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Abstract: We consider the discrete Z4 symmetry î, which takes place in the scenario of quantum
gravity where the gravitational tetrads emerge as the order parameter—the vacuum expectation value
of the bilinear combination of fermionic operators. Under this symmetry operation, î, the emerging
tetrads are multiplied by the imaginary unit, î ea

µ = −iea
µ. The existence of such symmetry and the

spontaneous breaking of this symmetry are also supported by the consideration of the symmetry
breaking scheme in the topological superfluid 3He-B. The order parameter in 3He-B is also the bilinear
combination of the fermionic operators. This order parameter is the analog of the tetrad field, but it
has complex values. The î-symmetry operation changes the phase of the complex order parameter by
π/2, which corresponds to the Z4 discrete symmetry in quantum gravity. We also considered the
alternative scenario of the breaking of this Z4 symmetry, in which the î-operation changes sign of
the scalar curvature, îR = −R, and thus the Einstein–Hilbert action violates the î-symmetry. In the
alternative scenario of symmetry breaking, the gravitational coupling K = 1/16πG plays the role of
the order parameter, which changes sign under î-transformation.

Keywords: quantum gravity; tetrad gravity; discrete symmetry; complex tetrads; symmetry breaking;
cosmic walls

1. Introduction

The discrete symmetries, such as P, T, and C symmetries, play an important role
in particle physics, gravity, and cosmology [1], as well as in topological matter [2]. We
consider the discrete Z4 symmetry î, which takes place in the Akama–Diakonov–Wetterich
(ADW) scenario of quantum gravity. In this scenario, the gravitational tetrads emerge as
the symmetry-breaking order parameter—the vacuum expectation values of the bilinear
combinations of the fermionic operators [3–10]. Under the symmetry operation î, the
tetrads are multiplied by the imaginary unit, î ea

µ = −iea
µ. A similar symmetry-breaking

scenario characterizes the topological superfluid 3He-B. But in 3He-B, the order parameter,
which corresponds to tetrads in quantum gravity, is the complex matrix. The î-symmetry
operation changes the phase of this complex order parameter by π/2, which corresponds
to the Z4 discrete symmetry in quantum gravity.

In Section 2, we consider the î-symmetry in the ADW scenario. The consequences of
the spontaneous breaking of î-symmetry are discussed in Section 3. Section 4 is devoted
to the alternative scenario of the symmetry breaking, in which the scalar curvature is not
invariant under the î-operation: it changes sign, îR = −R.

2. Composite Tetrads and î-Symmetry

In the Akama–Diakonov–Wetterich (ADW) approach, the gravitational tetrads appear as
composite objects made of the more fundamental fields, the quantum fermionic fields [3–10]:

Êa
µ =

1
2

(
Ψ†γa∂µΨ−Ψ†←−∂µ γaΨ

)
. (1)
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The original action does not depend on tetrads and metric and is described solely in
terms of differential forms:

S =
1

24
eαβµνeabcd

∫
d4x Êa

αÊb
βÊc

µÊd
ν . (2)

This operator analog of the cosmological term has high symmetry. It is symmetric
under coordinate transformations xµ → x̃µ(x), and thus is also scale invariant. In ad-
dition, the action is symmetric under spin rotations or under the corresponding gauge
transformations when the spin connection is added to the gradients.

For us, it is important that this action is also symmetric under the complex coordinate
transformation xµ → ixµ(x). Let us denote this symmetry as î-symmetry:

î xµ = ixµ , (3)

Since the field operator Êa
µ in Equation (1) is linear in gradients and represents the

1-form, E = Eµdxµ, it is multiplied by −i under this symmetry operation:

î Êa
µ = −iÊa

µ . (4)

The operator Êa
µ is Hermitian or anti-Hermitian, once a representation of γ-matrices

is specified. Under the symmetry transformation (3) the operator Êa
µ becomes corre-

spondingly anti-Hermitian or Hermitian, but the action (2) remains invariant under this
î-transformation.

