
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Truong, Hong Linh; Vukovic, Maja; Pavuluri, Raju
On Coordinating LLMs and Platform Knowledge for Software Modernization and New
Developments

Published in:
Proceedings - 2024 IEEE International Conference on Software Services Engineering, SSE 2024

DOI:
10.1109/SSE62657.2024.00036

Published: 01/01/2024

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Truong, H. L., Vukovic, M., & Pavuluri, R. (2024). On Coordinating LLMs and Platform Knowledge for Software
Modernization and New Developments. In R. N. Chang, C. K. Chang, J. Yang, S. Helal, J. Berrocal, T.
Seceleanu, Y. Sun, Z. Jin, M. Sheng, J. Fan, K. Fletcher, Q. He, N. Atukorala, X. Liu, X. Xu, N. Mead, Y. Ducq,
Z. Tu, Z. Zheng, & C. Gao (Eds.), Proceedings - 2024 IEEE International Conference on Software Services
Engineering, SSE 2024 (pp. 188-193). IEEE. https://doi.org/10.1109/SSE62657.2024.00036

https://doi.org/10.1109/SSE62657.2024.00036
https://doi.org/10.1109/SSE62657.2024.00036

On Coordinating LLMs and Platform Knowledge
for Software Modernization and New Developments

Hong-Linh Truong
Department of Computer Science

Aalto University,Finland
linh.truong@aalto.fi

Maja Vukovic, Raju Pavuluri
IBM Thomas J. Watson Research Center

IBM, USA
{maja,pavuluri}@us.ibm.com

Abstract—Emerging generative and fine-tuning LLMs services
have been widely benchmarked and used for various software
development tasks. These LLMs services are powerful but have
different output qualities for software development tasks and may
not be able to deal with complex development tasks in edge-cloud
software modernization and new developments due to their gen-
erative capabilities and lack of up-to-date (domain) knowledge.
Many queries and solutions related to target platforms, deploy-
ment configurations, policies, data regulation, observability, to
name just a few, are not well integrated with these LLMs, but
are accessed by the developer through other sources. In this
work, we discuss situations where the gaps between the needs
and the offerings from LLMs can be compensated by Platform
Knowledge, which captures knowledge about, e.g., software,
service and infrastructure catalogs, architectural decision records
and code patterns. We propose COLLMS – a framework for
coordinating LLMs services and Platform Knowledge. At the
starting point of the framework, we will discuss challenges for
achieving the coordination centered around Platform Knowledge,
LLMs management and integration, quality-aware coordination
of LLMs, and observability and knowledge updating.

I. INTRODUCTION

Rapid changes in edge-cloud computing continuum plat-
forms and corresponding application models for data intensive
workloads have required a huge amount of work in edge-
cloud software modernization as well as new developments.
Edge/Cloud modernization focuses on techniques, methods
and tools that help the developer to transform their existing
code/applications to (new, native) edge-cloud native environ-
ments and software systems [1], [2], [3]. The modernization
reflects the goal to achieve target artifacts for edge-cloud native
environments – modernizing software/code, as well as the new,
improved engineering process to achieve the target artifacts –
modernizing development processes.

Although the use of LLMs for edge/cloud modernization
and code development productivity has been recently investi-
gated and applied intensively [4], [5], there exist several open
questions on how to use LLMs and other assistant services for
edge-cloud applications and services development. We believe
that coordination is one of the key challenging areas that need
to be addressed for utilizing LLMs and other services for
modernization and new developments. Many works have been
focused on training foundation models, fine-tuning models,
and developing prompt engineering workflows and templates
for different development scenarios. However, the state-of-the-

art has reported that to use an LLM for the right development
tasks, one must carefully invoke the LLM in the right way,
especially carefully coordinating steps of invoking the LLM.
Furthermore, task flows have also recently been investigated
for invoking external knowledge sources to provide contextual
information for invoking LLMs, such as using LLMs and
vectorization in Retrieval Augmented Generation (RAG) [6].
Given many choices of LLMs in the ecosystem, we have
observed that LLMs offerings under the service model can
be selected and combined with others [7]. Thus, coordination
of LLMs is of paramount importance but current coordination
techniques for software modernization and new developments
have several limitations:

• focus on individual LLMs: this does not reflect the
diverse types of tasks and services we need for software
modernization and new developments

• focus on limited quality aspects, e.g., reliability or costs:
this does not support the end-to-end needs for several
related tasks of the software development.

