equally to different sides;
2) drift to one side to different degrees; 3) drift equally to one
side; and 4) or drift to different sides to different degrees. For
case 2), the trajectory of one foot estimated by ZUPT must be
closer to the truth compared to the other foot. For example,
the ZUPT result is the best and the constraint methods are
worse for the right foot in BRAL Test 7 in Fig. 6(a), while
the situation is the reverse for the left foot. We therefore also
show the average error bar in the third row, where the mean
and standard deviation are the averages of the two feet.

From Fig. 6(a), we see that Test 6 of ARBL shows the
smallest and almost the same errors for all methods. This
is because the drift of both feet in this test happens to be
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TABLE II
OVERALL STATISTICAL ERROR ACROSS ALL TESTS

extremely small, and the ZUPT estimate is already pretty
close to the truth. However, this is a rare and serendipitous
occurrence that happened by chance. Among other tests, the
average error of our method is lowest or comparable to other
constrained methods in most tests regardless of whether we
use perfect or imperfect detection. Additionally, imperfect
detection indeed results in slightly worse performance, both
in terms of separate foot errors and averaged errors. However,
the resulting difference is small and it does not change the
performance ranking of the four methods in each test.

Table II further shows the statistical error over all the tests,
where the mean, max, and std of each method are averaged
over ten tests of the corresponding indicator. The ranking
of the three constraint effects is MaxDC<MinDC<SVDC.
MaxDC and MinDC apply constraints only when the estimated
distance between the feet exceeds the preset bound. Among
them, the MinDC method can restrain the divergence of the
position more timely than the MaxDC method, whereas our
method acts as a constraint at every moment. Therefore, our
method demonstrates better results under all the three metrics.

For clearer presentation, only a subset of the calcu-
lated trajectories (with imperfect detection) are displayed
in Fig. 7(a)–(d), and they are around the 20th laps which
have more drift accumulated compared to the trajectories at
the start. The four subplots in Fig. 7(a)–(d) show the four
different combinations of drifting of the two feet mentioned
earlier. Fig. 7(c) is the subset of the trajectories corresponding
to Test 4 of BRAL placement, and we can see that none
of the three constraints works significantly better for the
case of drifting in the same degree to the same direction.
In other cases, our method estimates bipedal trajectories that
consistently maintain a spacing close to the physical reality,
with divergence suppressed more timely, resulting in smoother
trajectories.

D. Case Study: If the Feet Are Weighted

In Section III-D, we discussed a scenario where the confi-
dence of the feet can be estimated by some strategy. Although
developing this strategy is a topic of future research, we now

Fig. 8. Difference for each test of using the proposed fully and simply
deformed distance curves. They have almost the same outcome. (Test 1–10:
IMU A on right B on left, Test 11–20: IMU B on right A on left.)

show the results with artificially set confidence weights to
compare the performance of the three constraints in this case.

We simulate the situation where the right foot has higher
confidence. We selected some tests in which both feet drift
to different degrees and the ZUPT of the right foot is closer
to the truth. Then, we artificially reduced the variance of the
right gyroscope by 0.3 and amplified it on the left foot by 1.7.
This is equivalent to the right foot having a higher confidence,
and the constraint will produce smaller corrections to the right
foot and larger corrections to the left foot. Intuitively, the
constrained trajectories should be pulled together toward the
right foot trajectory rather than to the middle of the two.

Fig. 6(b) shows the errors of the four methods under this
confidence setting. Together with Fig. 6(a), we can see that
the performance of our method is further improved when the
proposed confidence is added. Fig. 7(e) shows the estimated
trajectories of different methods in Test 7 of BRAL set, and
Fig. 7(b) shows the estimated trajectories with equal confi-
dence for both feet of this test. Our method more effectively
constrains the trajectory to the relatively better one. Since
MinDC only implements constraints at certain moments, the
“pull” effect on the trajectory is not continuous. Our method
continuously pulls the trajectory in a direction with higher
confidence, thus showing better results.

E. Comparison of Fully and Simply Deformed Distance
Curve

In this section, we compare the effect on trajectory estima-
tion of using the constructed distance curves with the full and
simple deformations described in Section IV-B.