The action may also contain the operator analog of the Einstein–Hilbert–Cartan term [6],

eαβµνeabcd

∫
d4x Êa

αÊb
β F̂cd

µν . (5)

Here, F̂cd
µν is the operator of the Cartan curvature 2-form. As the 2-form, F = Fµνdxµ ∧

dxν, it changes sign under î-transformation:

î F̂cd
µν = −F̂cd

µν , (6)

while the action (5) is î-invariant.

3. Broken î-Symmetry

In the ADW scenario of quantum gravity, the tetrads ea
µ emerge as the order parameter

of the spontaneous symmetry breaking. These are the vacuum expectation values of the
bilinear fermionic 1-form Êa

µ:
ea

µ =< Êa
µ > . (7)

If we use the Hermitian choice of the operator Êa
µ, the emergent tetrads ea

µ become
the real functions. Since in the ADW theory, the fermionic fields are dimensionless [8], the
covariant tetrads have dimension of the inverse length, [ea

µ] = 1/[length].
The tetrad order parameter breaks the separate symmetries under orbital and spin

transformations but remains invariant under the combined rotations. On the level of
the Lorentz symmetries the symmetry breaking scheme is LL × LS → LJ . Here, LL is
the group of Lorentz transformations in the coordinates space, LS is the group of Lorentz
transformations in the spin space, and LJ is the residual symmetry. It is the symmetry group
of the order parameter, which is invariant under the combined Lorentz transformations LJ .
Note also that the discrete P and T symmetries of the Standard Model are also the combined
symmetries since they include both the coordinate transformations and transformations of
the fermionic fields.
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In addition, the order parameter in Equation (7) breaks the discrete î-symmetry and
becomes anti-Hermitian under î-transformation:

î ea
µ = −iea

µ . (8)

We can compare this symmetry breaking with the spontaneous breaking of the PT-
symmetry proposed in Ref. [11], where the special type of the PT-symmetry operation
changes sign of all tetrads, PTea

µ = −ea
µ. In connection to the transformation of tetrads, the

î-symmetry corresponds to the square root of this PT-symmetry:

î2 ea
µ = PT ea

µ = −ea
µ . (9)

That is why the î-operation belongs to the discrete Z4 group, (î, î2 = PT, î3 = −î, î4 = 1).
The ADW symmetry-breaking mechanism of emergent gravity has the analog in the

spin-triplet p-wave superfluids, where the effective gravitational vielbein also emerges
as the bilinear fermionic 1-form [12,13]. In the B-phase of superfluid 3He, the symmetry-
breaking scheme is SO(3)L × SO(3)S → SO(3)J , where SO(3)L and SO(3)S are corre-
spondingly the orbital and spin rotation groups, and SO(3)J is the residual symmetry—the
symmetry of the order parameter under combined rotations. Here, J is the total angular
momentum operator J = L + S. Such symmetry breaking to the diagonal subgroup is
known in superfluid 3He as relative symmetry breaking [14]. This means that the symmetry
under the separate rotations in spin and orbital spaces is broken, while the properties of
3He-B are isotropic due to the symmetry under the combined rotations.

It is important, that in 3He-B, the U(1) symmetry is also spontaneously broken. Under
the U(1) phase rotations, the order parameter (the triad analog of tetrads) is transformed ac-
cording to ea

µ → eiϕea
µ. Then, the î-symmetry operation in Equation (8) corresponds in 3He-B

to the global U(1) transformation with the phase ϕ = −π/2. This, again, demonstrates that
with respect to tetrads, the î-symmetry is the element of the discrete Z4-symmetry group
of quantum gravity with ϕ = πn/2, which extends the symmetry group. The possible
extension of this Z4 group to the full U(1) group of quantum mechanics is discussed in
Section 3.6 in connection with another phase of superfluid 3He, the planar phase with
massless Dirac fermions.

Note that in our case, the symmetry operation î does not include the transformations
of the fermionic and bosonic operators and the interchanges of the Dirac variables with
their Hermitian conjugates. It is the pure coordinate transformation of the operators,
îΨ(xµ) = Ψ(ixµ), i.e., these operators are the world scalars under such discrete kind of
diffeomorphisms.