• lack the integration with many important services and
platform knowledge: this does not connect common tools
and knowledge sources that the developer has access
to in the developer environment (e.g., on-premise tools
and private data sources), specially suitable for software
modernization and new developments.

We propose to consider the coordination problems as one of
the key requirements for employing LLMs, fine-tuning models
and other important domain-specific services for software
modernization and new developments. We present further
related work and background in Section II. We describe our
coordination framework and challenges in Section III and
Section IV, as well as a short discussion of the prototype.
Section V concludes our work.

II. BACKGROUND AND RELATED WORK

A. LLMs for software development

Many LLMs and fine-tuning models have been used, de-
veloped and provided for software development. The recent
survey [5] has indicated many of them, such as Code Llama
[8], StarCoder, etc. For certain tasks in software development,
many LLMs can help. Each LLM service has different pros
and cons. LMOps [9], [10] focuses on building applications

using LLMs and Generative AIs. Many papers have been
introduced for combing different LLMs to build applications.
Modernization and new development are part of application
development that can benefit from LLMs. However, most
LMOps papers do not focus on tasks for software component
development. Our goal in this work is not to provide a new
LLM or fine-tuning models for software development but
examine the challenges of coordinating them for software
development.

B. Coordination of LLMs

AutoMix with its verifier [7] uses a small language model to
get an initial answer and then check the answer with a verifier
to decide if the query should be given to the black-box LLM.
It is not designed for software engineering but since it uses
black-box LLMs, it could be tested for software development.
Retrieval Augmented Generation (RAG) and Self-RAG [11]
can use external sources to augment prompts for querying
LLMs. There exist several tutorials on how to combine vector
database for retrieving contexts to be used for querying LLMs,
such as AnyScale [12]. Although, RAG-based techniques are
generic and can be used to combine with information from do-
main and platform knowledge, currently, RAG is investigated
and applied to a single LLM. In our work, by introducing
and utilizing Platform Knowledge and coordinating multiple
services, we aim at integrating RAG methods with many types
of domain-specific, up-to-date knowledge for multiple LLMs.

Langchain [13], Semantic Kernel [14] and their prompt
engineering techniques support the coordination of LLMs
to certain degree. Llamaindex [15] allows to configure and
query different LLMs. However, in our view, they just support
basic ”local” coordination through manual switching LLMs
in a group, whereas the software development would require
coordination workflows of many groups for different tasks.
How to combine LLMs and provide a “langchain” for edge-
cloud software modernization or new development is still
open. CodeRabbit [16] supports code review by calling many
LLMs and do the postprocessing of results returned by LLMs.
It uses multiple LLMs but with a static configuration. There
exist works that break an input into multiple sub inputs and
invoke LLMs for sub inputs, such as [17], [18]. They are tested
with image/text and video tasks, not for software development.
Moreover, due to their domains, they use and implement
a fixed coordination model. We do not focus on automatic
task decomposition in this work and our goal is to provide
customized coordination workflows.

C. Platform knowledge for Edge/Cloud software moderniza-
tion and developments

We focus on edge/cloud software modernization and new
developments as they are currently demanding, with many
challenges and knowledge that require substantial support. The
tools, methods and techniques for edge/cloud modernization
and new developments need to capture key characteristics of
the applications to be developed and the business use cases
and requirements. Notable architectural styles and application

models in the concern of the developer in the cloud/edge
environments are microservices, serverless and workflows of
serverless functions, batch operation workflows, and stream
processing. Software development for these styles and models
in edge-cloud environments requires various additional tasks
and knowledge. Examples are knowledge about target infras-
tructures, platforms to be used, accepted software versions
and licenses, issues related to loosely communication patterns,
policy as code, and observability. Collectively, we consider
them available in and supported by tools/services in Platform
Knowledge.

