

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Halla-aho, Viivi; Lähdesmäki, Harri Efficient statistical methods for detecting differential methylation

Published: 22/07/2017

Please cite the original version:

Halla-aho, V., & Lähdesmäki, H. (2017). *Efficient statistical methods for detecting differential methylation*. Paper presented at International Conference on Intelligent Systems for Molecular Biology, Prague, Czech Republic.

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

EFFICIENT STATISTICAL METHODS FOR DETECTING DIFFERENTIAL METHYLATION

Viivi Halla-aho and Harri Lähdesmäki

Aalto University School of Science Department of Computer Science

Background and motivation

- Addition of the methyl group to the 5-position of a cytosine (5mC) is the most commonly studied epigenetic modification on DNA, and its effects on different diseases and cancer have been widely studied.
- We have previously developed a hierarchical generative model, LuxGLM [1], for analysing 5mC and oxidized methylcytosine species (oxi-mC).
- LuxGLM can take into account the different experimental parameters and confounding factors along with complex experimental design.
- To enhance the computational efficiency we propose the usage of variational inference (VI) instead of Hamiltonian Monte Carlo (HMC) sampling. VI is typically faster than MCMC sampling methods.

Variational inference for computation of the Bayes factors

- Variational inference approximates the posterior with a simpler distribution and to find the optimal approximative distribution, the expectation lower bound (ELBO) is maximized, which corresponds to mimizing the Kullback-Leibler distance.
- In the probabilistic programming language Stan, Automatic Differentiation Variational Inference (ADVI) algorithm has been implemented [2] and so the HMC sampling used by default in Stan can be easily switched to VI. ADVI algorithm parameters which can be tuned are number of gradient samples N_G and number of ELBO samples N_E .
- The ELBO values for the approximations can be used to calculate another BF approximation $BF \approx \exp(ELBO_{H_1} - ELBO_{H_0}).$

Comparison of LuxGLM and state-of-the-art methods

LuxGLM

• Read-out probabilities for single cytosine and for a population

The general linear model is used for calculating $\theta_i = (p(\mathbf{C}), p(5\mathbf{mC}), p(5\mathbf{mC}))$ for each

Comparison table of LuxGLM, RADMeth [3] and MACAU [4] from [1]. In the comparison the area under receiver operating charasteristic curve (AUROC) was calculated using simulated data sets. Perfect experimental steps and only BS-seq data were considered in the simulations, as experimental parameters and oxi-mC are not supported by the other methods.

	Number of replicates													
		6			10		20							
Number	LuxGLM	RADMeth	MACAU	LuxGLM	RADMeth	MACAU	LuxGLM	RADMeth	MACAU					
of reads														
6	0.674	0.642	0.654	0.843	0.746	0.818	0.976	0.900	0.967					
12	0.744	0.633	0.713	0.884	0.772	0.878	0.985	0.913	0.985					
24	0.760	0.642	0.722	0.900	0.774	0.890	0.993	0.927	0.993					

Computation times for variational inference and comparison with HMC

• Computation times using Stan's variational inference feature with different parameter values to compute the Savage-Dickey and ELBO approximations of the Bayes factor. The number of reads was 12 and number of replicates was 10.

sample i = 1, ..., N.

• General linear model

The linear part of the model with *P* covariates has the following form

 $\mathbf{Y} = \mathbf{DB} + \mathbf{E},$

(1)

where $\mathbf{Y} \in R^{N \times M}$ gives the parameters θ_i through Softmax transformation $\theta_i = \text{Softmax}(\text{row}_i(\mathbf{Y})), \mathbf{D} \in R^{N \times P}$ is the design matrix, $\mathbf{B} \in R^{P \times M}$ is the parameter matrix and $\mathbf{E} \in R^{N \times M}$ represents normally distributed, zero-centered noise term.