3.1. Metric as Fermionic Quartet

In the broken symmetry state in the ADW scenario, the metric field emerges as the
secondary object—the bilinear combination of the tetrad fields:

gµν = ηabea
µeb

ν . (10)

That is why, in this quantum gravity, the metric is the fermionic quartet. Under the
î-transformation, the signature of the metric changes:

î gµν = −gµν . (11)

Let us mention the connection with the scenario suggested in Refs. [15,16], where the
signature of the metric is represented by the dynamic variable Oab. Then, the tensor ηab in
Equation (10) emerges as the vacuum expectation value ηab =< Oab > in the corresponding
symmetry breaking phase transition.

Let us also mention the complexification of the tetrads [5] and the complexification of
the Lorentz group in Refs. [17,18] and references therein. The scenario of the emergence of
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gravity from the breaking of gauge symmetry in Refs. [17,18] is similar to the scenario with
the so-called translational gauge fields in crystals, where the gravitational tetrads emerge
from the elasticity tetrads describing the elasticity theory in crystals [19–23]. In the elasticity
theory, an arbitrarily deformed crystal structure is described as a system of the crystallo-
graphic surfaces of constant phase Xa(x) = 2πna, and the elasticity tetrads are ea

µ = ∂µXa.
Note that the elasticity tetrads change sign under the conventional PT transformation of
coordinates, and thus the î-symmetry is the square root of this PT symmetry.

In principle, the so-called vestigial gravity is possible in quantum gravity, where the
tetrad order parameter is absent, ea

µ =< Êa
µ >= 0, while the metric emerges as the vacuum

expectation value of the bilinear combination of tetrad operators, gµν = ηab < Êa
µÊb

ν > [24].
In the vestigial gravity, the Equivalence Principle is violated, since such gravity acts with
different strength on fermions and bosons, and they do not follow the same trajectories in a
given gravitational field.

3.2. Interval and Scalar Field

While the metric in Equation (11) changes sign under the î-transformation, the interval
remains î-invariant due to Equations (3) and (11):

ds2 = gµνdxµdxν , î ds2 = ds2 . (12)

This makes î-invariant the classical action S = M
∫

ds for massive particle, î S = S.
The emergence of the metric gives rise to the quadratic action for the scalar field Φ:

S =
∫

d4x
√
−g gµν∇µΦ∗∇νΦ , (13)

which is also î-invariant. This is because the coordinate transformation of the gradients
of the scalar field is compensated by the change of the sign of the metric: î∇µ = −i∇µ,
î gµν = −gµν and î g = g.

3.3. Gauge Fields

The gauge potential is the 1-form field, A = Aµdxµ, and thus it transforms in the same
way as the gradient:

î Aµ = −iAµ . (14)

The zero-form action describing the interaction of a charged point particle with the
U(1) gauge field remains invariant under the î-transformation:

S = q
∫

dxµ Aµ , î S = S , (15)

where q is the dimensionless electric charge. On the other hand, the field strength, being
the 2-form, F = Fµνdxµ ∧ dxν, changes sign under the î-transformation:

î Fµν = −Fµν . (16)

The quadratic action for the gauge field, which appears after the emergence of the
metric, is quadratic in Fµν and is quadratic in gµν:

S ∝
∫

d4x
√
−g FµνFµν , (17)

and thus, it is î-invariant.
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3.4. Fermions

The action for the massive Dirac particles

S =
∫

d4x e (ieµ
a Ψ̄γa∇µΨ−MΨ̄Ψ) . (18)

is also î-invariant. This is because of the following transformations of the contravariant
tetrads, gradients, and the tetrad determinant:

î eµ
a = ieµ

a , î∇µ = −i∇µ , î e = e . (19)

Let us recall that the symmetry operation î is the pure coordinate transformation,
which does not involve the γ-matrices. Note also that in the ADW theory, the contravariant
tetrads have dimension of the length, [eµ

a ] = [length], while the fermionic fields and the
mass M are dimensionless [8,25]. That is why the action (18) is dimensionless.