Many refactoring techniques for modernization of applica-
tions (e.g., refactoring monolithic applications to microser-
vices) are developed based on static code analysis and depen-
dencies, and dynamic service/API invocations [19]. However,
such techniques do not incorporate a wide set of requirements
for edge/cloud modernization and new developments in the
view of the developer, such as how to incorporate deployment
strategies, data regulation, and observability requirements in
today’s edge-cloud environments. A very recent paper dis-
cussed the role of architecture knowledge and generative AI
for software development [20]. Our coordination approach
will consider Platform Knowledge, which also incorporates
architecture knowledge obtained from public or private sources
relevant to the development. Another important aspect is
that, currently, new developments in edge-cloud environments
require the integration of different types of capabilities within
the application, including AI/ML inference, stream processing,
time series anomaly detection, real-time data quality control,
to name just a few. To date, design suggestions and code
generation for such capabilities and integration are not well
supported by LLMs.

III. COLLMS: COORDINATING LLMS AND PLATFORM
KNOWLEDGE

Figure 1 presents an overview of COLLMS that captures
(i) common key tasks/stages of the software development, and
(ii) required LLMs and other services to be coordinated for
development tasks.

1) LLMs and fine tuning LMs services: Many LLMs/AI
services can be selected, integrated and customized based
on the need of the development. This is also subject to the
business requirement for which COLLMS is deployed. Thus,
we aim at supporting the selection of LLMs and fine-tuning
models and other related services based on the configuration
of, especially, the development context (e.g., task types, see
Section III-3). Furthermore, many services can be brought
into the framework that are not necessary available from the
outside of the deployment of the framework for a particular
development environment. For example, a specific develop-
ment team/company has many specific services used for the
development that can be integrated into COLLMS for specific
tasks. Given different groups of LLMs for specific tasks and
different services in a group for tasks, we can employ different
strategies to use LLMs, e.g., single, quorum, or parallel usage.

2

Legend

PolicyGen

partial solution description,
code fragment

CodeImprovement
(LLMs)

generating code verifying and self-
improving code

reviewing, enriching
and improving code

Instrumentation

Platform Knowledge
(AI/ML, Similarity/Pattern Search)

code candidates
approving accepted
code and updating

knowledge

developer

testing

Testing
Environment

software tools, services &
infrastructure catalog

architectural decision
records

query

result

analyzing/searching
development solutions

query

code
patterns

LLM

GenerativeAI

result

common
development tools and

services

Group A

Group B Group C Code Review

Code
Interpreter

accepted
solutions

data
catalog

request/call/control

service/
tool

artefacts

task

result/data flow

CodeGen
(Code LLMs)

Fig. 1. Overview of COLLMS tasks, LLMs and Platform Knowledge. code represents the example of tasks for developing code.

These strategies can be configured and decided based on
runtime quality.

2) Platform Knowledge: Platform Knowledge collectively
includes specific ML models/services, software and service
catalogs, data catalogs, architectural decision records, accepted
solutions, and common development tools and services. It
includes various utilities and knowledge that provide some
internal, private knowledge but also up-to-date knowledge for
the modernization, which will be targeted to software systems
and architectures constrained by business, e.g., edge-cloud
native environments in our focus.

Platform Knowledge enables two situations: (i) comple-
menting various types of knowledge missing in LLMs for
improving LLM query and quality control and (ii) in-house so-
lutions and services not offered by LLMs. For example, LLMs
can provide code suggestions based on out-of-date software
libraries due to rapid changes of software and infrastructures
for the target environments. By scanning the code or running a
quick (compiling) check, the quality of the suggestion can be
detected. Another example is that recommendations for new
developments that are not solvable by current LLMs should
not be queried from LLMs to avoid overhead and wasted
cost. While the development and configuration of Platform
Knowledge may be similar to common, supporting services
for the development, we emphasize the focus on building it
suitable for the context of software modernization and the
cooperation with LLMs.