Fig. 8 shows the difference between the mean errors of these
two methods on each test. It can be seen that the maximum
difference is within 0.025 m. The full deformation requires
more computational resources but does not result in a more
significant improvement, so we can conclude that the simple
deformation is sufficient to produce good constraints.

F. Experiment 2: Different Subject

In this section, we show the results of another subject walk-
ing along a standard 400 m running track counterclockwise
five times and clockwise five times. Due to the unavailability
of ground truth, we do not give quantitative error results, but
only show the distribution of trajectories and end points in
Fig. 9.

The results show our method can constrain the trajectory
effectively. Our estimated trajectories are closer to the real
situation in multiple sets of tests from Fig. 9(a). The ending
points of our method are more concentrated and close to the
truth from Fig. 9(b). Both the first subject in experiment 1 and
the second subject here experimented with a normal pace (no
sprinting or slow walking). It can be seen from the results that
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Fig. 9. (a) Trajectories and (b) ending points of subject 2 walking along a
standard 400 m running track. All ten tests are shown together. Our approach
yields more compact estimates on multiple sets of tests than the other methods.

Fig. 10. Statistical errors for tests of (a) S-shaped path, (b) random path
contains hesitations, sudden retreats, and sideways slips, and (c) running along
the rectangular path. For the legend, see the caption of Fig. 6.

the distance curve model proposed in Section IV-B can adapt
to different people when the IMUs are placed on the insteps
and the person walks at a normal speed.

G. Experiment 3: Challenging Cases

It is reasonable to suspect that our model may introduce
errors in other situations since our model is only fit using data
from a healthy individual walking straightforward at a constant
speed. We therefore conducted the following challenging tests
to evaluate our methods for more conditions and speeds:
1) walking along an S-shaped path containing many 180◦

turns; 2) walking randomly which contains abnormal steps
such as hesitations, sudden retreats, and sideways slips; and
3) running tests along the rectangular path. Fig. 7(f)–(h) shows
the estimated trajectories of some tests of these paths.

These scenarios are not ideal cases for our methods. At cor-
ners, the minimum and maximum distance in one stride and
the occurrence instants change more noticeably than going
straight, which affects the height of the distance curve. Speed
changes mainly lead to the distance curve having a more
pointy (thin) shape. In these cases, the pseudo-measurements
provided by our distance model are less credible. A simple
way to cope with this is to adaptively increase the variance of
the model. A more advanced way would be to use online data
to adjust the distance curve adaptively, but we will leave that
to future work. Here, we only use our current model to see its
performance in these challenging scenarios. Furthermore, the

gait pattern changes in abnormal steps (compare Fig. 7(i) and
Fig. 2), creating difficulties for our distance extrema instants
detection method. One approach is to detect abnormal gaits
by a classifier and disable the constraint part in these steps.
Here, we manually labeled the abnormal steps.

From Fig. 10, we can see that our methods perform far from
perfect detection in some tests because they face the challenge
of misdetection and misconfiguration of the distance curve in
these scenarios. However, the results show that our method still
works well and maintains relatively better performance than
the other methods with both perfect and imperfect detection.

VI. CONCLUSION

In this article, we proposed a dual-feet-based positioning
method with SVDC. The proposed SVC can ensure that the
feet are physically confined to the left and right at MinDIs. The
proposed time-varying distance curve offers pseudo-distance
measurement at each instant. The proposed method was com-
pared with other similar methods (MaxDC and MinDC). Our
method is better at constraining the spacing between the
feet. We also developed a method that can take the relative
confidence of the feet trajectories into account and therefore
correct the feet trajectories better toward the true trajectory.

Our approach shows good performance in controlling foot
spacing without additional sensors, which is achieved mainly
by correcting the positions of the feet. However, its actual
effect on the heading drift remains to be proven by observ-
ability analyses. Furthermore, the height and pointiness of the
distance curve deform in more complex scenarios such as
turning or speed changes. The pseudo-measurements generated
will contain a high level of noise if the distance curve model is
not adjusted accordingly. We will address these issues in our
future work. For example, we can adjust the variance of the
distance model according to different scenarios, which requires
an activity classifier, or build more adaptive and accurate
distance models, for example, via physics-informed machine
learning or Gaussian process regression taking the kinematics
of the distance between the feet into account.
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