3.5. Gravity from Bosons

Till now, we considered gravity emerging in the background of the fermionic vacuum.
The more restricted gravity emerges in the bosonic background, see e.g., Ref. [26]. Now,
instead of tetrads, the metric field is the emerging gravitational variable. An example of the
corresponding order parameter as the vacuum expectation value of the bosonic fields is:

gµν ∝
〈
∇µΦ†∇νΦ +∇νΦ†∇µΦ

〉
. (20)

Under î-transformation, the effective metric changes sign in the same way as in the
fermionic vacuum, îgµν = −gµν. That is why the quadratic action for the scalar field in
Equation (13) remains î-invariant.

3.6. Discrete Z4 Symmetry and Imaginary Unit in Quantum Mechanics

The complexification of the coordinate transformations using xµ → ixµ becomes more
transparent when complex numbers are expressed in terms of real numbers. The latter also
explains why only the elements of the discrete subgroup Z4 of the U(1) symmetry group
participate in the coordinate transformations.

This may also have some connection to the fundamental problem of the role of complex
numbers in quantum mechanics. As is known, Schrödinger strongly resisted the introduction
of such a product of the human mind as

√
−1 into the wave equations. The possible solution

to the problem [27] is to express the effective imaginary unit in terms of the real 2 × 2 matrix:

a + ib ≡
(

a
b

)
≡ aÎ + bî , (21)

where

Î =
(

1 0
0 1

)
, î =

(
0 1
−1 0

)
, î2 = −1 . (22)

The possible topological origin of the emergence of these real matrices in quantum
mechanics is discussed in Refs. [28,29]. The main role in this scenario, which gives rise to
the effective imaginary unit, is played by the topology of exceptional points of the level
crossing in the fermionic spectrum—the so-called conical, diabolic, Dirac, and Weyl points.

Another possible origin of the effective imaginary unit ieff is discussed by Adler in the
theory of the trace dynamics [30]. According to Adler [30], the emergent quantum theory
may have two sectors, one with imaginary unit i and one with imaginary unit −i. This
corresponds to the Z2 symmetry between the states with:

î = ±
(

0 1
−1 0

)
. (23)
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This can be responsible for the dark matter arising in the hidden sector of the standard
model with the opposite i [31].

The full Z4 group (Î, î, î2, î3) for the considered coordinate transformations comes
from the symmetry between the Hermitian and anti-Hermitian presentations of the coordi-
nate and momentum operators, which are similar to the Hermitian and anti-Hermitiian
representations of γ-matrices in Section 2. The Hermitian matrices for the real-valued
coordinates and momenta are:

x̂ =

(
x 0
0 x

)
, p̂ =

(
0 −∂x
∂x 0

)
, x̂p̂− p̂x̂ = î . (24)

The anti-Hermitian presentation of the coordinate and momentum operators, which
is obtained by the î element of the Z4 symmetry group, xµ → ixµ, can be written also in
terms of real numbers:

x̂anti = î x̂ =

(
0 x
−x 0

)
, p̂anti = −î p̂ = −

(
∂x 0
0 ∂x

)
, (25)

with the same canonical commutations relation as in Equation (24).
It is important that in some cases the discrete symmetry can be automatically extended

to the continuous symmetry, as it happens for the planar phase of superfluid 3He, where
Z2 symmetry is extended to U(1) [32]. In the planar phase, the Z2 symmetry C is the
combination of the spin π rotation about the z axis and the phase rotation by π/2. In
the linear approximation, the single-particle Hamiltonian and Green function commute
not only with C but also with the full SO(2) ≡ U(1) group of transformations exp(iαC)
generated by C. Since quantum mechanics is the linear theory, one may also expect that
in the same way the U(1) transformation eiα of the wave function in quantum mechanics
emerges as the extension of the Z4 symmetry group with its discrete phases, α = nπ/2.

4. Alternative Broken Symmetry

It can be interesting to consider the other possible scenarios of quantum gravity with
different schemes of the breaking of the î-symmetry. Let us consider as an example the sym-
metry breaking scheme in which the metric remains invariant under the î-transformation
of coordinates, xµ → ixµ:

î gµν = gµν . (26)

Such gravity does not include fermions and concerns only the bosonic scalar and
gauge fields interacting with the gravitational field.