3) Task types and models: In terms of developer’s tasks
and the development stages, we support customized task
models, configured based on the developer need for seeking
potential solutions for implementation, generation and testing
of programming language code, configuration and deployment
policies, and (structured) query languages. By focusing on
highly related tasks reflecting a subset but crucial activities that
the developer needs, we concentrate on specific development
contexts and settings, such as analyzing possible solutions and

generating code by LLMs, verifying and improving code by
the developer, enriching/improving code with LLMs, verifying
and updating knowledge for a specific solution by the devel-
oper. Thus, not all types of tasks in software engineering (such
as requirement engineering) are in the scope of our work.

From the coordination viewpoint, requests from developers
will be provided as inputs for tasks to be coordinated. Our fo-
cused task models specify types of tasks, e.g., {searching,
generating, enriching}, types of target solutions,
e.g. {code, policy}, and associated development con-
texts, e.g. {Java code modernization, Python ML
development}. We define contexts based on the goal of the
development, such as refactoring Java code for a large enter-
prise software, obtaining various metadata about programming
languages, types of development and business concerns. The
task type, target solution type, and context identify the scope
for a developer’s query and help to generate suitable concrete
queries for LLMs (e.g., with prompts and other templates).
The task models also help identify suitable LLMs and other
services at runtime. Thus, we can have different strategies for
matching of LLMs based on the type of tasks, the complexity
and suitability of tasks given available groups of LLMs. Each
task is associated with a model for quality of results evaluated
by human or software. Our quality of results is defined based
on generic metrics like cost, time, reliability, etc.

IV. CHALLENGES IN COORDINATING LLMS AND
PLATFORM KNOWLEDGE

A. Challenge 1 – Platform Knowledge Design

We build Platform Knowledge atop Internal Developer
Platform [21], code patterns, similarity search and specific
tools/services:

• software framework, services and infrastructure catalog
and data catalog: include information that are important
for the applications to be developed (not about the LLMs
to be used). The information includes possible internal

3

and external software frameworks and services and in-
frastructures to be used. For example, the application may
be constrained with the ecosystem of Kafka, Kubernetes
and Snowflake.

• knowledge search capabilities: include various types of
search for finding code patterns, policies, architectural
design decisions, etc. This can also include other services
like specific code generation services with fine-tuning ML
models for the application domains.

Clearly, Platform Knowledge here is not like a typical ”knowl-
edge base” used for RAG in LLMs; it includes much more
tools and is customized for the task model. Thus, the challenge
is to associate knowledge and tools with different contexts of
the recommendation in cooperation with LLMs. In solving
the gaps between the developer need and LLM supports, we
consider different contexts, namely: business context (related
to business constraints and costs on software), operational
context (related to runtime quality, scalability, reliability, etc.),
and infrastructure context (related to underlying deployable
infrastructures). Platform Knowledge must arrange and update
its various services and knowledge sources about domains/-
platforms related to the development incrementally. Platform
Knowledge also enables the update of the result from the
development that cannot be incorporated into LLMs/fine-
tuning models due to time and cost constraints (e.g., it does
not make sense to retrain/fine-tune LLMs with only little new
information). For example, when accepting code candidates,
updates about queries and solutions in Platform Knowledge
could be useful for next tasks (and later become the source
for retraining ML models).

B. Challenge 2 – Ensemble management for LLMs and fine-
tuning models services

The management of LLMs services is complex. It includes
(i) input and output representation and mapping, (ii) prompt
templates for query enrichment, (iii) different strategies to em-
ploy prompt templates and knowledge from Platform Knowl-
edge to improve queries and quality control, e.g., using RAG
and composition techniques, and (iv) ensemble execution and
aggregation in which, for solving a query, several services are
used together. Different types of workflows involve prompt
engineering, RAG and LLM services.

