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ABSTRACT: This study highlights the substantially improved
hydrothermal stability of 7-methyl-1,5,7-triazabicyclo[4.4.0] dec-5-
enium [mTBDH]+ in [mTBDH][MeOCH2COO] compared to
[mTBDH][OAc], as well as the strong cellulose dissolution
capability of [mTBDH][MeOCH2COO] and excellent spinnability
with a maximum draw ratio of 14. These findings demonstrate the
high potential of using [mTBDH][MeOCH2COO] as the solvent
to advance Ioncell fiber spinning technology by reducing the
hydrolysis rate of [mTBDH]+, thereby minimizing loss during
solvent recycling processes.

■ INTRODUCTION
Ionic liquids (ILs) are emerging as promising substitutes for
traditional solvents in the dissolution of biopolymers,
facilitating the production of regenerated fibers.1,2 This is
attributed to their low volatility, high dissolution capability,
chemically inertness and environmentally friendly character-
istics.3,4 ILs that are capable of dissolving cellulose typically
include anions exhibiting strong hydrogen bond basicity, such
as chloride, carboxylates, and phosphates.5−7 The anions form
hydrogen bonds with cellulose hydroxyl groups, while the
bulky cations assist in the separation of negatively charged
constituents.8,9 Alkylated imidazole or super bases are
commonly employed as cations in ILs designed for cellulose
dissolution.10−13 For instance, BASF utilized [emim][OAc] as
a solvent in the production of cellulosic fibers.14 However,
during dissolution, spinning, and IL recycling, the C2 carbon of
the imidazolium ring reacts with cellulose, resulting in an
imidazolium adduct, and trans-acylation reactions can modify
the cellulosic solute.15−17 Superbase−based ILs, such as 1,5-
diazabicyclo[4.3.0]non-5-ene (DBN), 1,8-diazabicyclo[5.4.0]-
undec-7-ene (DBU) or 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-
5-ene (mTBD), have shown particular potential for their
ability to dissolve cellulose and other natural polymers and
spin them into fibers with desirable mechanical proper-
ties.12,18,19 This has led to the development of the Ioncell
process, which uses superbase−based ILs to convert cellulose
resources such as pulp, paperboard, and cotton into high-
performance textile fibers.20,21 Compared with imidazolium-
based ILs, superbase−based ILs are inert toward cellulose and
cause less degradation of cellulose.6

The first superbase−based IL used in Ioncell was [DBNH]-
[OAc], which showed excellent spinnability and was highly

tolerant to various cellulose raw materials and additives.22,23

However, during the distillation recycling of [DBNH][OAc], a
significant amount of hydrolysis products was formed (14.4 wt
%), leading to reduced dissolution capacity toward cellulose.24

To overcome this limitation, a guanidine-based IL with
improved thermal stability, [mTBDH][OAc], was introduced
and used as cellulose solvent in the Ioncell process. It
demonstrated significantly higher thermal and hydrolytic
stability during solvent recovery, producing only 1.6 wt %
hydrolysis products in five cycles.25

Additionally, mTBD is a stronger superbase than DBN (pKa
= 25.4 and 23.4, respectively, measured in acetonitrile
solvent),26,27 exhibiting higher proton affinity and resulting
in a lower vaporization rate of mTBD during thermal recycling.
Consequently, the recovered [mTBDH][OAc] has an acid/
base (A/B) ratio of 1.1, while the A/B ratio of recovered
[DBNH][OAc] is 1.3, reducing its dissolution capacity for
cellulose and changing the rheological properties of the
resulting solution.24 The higher hydrothermal stability and
tolerance to alterations are clear advantages of mTBD, making
it an excellent candidate for further development of this solvent
in the Ioncell process. However, [mTBDH][OAc] has a high
melting temperature of 78 °C (Figure S1), causing processing
challenges and high energy consumption. Our recent study
reveals that substituting acetic acid with levulinic acid in
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[mTBDH][OAc] resulted in the production of a room
temperature IL, [mTBDH][Lev], demonstrating remarkable
dissolution capacity toward both cellulose and wool.28