• Bayes factors

To asses the difference in methylation between two conditions i and j the null hypothesis (no differential methylation) is

$$H_0: \operatorname{row}_i(\mathbf{B}) - \operatorname{row}_j(\mathbf{B}) \equiv C_1 - C_2 = \mathbf{0},$$
(2)

and alternative hypothesis (differential methylation) is

$$H_1: \operatorname{row}_i(\mathbf{B}) - \operatorname{row}_j(\mathbf{B}) \equiv C_1 - C_2 \neq \mathbf{0}.$$
(3)

The Savage-Dickey density ratio approximates the Bayes factor between the models representing these hypotheses

$$BF \approx \frac{p(C_1 - C_2 = \mathbf{0}|H_1)}{p(C_1 - C_2 = \mathbf{0}|H_1, \mathcal{D})}.$$
(4)

• Model hierarchy

HMC sampling from the posterior is done with Stan.

	Biolo	gical		Experimental									
propo 5hmC	ortions of of noncor	C, 5m0 ntrol cy	C and tosines	bisulphite in conversion	nprecise bisulph conversion	ite oxidation efficiency	sequencing error						
				efficiency	efficiency								
D	σ_B^2	α	β	$\psi^{\mu}_{BS_{eff}}$ $\psi^{\sigma}_{BS_{eff}}$	$\psi^{\mu}_{{}_{BS^*eff}}\psi^{\sigma}_{{}_{BS^*eff}}$	$\psi^{\mu}_{\mathrm{ox}_{\mathrm{eff}}} = \psi^{\sigma}_{\mathrm{ox}_{\mathrm{eff}}}$	$\psi^{\mu}_{seq_{err}} \psi^{\sigma}_{seq_{err}}$						
\neg	T		7	××	× ×	× ×							
			/	$(\mu_{BS_{aff}})(\sigma_{BS_{aff}})$	$(\mu_{BS^*,\sigma})(\sigma_{BS^*,\sigma})$	$(\mu_{\text{ox}_{\text{off}}})(\sigma_{\text{ox}_{\text{off}}})$	$(\mu_{seq})(\sigma_{seq})$						

• Comparison table of the AUROC values and mean computation times in seconds of the original Savage-Dickey estimate and Savage-Dickey and ELBO estimates calculated using variational inference for simulated data. The algorithm parameters were $N_G = 10$ and $N_E = 1000$ for ADVI.

Number of replicates																		
	6					10					20							
Number	HMC S-D ADVI S-D		S-D	ADVI ELBO		HMC S-D		ADVI S-D		ADVI ELBO		HMC S-D		ADVI S-D		ADVI ELBO		
of reads	AUROC	Time	AUROC	Time	AUROC	Time	AUROC	Time	AUROC	Time	AUROC	Time	AUROC	Time	AUROC	Time	AUROC	Time
6	0.655	16.98	0.607	5.93	0.595	3.23	0.811	36.87	0.823	7.54	0.778	6.13	0.962	130.61	0.957	15.21	0.963	21.33
12	0.765	19.10	0.770	5.94	0.698	3.23	0.898	42.54	0.897	7.56	0.898	6.16	0.985	151.14	0.978	15.24	0.985	21.27
24	0.750	23.30	0.765	5.92	0.699	3.09	0.905	52.18	0.910	7.52	0.901	5.98	0.993	179.56	0.986	14.91	0.992	20.90

• Scatterplot of the mean computation times and differences in AUROC with Savage-Dickey approximation calculated using HMC using different parameter values for ADVI. Number of reads was 12 and number of replicates was 10.

References

- [1] Tarmo Äijö et al. LuxGLM: a probabilistic covariate model for quantification of DNA methylation modifications with complex experimental designs, *Bioinformatics*, 32 (17): i511-i519, 2016.
- [2] Alp Kuculkelbir et al. Automatic variational inference in Stan, Advances in Neural Information Processing Systems 28, 2015.
- [3] Egor Dolzhenko and Andrew D. Smith. Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments, BMC Bioinformatics, 15:215, 2014.
- [4] Amanda J. Lea et al. A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulphite sequencing data, *PLos Genetics*, 11.11 (2015): e1005650, 2015.