One of the first challenges is which LLMs/services should
be in a group for a task type. We consider two stages. At
the bootstrapping time, a group can be statically selected
based on various conditions: preferences of the developer
(based on their historical uses or limited access or cost), static
AI/ML algorithm evaluations [22], and existing benchmarks
(e.g., evaluation of LLMs for testing [23]). Currently, generic
benchmarks like HuggingFace [24] or Stanford [25] or other
benchmarks like [26] are not suitable. Specific benchmarks of
LLMs for relevant tasks are not available but we foresee the
design for custom benchmarks that, given a deployment for a
specific setting, a fast execution benchmark can be executed
to provide the selection of LLMs. However, as surveyed and
noted in [27], [28], the quality of LLMs covers much more

than metrics that can be automatically measured; many metrics
are given by human or measured for human effort. Therefore,
it is challenging to develop quality models for LLMs. At run-
time, static configuration of a group can be changed. Members
can be added and removed based on the quality observed from
the monitoring of the task’s results. However, we shall note
that the number of members of a group maynot be large, thus
mostly some suggestions based on historical results can help
to reconfigure the group without using complex algorithms.
Currently, we are working on different workflows, templates
and tools. However, suitable workflows and the best ones
cannot be determined in general.

C. Challenge 3 – Configuring and runtime quality-aware
scheduling of task execution

1) Customizable and pluggin integration model: At the
basic level, we must integrate different LLMs to be able to
invoke them. It is actually quite challenging as the path from
a developer query to LLM invocation is not trivial. Given an
LLM the way to invoke it can be very different dependent
on the design and the performance/quality purpose. Figure 2
explains our view on the integration. The way to call an LLM
is carried out by an Agent, which is following a plugin model
and managed by ExecutionEngine. Agents can implement
different logic. The most simple agent could be just for single-
shot, single call, but complex agents can be implemented based
on React [29], etc. Task query must be mapped to specific,
concrete queries accepted by specific agents for LLM.

Mapper LLM
ExecutionEngine

LLM

query

specific LLM
prompts

LLM
specific LLM

prompts

Mapper

Mapper LLM
Agent

LLM
Agent

...
...Execution

Manager

Fig. 2. Customizable model for integrating multiple LLMs

2) Flow patterns in coordination: We design coordination
workflows based on common orchestration/choreography pat-
terns but modify them for LLMs with RAG and prompt en-
gineering, considering quality control and fusing/aggregating
strategies. Figure 3 presents a high-level design. Two levels
must be addressed: at the ensemble and at the individual LLM.
For example, given an ensemble, we can have parallel patterns
with multiple branches and aggregation or sequence patterns
in which output of a model will be used as input for another
model. Within each model, we can have different parameter
tuning and RAG. The agent model exists in many tools [30],
[31], [29] and basic manually workflows for invoking LLMs
are supported [14], [13], [32], [33]. We work on low-code
and automatic coordination logic, reducing effort done by the
engineer.

D. Challenge 4 – Quality attributes for tasks and services

1) Quality of LLM services: Currently, major LLMs are
very big and support generative AIs, and it is costly to use

4

Input Query

mapped

(1)(5) Routing
Tasks

sent (3)
(2)

Coordinating
execution workflows

LLM

Post processing
(quality check, ...)

LLM

LLM

(4)

Output Artifacts

Fig. 3. Task workflow at the level of LLM ensemble

such LLMs. Furthermore, due to their very generic features,
it is hard to obtain high quality recommendations for complex
matters, such as composition and decomposition of complex
software. When using a group of LLMs for a task, there are
many issues that must be solved:

• runtime performance and reliability: the global configu-
ration for groups and individual services must deal with
different structures of LLM invocation and aggregation.
For individual LLM services, we must deal with complex
parameters, e.g., related to context window, cost and
reliability.

• data privacy and security: selection and invocation of
services must help the developer to deal with sensitive
inputs.