Additionally, Li et al. conducted a study wherein they
synthesized DBN- and DBU-based ILs combined with various
anions, and focusing on characterizing melting temperature,
cellulose solubility, and the resulting mechanical properties of
regenerated cellulose films.29 Among these, methoxyacetate
looks promising, forming a room temperature IL in
conjugation with DBU and DBN. The [DBNH]-
[MeOCH2COO] and [DBUH][MeOCH2COO] can dissolve
14.6 and 16 wt % of cellulose respectively with a DP of 156 at
80 °C.29 These cellulose solutions have been successfully
processed into regenerated cellulose films. Nevertheless, the
preceding studies did not explore the impact of anions on the
thermal stability of the conjugated super bases. In this work, we
investigated the thermal stability and hydrolysis kinetics of
[mTBDH][MeOCH2COO] aqueous solution, as well as its
application in regenerated cellulose fiber spinning. Our
hypothesis is that acids with stronger acidity can stabilize the
structure of super bases, leading to a reduction in the
hydrolysis rate. MeOCH2COOH has a pKa of 3.53, while
acetic acid has a pKa of 4.76. We specifically chose to use 10 wt
% water because our previous study revealed that the highest
hydrolysis rates for [mTBDH][OAc] occurred in the presence
of 10−20 wt % water.30

■ MATERIALS AND METHODS
Ionic Liquid Preparation. [mTBDH][MeOCH2COO]

was prepared by neutralization of mTBD with an equimolar
amount of methoxyacetic acid (98%, Merck, Germany) at
room temperature (23 °C) under stirring. Because the
neutralization process is exothermic, the methoxyacetic acid
was added slowly to the mTBD to avoid overheating. The
mixture was subsequently stirred for another 30 min to ensure
complete conversion. Since [mTBDH][MeOCH2COO] is a
liquid at room temperature, heating is not required for its
preparation.
NMR Analysis. The hydrolysis reactions of [mTBDH]-

[MeOCH2COO] were carried out under an inert atmosphere
of argon by the standard Schlenk technique. The samples were
measured using 1H NMR spectrometry (Bruker Avance III
400) and analyzed using MestReNova software. DMSO-d6 was
used as the solvent for NMR analysis.
Dope Preparation. Dissolution of cellulose pulp (spruce

acid sulphite pulp) in ionic liquid [mTBDH][MeOCH2COO]
was performed in a small vertical kneader at 85 °C under 10−
20 mbar vacuum for 2 h. The dissolution process was
monitored using polarized optical microscopy. After 2 h, a
preheated hydraulic press filtration system with a 5−6 μm
mesh metal filter fleece was used to remove the undissolved
cellulose fibers at 85 °C and 150−200 bar. The chemical
composition and molar mass of the cellulose pulp listed in
Table 1 were analyzed using a standardized protocol consistent
with previously published methods.31

Rheology Measurement. The viscoelastic properties of
cellulose dopes under shear stresses were measured using an
Anton Paar MCR 302 rheometer equipped with 25 mm
diameter parallel plate geometry and 1 mm gap size. The
viscoelastic behavior was studied by conducting dynamic
frequency sweeps at various temperatures ranging from 50 to
90 °C, within an angular frequency range of 0.01−100 s−1 and
a strain of 1%. The zero-shear viscosity, η°, was determined by

fitting the complex viscosity data to the Cross viscosity model,
assuming that the Cox-Mertz rule is valid. The master curves of
spinning dopes at their spinning temperature were generated
based on the time temperature superposition principle.

Monofilament Fiber Spinning. A small amount of dope
(approximately 20 g) was placed into a monofilament dry-jet
wet spinning unit (manufactured by Fourne ́ Polymertechnik)
and heated to its spinning temperature (85−95 °C),
determined by its rheological properties. Then the dope was
extruded through a capillary with a diameter of 100 μm and
length of 200 μm into an air gap where the dope was stretched
to reach different draw ratios (DRs) before regeneration in
water coagulation bath. The water bath was kept at 5−6 °C.
The extrusion velocity was kept constant at 1.3 m/min, while
the take-up velocity (the speed of the godets collecting the
fibers) was varied to collect fibers at different DRs. The
collected filaments were cut into 8 cm long pieces and washed
with 80 °C water for 2 h to remove any residual IL.

Tensile Testing. The mechanical properties of the
cellulose fibers in the conditioned and wet state were
determined by using a Favigraph automatic single-fiber tester
(Textechno H. Stein GmbH & Cpo, Germany) based on the
ISO 5079 standard (20 mm gauge length, 0.06 cN/tex
pretension, 20 mm/min test speed). All of the fibers were
conditioned overnight (20 ± 2 °C, 65 ± 2% relative humidity)
before the testing. Twenty fibers from each sample were tested
at 20 °C and 65% RH.

