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Abstract
Designing interaction techniques for end-users often involves exploring vast design spaces while balancing many objectives.
Bayesian optimization offers a principled human-in-the-loop method for selecting designs for evaluation to efficiently
explore such design spaces. To date, the application of Bayesian optimization in a human-in-the-loop setting has largely been
restricted to optimization, or customization, of interaction techniques for individual user needs. In practice, interaction
techniques are typically designed for a target population or group of users, with the goal is to produce a design that works
well for most users. To accommodate this common use case in interaction technique design, we introduce two practical
approaches that facilitate multi-objective Bayesian optimization at the group level. Specifically, our approaches streamline
the process of (1) deriving designs suitable for a group of users from data collected in individual user evaluations; and (2)
deriving an initialization from group data to improve the efficiency of design optimization for new users. We demonstrate
the advantages of these practical approaches in two multi-phase user studies involving the design of non-trivial interaction
techniques.

Keywords
Human-in-the-loop optimization, interaction technique, interface design, optimization, design optimization, Bayesian
optimization, pointing, haptics, input, touch

Introduction

Developing an interaction technique is hard. Technically,
it involves setting the values of various design parameters
that eventually shape the performance and experience of
users. These configurable attributes implicitly define a

multi-dimensional design space with theoretically infinite
feasible operating points. A simple design task with three
configurable design parameters, each with ten possible
levels, already has 1,000 feasible operating points and
most practical tasks face even larger design spaces.
Unfortunately, the relationship between particular design
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choices and their outcomes for users is complex and
rarely predictable. Even a small change in a design pa-
rameter that improves one aspect of an interaction
technique can have unwanted side effects on the others.
Therefore, selecting the “best,” or even a “good enough,”
operating point poses a central and non-trivial challenge
to the design of interaction techniques.

Complicating matters further is the fact that seeking to
design for more than a single objective, that is, a measurable
performance metric, exposes the challenge of Pareto-
optimality. Pareto-optimality refers to the idea that given
more than one design objective, there is no longer a single
best operating point. For example, a particular interaction
configuration may yield good task performance but receive
mediocre subjective user ratings, or vice versa. For a given
Pareto-optimal design, no individual objective can be im-
proved by adjusting the design parameters without making
at least one other individual objective worse off. For in-
stance, a well-known trade-off in interaction technique
design is balancing speed and accuracy. A design instance
that favors speed may lead to higher error rates, and vice
versa. Such trade-offs are difficult to navigate without some
degree of subjectivity and/or introducing secondary
constraints.

The conventional way of tackling this challenge has been
via empirical evaluation of manually selected operating
points: a promising set of combinations is chosen and
compared in an experiment (Hornbæk, 2013). However,
because of the significant time and effort involved, a truly
exhaustive study is rarely conducted, and the designer must
often select a design by other means, for instance, by basing
a decision on previous results (Chen et al., 2011; Gergle and
Tan, 2014). This approach is not only prone to missing good
designs, but potentially biased based on prior experience
and personal preferences. Recently, human-in-the-loop
optimization has emerged as a more systematic and unbi-
ased design exploration process. Bayesian optimization is a
particularly strong candidate for human-in-the-loop opti-
mization given that it achieves high sample-efficiency by
leveraging an iteratively refined model of the design space
(Shahriari et al., 2016). Underlying this is a probabilistic
surrogate model, such as a Gaussian process (GP), which
offers a robust probabilistic estimate of the latent function
relating the design parameters to measurable objectives. As
more observations are collected, the quality of the GP’s
estimate is improved, which in turn enables the optimizer to
make informed choices about where to sample next. Re-
cently, researchers have investigated the advantages and
disadvantages of using multi-objective Bayesian optimiza-
tion (MOBO) in assisting design exploration (Chan et al.,
2022; Liao et al., 2023). These first investigations into how
designers can be assisted by MOBO reveal potential ben-
efits in terms of the quality of designs identified, while
delivering these with reduced designer workload.

Prior work has applied Bayesian optimization in the
context of human-in-the-loop interface and interaction
design to determine: game mechanics that maximize user
engagement (Khajah et al., 2016); font features that max-
imize user reading speed (Kadner et al., 2021); interface
features that minimize interface search time (Dudley et al.,
2019); interaction settings that minimize selection time and
maximize accuracy (Chan et al., 2022); and animation and
image adjustments to efficiently match some desired ap-
pearance (Brochu et al., 2010; Koyama et al., 2017, 2020).

These prior applications of Bayesian optimization are
either limited to a single objective and/or focus on cus-
tomization of the design to the individual. In practice, the
design intent for interaction techniques is often to address
the needs of a group or population of users, rather than an
individual. Accommodating multiple objectives further
complicates such an optimization process given the concept
of Pareto-optimality and the absence of a single best op-
erating point. In this current work, we seek to bridge the gap
between the demonstrable efficiency of Bayesian optimi-
zation for interaction technique design, and the practical
need to focus on group requirements in contrast to indi-
vidual requirements.