Given results from existing benchmarks of LLMs for software
development, we start to build a quality model for LLM
services based on common quality attributes. However, our
challenging issue is to support quality based on the task model.
Thus, it requires us to perform finer-grain evaluation based
on results from LLMs. Therefore, novel solutions must be
developed for combining incremental quality evaluation of
LLM outputs, reported by task quality evaluation or developer,
for aggregating and updating LLM quality.

2) Evaluating recommended outputs: Recommended out-
puts – solution candidates – must be evaluated. Individual tests
are small tests that are carried out for certain code functions or
policies achieved through the work in the previous tasks. For
this, we need to invoke suitable services to test code/policies
and such services are expected to get only a fragment of the
code. Therefore, many smalls and lightweight services will
be integrated, e.g. policy checkers, and linter services. On the
other hand, if the tests are made for a large software, where
the candidate solutions are just a part, this can be done via
current CI/CD processes. In both cases, it is possible to obtain
the errors and use them to revise the task.

3) Quality of tasks: In terms of cost and runtime, existing
schedule methods can be applied. However, one of the key
aspects is the reliability and explainability of answers from
LLMs and other ML services. Our approach is to use quality
attributes associated with ML as constraints to schedule but
we need to develop local scheduler to support fusing and RAG
for LLMs. Currently, key quality attributes are for data quality,
ML model quality, service quality and other common attributes
like costs [34], [35], [36].

E. Challenge 5 – Observability & Explainability

When the developer approves a result, we can record
information about this approval. The traces of how the result
is produced can be logged to provide knowledge for future
processing. Certain information can be stored back to the
Platform Knowledge for improving the knowledge. Although
there are many tracing and monitoring have been developed,
the end-to-end tracing and logging of cross LLMs and Plat-
form Knowledge tasks have not been studied. We consider that
they are related to challenges in task/workflow provenance,
observability and explainability when using ML [37], [38],
[39]. For example, the follow presents a simplified trail when
calling one single LLM generating code from a set of LLMs:

1{
2 "task_instance_id": "354c6c20-66df-4390-...",
3 "start_ts": 1698768167.5257006,
4 "end_ts": 1698768167.8629,
5 "service_name": "InCoder",
6 "service_qoa": {
7 "responsetime": 0.3371994800399989
8 },
9 "task": {

10 "task_id": "30fbfed7-bd9f-4760-9fcb-...",
11 "task_type": "codegen",
12 "execution_mode": "parallel",
13 "input_data": "def read_data_as_df",
14 "services": ["StarCoder","CodeLlama", "

InCoder"],
15 "experiment_id": "473fc800-6c60-449b-..."
16 }
17 }

Another challenge is about what kind of knowledge can be
stored back. A simple solution is to store back features ex-
tracted from the code to be approved and link it to the require-
ments for supporting search. However, many other information
can be stored back for future training. We distinguish two
different types of update. The first is the update of accepted
solutions. For example, given an approved code, we design
the update consisting of (i) experiment_id – the id linking
different tasks for the same development context, case_info
– the description/summary of the solution, input_query –
the original input query, (ii) output_answer – the result,
and (iv) ref_doc – the reference docs which can be links to
trace, test, etc. Such updates can be done via APIs or user tools
and are stored into vectorized databases so that they can be
used for searches in Platform Knowledge and for RAG-based
queries to LLMs. Second, explainability is crucial, especially
if the application to be modernized includes AI capabilities.
Thus, using the trails of tasks leading to the result, we may
focus on the explainability of the suggested solutions based on
different aspects. We update the linkage between the accepted
solutions and the goal of performance, accuracy, fairness and
sustainability to use it for future needs.