4.1. Scalar Field

The action for the scalar field is modified since the Equation (13) is quadratic in
gradients and thus is not î-invariant. But the fourth-order gradient terms in action are
invariant under î-transformation, examples of such terms are:

S =
∫

d4x
√
−g

(
a4gµνgαβ∇µ∇νΦ∗∇α∇βΦ + b4

(
gµν∇µΦ∗∇νΦ

)2
)

. (27)

The second-order gradient term, which violates the î-symmetry, may appear only in
the state with the spontaneously broken î-symmetry. The corresponding order parameter
can be, for example, the following vacuum expectation value of the bosonic operators:

λ =< gµν∇µΦ†∇νΦ > . (28)

This gives the following second-order gradient term:

S2 = 2b4λ
∫

d4x
√
−g gµν∇µΦ∗∇νΦ . (29)
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The main difference from Equation (13) is that Equation (29) contains the parameter
λ, which changes sign under î-transformation, î λ = −λ, and thus, the scalar field is
transformed into the ghost field.

4.2. Gauge Field

In this scenario of symmetry breaking, Equation (16) for the î-transformation of the
gauge field remains the same since the 2-form field does not depend on metric:

î Fµν = −Fµν . (30)

The action for the gauge field in Equation (17) is quadratic in the metric field and thus
remains î-invariant. This actually follows from the scale invariance of this action.

4.3. Gravity

In the scenario of the broken symmetry in Section 3, where the tetrads serve as the
order parameter of the symmetry breaking, the term in Equation (5) is reduced to the
conventional Einstein–Hilbert action

∫
d4x
√−gKR. It is î-invariant, since îR = R. In the

alternative symmetry breaking scenario discussed here, the curvatureR is not î-invariant
since the transformation xµ → ixµ is not compensated by the transformation of the metric,
and one obtains îR = −R. As a result, the Einstein–Hilbert action is not î-invariant, and
the î-invariant gravity is the gravity, which is quadratic in the spacetime curvature.

The î-invariance of the Einstein–Hilbert action is restored if the gravitational coupling
changes sign under this transformation, î K = −K. This means that, in this scenario, the
gravitational coupling K either serves as the order parameter of such symmetry breaking
or is proportional to the order parameter λ in Equation (28), K ∝ λ. In this sense, the
î-symmetry has much in common with the scale invariance.

5. Discussion

In topological superfluid 3He-B, the symmetry-breaking scheme includes the reduction
SO(3)L × SO(3)S → SO(3)J . Here, SO(3)L is the group of orbital rotations, SO(3)S is
the group of spin rotations, and SO(3)J is the residual symmetry—the symmetry under
combined rotations.

In the ADW scenario of quantum gravity, there is a similar symmetry-breaking scheme,
but in the form of the Lorentz symmetries: LL × LS → LJ . Here, LL = S(3, 1)L is the
group of Lorentz transformations in the coordinates space, LS = S(3, 1)S is the group of
Lorentz transformations in the spin space, and LJ = S(3, 1)J is the residual symmetry—the
symmetry group of the order parameter. The order parameter here is the tetrad field ea

µ,
which is not invariant under separate Lorentz transformations, but is invariant under
the residual symmetry group—the combined Lorentz transformations LJ . Two Lorentz
symmetry groups as independent transformations of coordinates and spins have been also
considered in Ref. [33].