■ RESULTS AND DISCUSSIONS
The hydrolysis test of ILs at elevated temperatures (95 °C)
was conducted under an inert atmosphere of argon, and the
compositional changes over time were monitored using 1H
NMR (Figure 1 and Table S1).
The bicyclic guanidine-based IL [mTBDH][OAc] exhibits a

central CN3 core composed of an “R−C(�NH)−NH2”
amidine moiety and a tertiary nitrogen. In the presence of
acids, it undergoes protonation, forming a rigid covalent N−H
bond that stabilizes its structure. Water promotes ring opening
at elevated temperatures, resulting in the formation of cyclic
urea.30,32 The CH3 groups in all structures, including mTBD,
MeOCH2COOH, and H-mTBD, induce strong NMR signals
illustrated as a singlet, making it easily distinguishable by the
distinct chemical shifts. In [mTBDH]+, the CH3 group protons
are illustrated as a singlet at 2.98 ppm (Figure 1). The ring
opening causes a shift of the −CH3 signal to 2.37 and 2.76
ppm in [1-H-mTBDH]+ and [2-H-mTBDH]+, respectively.
In [mTBDH][MeOCH2COO], [mTBDH]+ degrades rap-

idly within the first 24 h, then gradually tapers off and reaches a

Table 1. Chemical Composition and Molar Mass of the
Cellulose Pulp

cellulose 95.1% on pulp
hemicellulose 4.6% on pulp
lignin 0.4% on pulp
ash 0.07% on pulp
intrinsic viscosity 571 mL/g
Mn 56,000 Da
Mw 198,000 Da
Mz 414,000 Da
PDI 3.5
DP > 2000 20.0%
DP < 100 5.5%
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plateau. After 24 days of incubation, the hydrolysis product
[H-mTBD]+ reached its maximum amount, 5.5 mol %, as
determined by the integration of peaks at 2.75 and 2.23 ppm
(Table S1). However, the amount of [mTBDH]+ continuously
decreased and eventually stabilized at approximately 40 mol %
after 2 months of incubation. Despite using argon protection,
some evaporation still occurred over the two months. We
noticed a thin layer of liquid condensate in the chilled areas

above the reaction flask. NMR analysis of this condensate
showed higher concentrations of [H-mTBD]+ and
[MeOCH2COO]− at 11.4 and 66 mol %, respectively. In our

Figure 1. [mTBDH][MeOCH2COO] (A/B 1:1, 10 wt % water, 95 °C) hydrolysis as a function of time analyzed using 1H NMR spectroscopy in
dimethyl sulfoxide (DMSO)-d6.

Table 2. Kinetic Parameters of the Degradation of [mTBD]+
in the Ionic Liquid [mTBDH][MeOCH2COO] in
Comparison to [mTBDH][OAc]30 at 95 °C and in the
Presence of 10 wt % Water

parameter unit [mTBDH][OAc]
[mTBDH]

[MeOCH2COO]

[mTBD]0 mole % 48.3 ± 0.5 46.7 ± 0.5
k1 h−1 0.0037 ± 0.0002 0.00056 ± 0.0000932
k2 h−1 0.00093 ± 0.0001 0.0018 ± 0.000364
[mTBD]∞ mole % 9.7 35.53
Kc 4.0 0.31

Figure 2. Degradation of mTBD in the ionic liquid [mTBDH]-
[MeOCH2COO] in comparison to [mTBDH][OAc]30 at 95 °C and
in the presence of 10 wt % water.
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previous distillation study of [mTBDH][OAc], we found that
mTBD has a higher vapor pressure than its hydrolysis products
and acetic acid. As a result, the evaporated acid likely
condensed in the chilled region while mTBD evaporated.
Moreover, there was a shift in the CH2 protons of
[MeOCH2COO]− from 3.47 to 3.58 ppm, indicating increased
acidity in the solution, particularly after 44 days.
To understand and predict the hydrolysis reaction of

[mTBDH][MeOCH2COO], we applied a reverse first-order
kinetics model to fit our data. To simplify the modeling, we
grouped the byproducts together as one entity in our model as
[∑mTBDdeg]
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Forward (k1) and backward (k2) reactions are both pseudo
first-order. Thus, the concentration of mTBD after time t,
[mTBD]t, can be calculated by eq 2
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The equilibrium concentration of mTBD, [mTBD]∞, is
estimated by eq 3
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and the equilibrium constant Kc = d[mTBD]/dt = 0 →
k1[mTBD] = k2[∑mTBDdeg] with eq 4
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In our investigation into the influence of anions on the
hydrolysis reaction of [mTBDH]+ in the corresponding ionic
liquid, we conducted a comparative analysis of the kinetic
coefficients of [mTBDH]+ degradation, as presented in Table
2. The forward hydrolysis rate of mTBD in [mTBDH][OAc]
(k1 = 0.0037) significantly surpasses that in [mTBDH]-
[MeOCH2COO] (k1 = 0.00056), indicating a notably faster
hydrolysis rate in the presence of acetic acid. The higher
equilibrium constant kc observed in [mTBDH][OAc] suggests
a greater preference for the formation of hydrolysis products
[∑mTBDdeg] when utilizing acetic acid as the anion. This
observation supports our hypothesis that anions with stronger
acidity can stabilize the super base structure, consequently
reducing its hydrolysis rate.
The stability of the superbase mTBD was significantly