F. Towards the Prototype

We are working on the initial prototype. We utilize various
existing LLMs services; many from Hugging Face Hub [40].
Some of specific services are implemented as a proof-of-
concept and reused from other sources. Langchain [13] and

5

Semantic Kernel [14] are used as the base for experimental
prompts and orchestration. For Platform Knowledge, we use
Weaviate [41] for vectorization database. We use in-house
code and other data to populate the Platform Knowledge.
Deployment customization can be achieved from two perspec-
tives: (i) the underlying Platform Knowledge and LLMs for
specific deployments, (ii) the focused tasks and environments.
In the first case, underlying Platform Knowledge and LLMs
are selected for environment-specific deployments, such as
pay-per-use LLMs can be combined with private ones and
services in Platform Knowledge are customized based on the
used environments. In the second case, focused tasks and
contexts are customized, for example for Java development
or Python development, for target big enterprises or for small
enterprise use cases.

V. CONCLUSION

In this paper, we identified key challenges in coordinating
LLMs and other services for software development. Key
challenges raised from the gaps between LLMs support and
the need for edge-cloud environments require the combination
of LLMs with many other services to enable productive
development. We outlined our design and presented our current
development. The future is to focus on the development of
main features discussed in this paper.

REFERENCES

[1] D. Wolfart, W. K. G. Assunção, I. F. da Silva, D. C. P. Domingos,
E. Schmeing, G. L. D. Villaca, and D. d. N. Paza, “Modernizing Legacy
Systems with Microservices: A Roadmap,” in Proceedings of the 25th
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE ’21, 2021, p. 149–159.

[2] V. Nitin, S. Asthana, B. Ray, and R. Krishna, “CARGO: AI-Guided De-
pendency Analysis for Migrating Monolithic Applications to Microser-
vices Architecture,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’22, 2023.

[3] F. Li, “Modernization of Databases in the Cloud Era: Building Databases
That Run Like Legos,” Proc. VLDB Endow., vol. 16, no. 12, p.
4140–4151, aug 2023.

[4] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and
K. Narasimhan, “SWE-bench: Can Language Models Resolve Real-
World GitHub Issues?” 2023.

[5] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large Language Models for Software Engi-
neering: A Systematic Literature Review,” 2023.

[6] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,”
in Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, ser. NIPS’20. Curran Associates Inc., 2020.

[7] A. Madaan, P. Aggarwal, A. Anand, S. P. Potharaju, S. Mishra, P. Zhou,
A. Gupta, D. Rajagopal, K. Kappaganthu, Y. Yang, S. Upadhyay,
Mausam, and M. Faruqui, “AutoMix: Automatically Mixing Language
Models,” 2023.

[8] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan,
Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez,
J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and
G. Synnaeve, “Code Llama: Open Foundation Models for Code,” 2023.

[9] “Lmops,” 2023. [Online]. Available: https://github.com/microsoft/lmops
[10] E. Laaksonen, “LLMOps: MLOps for Large Language Models,” 2023.

[Online]. Available: https://valohai.com/blog/llmops/
[11] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-RAG: Learning

to Retrieve, Generate, and Critique through Self-Reflection,” 2023.
[12] 2023. [Online]. Available: https://www.anyscale.com/blog/

a-comprehensive-guide-for-building-rag-based-llm-applications-part-1

[13] “Langchain,” 2023. [Online]. Available: https://www.langchain.com/
[14] “Semantic Kernel,” 2023. [Online]. Available: https://github.com/

microsoft/semantic-kernel
[15] “Llamaindex,” 2023. [Online]. Available: https://docs.llamaindex.ai/en/

stable/index.html
[16] 2023. [Online]. Available: https://coderabbit.ai/docs/introduction/
[17] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “HuggingGPT:

Solving AI Tasks with ChatGPT and its Friends in Hugging Face,” 2023.
[18] Z. Liu, Z. Lai, Z. Gao, E. Cui, X. Zhu, L. Lu, Q. Chen, Y. Qiao, J. Dai,

and W. Wang, “ControlLLM: Augment Language Models with Tools by
Searching on Graphs,” 2023.

[19] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano, M. Vukovic,
and D. Banerjee, “Mono2Micro: An AI-Based Toolchain for Evolving
Monolithic Enterprise Applications to a Microservice Architecture,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2020, 2020, p. 1606–1610.