The difference between the 3He-B scenario and the ADW scenario of quantum gravity
is not only in the different dimensions: we have 3D space dimension in 3He-B and (3+1)
dimension of space–time in the ADW gravity, and as a result, the order parameter in 3He-B
represents the triad field instead of tetrads. There is another important difference: in 3He-B,
in addition to the broken relative symmetry, the global U(1) symmetry group is also broken,
i.e., the symmetry-breaking scheme is U(1)× SO(3)L × SO(3)S → SO(3)J . As a result, the
triads in 3He-B become complex. This suggests the possible consideration of the extended
symmetry also in the ADW scenario. Indeed, one can see that the original fermionic action
in the ADW theory is invariant under the coordinate transformation xµ → ixµ, where i is
the imaginary unit. We called this additional symmetry the î-symmetry. This Z4 symmetry
is the discrete analog of the U(1) symmetry in the symmetric state of liquid 3He. In the
ADW scenario, this î-operation leads to the following transformation of the emerging tetrad
fields: ea

µ → −iea
µ.
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The physical meaning of the spacetime coordinate transformation xµ → ixµ is dis-
cussed in Section 3.6. This transformation corresponds to the transition between two
equivalent descriptions of the quantum fields and gravity, Hermitian and anti-Hermitian.

We also considered the alternative scenario of the breaking of the Z4 symmetry. In
this scenario, the î-operation changes sign of the scalar curvature,R → −R, and thus, the
Einstein–Hilbert action violates the î-symmetry. This means that in the alternative scenario
of symmetry breaking, the gravitational coupling K = 1/16πG plays the role of the order
parameter, with K → −K under the î symmetry operation. In this scenario, the scalar field
is transformed to the ghost field under î-operation; the massive particles transform to the
tachyons with imaginary mass, and the de Sitter state is transformed to the anti-de Sitter
state [34]. The latter is different from the time reversal operation, which transforms the
expanding de Sitter state with the Hubble parameter H > 0 to the contracting de Sitter
state with H < 0.

The discrete Z4-symmetry and its breaking can be important in cosmology. In partic-
ular, due to spontaneously broken discrete symmetry in the gravitational sector, gravity
can be a ‘player’ in the problem of the baryon asymmetry of the Universe [35,36]. Also,
the breaking of discrete symmetry leads to the formation of the cosmological domain
walls [37,38], see review [39]. In Ref. [35], the domain wall emerging due to the breaking of
the Z2 symmetry and the PT-symmetry was considered. It is the wall separating the states
with ea

µ and−ea
µ. In the case of the Z4 symmetry breaking, one has, in addition, the H-antiH

domain wall separating the quantum vacua with Hermitian and anti-Hermitian tetrads.
Each of the two degenerate states can be described in the frame of Hermitian physics by the
redefinition of the γ-matrices, then its partner behind the wall is viewed as anti-Hermitians.
Within the domain wall, the î-symmetry can be restored, which means that the tetrads
cross the zero values, ea

µ = 0. However, the symmetry of the topological objects can be also
broken in their cores [40,41]. The broken symmetry of the H-antiH domain wall may lead
to the complex values of the tetrads within the domain wall. This would correspond to
the Neel or Bloch domain walls in ferromagnets, where the magnetization does not cross
zero value.

It would be interesting to extend the consideration to the extra dimensions. Diakonov
suggested the SO(16) symmetry group with 16× 16 components of the vielbein, and these
256 degrees of freedom come from the bilinear combinations of the Standard Mode fermions
in four generations [6]. See also the compactification of the higher-dimensional spacetime
in the recent paper [42] and references therein.

6. Conclusions

The Akama–Diakonov–Wetterich quantum gravity is symmetric under the complex
coordinate transformation xµ → ixµ. In this paper, we discussed the physical meaning of
such transformation and its physical consequences. The physical meaning becomes clear
when the imaginary unit i is expressed in terms of the real-valued antisymmetric matrix.
Then, the transformation xµ → ixµ describes the transition between the Hermitian and
anti-Hermitian descriptions of the quantum fields and gravity, and corresponds to the
discrete element of the Z4 group.

The spontaneous breaking of this symmetry leads to the formation of the “H-anti-H”
walls—the cosmological domain walls separating the quantum vacua with Hermitian and
anti-Hermitian tetrads. However, each of the two degenerate states can be described in the
frame of conventional Hermitian physics by the redefinition of the Dirac γ-matrices.

This consideration is supported by the condensed matter analogs—the B-phase and the
planar phase of superfluid 3He with correspondingly massive and massless Dirac fermions.
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