enhanced when it was conjugated with methoxyacetic acid
compared to acetic acid, as demonstrated in Figure 2.
Thermogravimetric analysis (TGA) reveals that [mTBDH]-
[MeOCH2COO] decomposes at a slightly higher temperature
than [mTBDH][OAc], with derivative peak temperatures at
275 and 250 °C (Figure S1). Subsequently, we explored the
capability of [mTBDH][MeOCH2COO] to dissolve cellulose
and examined its spinnability. We successfully prepared a 13 wt

Figure 3. Rheological properties of 13 wt % cellulose dopes. (a) Master curve of [mTBDH][MeOCH2COO] dopes (black symbols) and
[mTBDH][OAc] (blue symbols) at 90 °C. Square, sphere and circle symbols represent complex viscosity, G′ and G″ respectively. (b) Zero shear
viscosity and COP angular frequency calculated as a function of temperature. Square symbols denote zero shear viscosity and sphere symbols
represent COP angular frequency.

Figure 4. Mechanical properties of regenerated cellulose fibers (average of 20 individual tests). (a) [mTBDH][MeOCH2COO] as the solvent (b)
[mTBDH][OAc] as the solvent. The stress−strain curves were measured at 65% RH and 20 °C.
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% cellulose dope and characterized its rheological properties,
comparing them to those of a [mTBDH][OAc] dope, as
presented in Figure 3. Based on our previous study, the
viscoelastic properties of cellulose dissolution in ionic liquids,
especially the crossover point (COP), where the storage
modulus (G′) intersects with the loss modulus (G″) and zero
shear viscosity (η0*), are important parameters to evaluate
spinnability.33 G′ and G″ indicate the elastic and viscous
behavior of the dope, respectively. The COP represents the
frequency at which the solution’s elastic and viscous behaviors
are equivalent. The determination of η0* involved fitting the
Cross model to the complex viscosity curve, assuming validity
of the Cox−Merz rule.34

In Figure 3a, we present the master curves of G′, G″ and
dynamic viscosity as a function of angular frequency, derived
from small amplitude oscillation shear tests with 13 wt %
cellulose solution. At low frequencies, the viscous nature of the
cellulose solution prevails, as indicated by the higher G″ value
compared to G′. As the frequency increases, the elastic
property becomes more dominant. This transition arises from
the greater mobility of cellulose molecules at low frequencies
due to the relatively slow deformation. However, at high
frequencies, the entanglement points among cellulose chains
act as fixed joints, hindering the flowability of molecules. The
COP angular frequency of the [mTBDH][MeOCH2COO]
dope is lower than that of the [mTBDH][OAc] dope,
indicating a higher degree of elastic behavior of the
[mTBDH][MeOCH2COO] dope. The η0* of the [mTBDH]-
[MeOCH2COO] dope was slightly higher than that of
[mTBDH][OAc], necessitating a higher shear force to induce
flow. Furthermore, the [mTBDH][MeOCH2COO] dope
demonstrated good spinnability with a maximum draw ratio
(DR) of 14, and the mechanical properties of the resulting
fibers were compared with fibers spun from [mTBDH][OAc]
dope. Their mechanical properties are in the same range, with
an ultimate strength of approximately 50 cN/tex and breaking
strain of 6−8% (Figure 4 and Table S2).

■ CONCLUSIONS
Our study demonstrates a substantial reduction in [mTBDH]+
degradation by substituting the acetate anion with methox-
yacetate in the IL, evident from the higher equilibrium
concentration of [mTBDH]+ (35.5 mol %) in [mTBDH]-
[MeOCH2COO] compared to 9.7 mol % in [mTBDH][OAc].
Given its excellent spinnability, [mTBDH][MeOCH2COO]
exhibits promising potential as a solvent for large-scale
regenerated cellulose fiber production. Future investigations
will focus on multifilament fiber spinning, the recyclability of
[mTBDH][MeOCH2COO], and the conjugation of methoxy-
acetic acid with other superbases, such as DBN and DBU, to
evaluate their impact on hydrolysis reduction.
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