[20] I. Ozkaya, “Can Architecture Knowledge Guide Software Development
With Generative AI?” IEEE Software, vol. 40, no. 05, pp. 4–8, sep 2023.

[21] K. von Grünberg, “What is an Internal Developer Plat-
form,” 2021. [Online]. Available: https://humanitec.com/blog/
what-is-an-internal-developer-platform

[22] A. Koshiyama, E. Kazim, and P. Treleaven, “Algorithm Auditing:
Managing the Legal, Ethical, and Technological Risks of Artificial
Intelligence, Machine Learning, and Associated Algorithms,” Computer,
vol. 55, no. 4, pp. 40–50, 2022.

[23] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An Empirical Evaluation
of Using Large Language Models for Automated Unit Test Generation,”
2023.

[24] 2023. [Online]. Available: https://huggingface.co/spaces/
HuggingFaceH4/open llm leaderboard

[25] 2023. [Online]. Available: https://crfm.stanford.edu/helm/v0.2.2/
[26] J. Liu, C. Liu, P. Zhou, Q. Ye, D. Chong, K. Zhou, Y. Xie, Y. Cao,

S. Wang, C. You, and P. S. Yu, “LLMRec: Benchmarking Large
Language Models on Recommendation Task,” 2023.

[27] 2023. [Online]. Available: https://www.microsoft.com/
en-us/research/group/experimentation-platform-exp/articles/
how-to-evaluate-llms-a-complete-metric-framework/

[28] Anthropic, 2023. [Online]. Available: https://www.anthropic.com/index/
evaluating-ai-systems

[29] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“ReAct: Synergizing Reasoning and Acting in Language Models,” arXiv
preprint arXiv:2210.03629, 2022.

[30] AWS, “Agents for Amazon Bedrock,” 2023. [Online]. Available:
https://aws.amazon.com/bedrock/agents/

[31] “Langchain Agents,” 2023. [Online]. Available: https://python.langchain.
com/docs/modules/agents/

[32] “Retool ai,” 2023. [Online]. Available: https://retool.com/products/ai
[33] “Azure AI Studio,” 2023. [Online]. Available: https://azure.microsoft.

com/en-us/products/ai-studio/
[34] H.-L. Truong and T.-M. Nguyen, “QoA4ML - A Framework for

Supporting Contracts in Machine Learning Services,” in 2021 IEEE
International Conference on Web Services (ICWS), 2021, pp. 465–475.

[35] J. H. Husen, H. Washizaki, H. Tun, N. Yoshioka, Y. Fukazawa,
H. Takeuchi, H. Tanaka, and K. Munakata, “Extensible Modeling
Framework for Reliable Machine Learning System Analysis,” in 2023
IEEE/ACM 2nd International Conference on AI Engineering – Software
Engineering for AI (CAIN), may 2023, pp. 94–95.

[36] K. M. Habibullah, G. Gay, and J. Horkoff, “Non-Functional Require-
ments for Machine Learning: An Exploration of System Scope and
Interest,” in Proceedings of the 1st Workshop on Software Engineering
for Responsible AI, ser. SE4RAI ’22, 2023, p. 29–36.

[37] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A Survey on
Provenance: What for? What Form? What From?” The VLDB Journal,
vol. 26, no. 6, p. 881–906, dec 2017.

[38] S. Shankar and A. G. Parameswaran, “Towards Observability for Produc-
tion Machine Learning Pipelines,” Proc. VLDB Endow., vol. 15, no. 13,
p. 4015–4022, sep 2022.

[39] L. Chazette and K. Schneider, “Explainability as a Non-Functional
Requirement: Challenges and Recommendations,” Requir. Eng., vol. 25,
no. 4, p. 493–514, dec 2020.

[40] “Hugging Face Hub,” 2023. [Online]. Available: https://huggingface.co/
docs/hub/index

[41] “Weaviate,” 2023. [Online]. Available: https://weaviate.io/

6