In this paper, we introduce two practical approaches that
streamline the process of working with group data for
MOBO in interaction technique design. Both approaches
leverage MOBO to independently identify optimal designs
for a group of individuals and subsequently offer methods
for aggregating the data from these multiple individuals to
assemble an aggregated performance model representative
of the group. When there exist parameter values, or ranges
of such values, that generally lead to high objective values
for many users, the aggregate model captures these shared
traits. Since they are multi-objective models they can be
inspected to identify the Pareto front, which can inform
trade-off decisions. We refer to these two approaches as: (i)
the Global GP, which computes group-level optimal de-
signs from data obtained from individual users, and (ii) the
Warm-Start GP, which provides an initialization for the
MOBO process using group-level data to support more
rapid individual design optimization. The Global GP helps
designers find the optimal designs for groups and pop-
ulations, while the Warm-Start GP helps designers adapt
these designs faster to an individual.

User-centered design distinguishes between user
research, requirements, design, and evaluation. Bayesian
optimization, as studied in this paper, focuses on the later
stages of design, where a reasonable understanding of the
design problem has been achieved, but exact decisions
regarding the design have not been made. The proposed
practical approaches can assist designers when they have
identified which aspects of the design that are likely de-
terminants of quality or user performance, but they do not
yet know how specific design choices influence the
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objectives of interest. Rather than manually searching in
order to find optimal design settings or assess the objective
trade-offs, the designers can instead leverage our proposed
approaches.

We evaluate each capability in challenging and realistic
interaction design tasks across two multi-phase user studies:
(i) designing a 3D touch interaction in virtual reality, ex-
posing a complex trade-off between selection speed and
accuracy, and (ii) tuning the vibration feedback for a
touchscreen button to achieve an effective compromise
between temporal accuracy, consistency, and user comfort.
The results reveal that the Global GP leads to significantly
improved user performance. Completion time decreased by
5.5% and spatial error decreased by 48%. The Warm-Start
GP also led to a significantly larger hypervolume, which is a
proxy measure of the quality of a multi-objective optimi-
zation outcome. The hypervolume increased 38% and 18%,
respectively, compared to a standard MOBO for two dif-
ferent groups of users, indicating its efficacy for faster
design adaptation.

This work contributes to the study of collective intelli-
gence by shedding light on the fundamental question of how
to design interactions for the abilities and needs of groups.
Inherent to our approach is that we model the diversity of
responses in a user population, which is important in design
as it allows consideration of difficult trade-offs. This is a
problem akin to previous research that navigates trade-offs
between the preferences of different stakeholders (Bose
et al., 2017; Lee et al., 2019). At the same time, we
demonstrate how a model that captures this group-level
variation can also be exploited to adapt designs to indi-
viduals. In summary, this paper makes three key
contributions:

1. We introduce the Global GP as a practical method
for generating Pareto-optimal design instances based
on user-specific optimizations performed by a group
of users.

2. We introduce the Warm-Start GP as a practical
method for deriving initializations from group-level
data in order to facilitate more rapid optimization for
a new user.

3. We demonstrate both the Global GP and the Warm-
Start GP in two representative and challenging in-
teraction design tasks. This provides a valuable
reference on how to apply group-level multi-
objective optimization more broadly to HCI de-
sign problems.

Related work

Computational methods for assisting designers have at-
tracted substantial recent attention. In this section, we

review the literature introducing and demonstrating com-
putational approaches to interaction technique design.

Computational one-shot design

Computational one-shot design relies on prior knowledge of
the function relating design choices to performance ob-
jectives. For example, one can construct a model describing
the impact reducing the size or separation between buttons
has on selection time. Discrete and continuous optimization
methods have been extensively explored for one-shot de-
sign of user interfaces (Oulasvirta et al., 2020). These ap-
proaches have been successfully applied in a variety of HCI
applications such as widget layouts (Gajos andWeld, 2004),
keyboards (Karrenbauer and Oulasvirta, 2014), and context-
aware interfaces in AR (Lindlbauer et al., 2019). These
approaches generally assume a predictive model as given or
learned from a pre-existing dataset. This established model
can then be queried to guide the search over the design
space. Often, however, it is not possible to derive or acquire
a predictive model relevant to a novel design problem and
so such approaches do not generalize well.

Bayesian approaches for single-objective problems

Bayesian optimization is a machine learning method that
performs efficient exploration of complex or black-box
objective functions to identify an optimum point. Bayes-
ian optimization eliminates the need for an established
predictive model or prior exploration of the design space.
The approach is well suited to applications where the ob-
jective functions are expensive or difficult to evaluate due to
the required time or effort. Bayesian optimization, therefore,
has good utility in supporting interface and interaction
design since many objectives can only be evaluated by
conducting a test with a user. Prior work outside of HCI has
also shown that Bayesian optimization can outperform other
black-box optimization methods for one-dimensional de-
sign problems (Borji and Itti, 2013). Bayesian optimization
has been applied to a wide variety of optimization problems,
but we subsequently constrain the scope of our review to
design tasks involving a user. For a more general overview,
please see Shahriari et al. (2016).

Khajah et al. (2016) applied Bayesian optimization to
assign parameter values dictating the mechanics of a game
in order to maximize user engagement. Also using Bayesian
optimization, Kadner et al. (2021) sought to customize font
designs for individuals to maximize reading speed. Dudley
et al. (2019) also leveraged crowdsourcing to quickly access
a large number of users but evaluated a more traditional
metric based on task completion time to refine design pa-
rameters for a range of simple user interfaces. Users were
also given the opportunity to subjectively rate interface
designs but this was not integrated into the optimization
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process. Brochu et al. (2010) demonstrated a technique
for allowing designers to quickly determine appropriate
values for smoke animation while Koyama et al. (2017,
2020) sought to streamline user editing of photographs to
achieve a desired visual appearance. The ability to tightly
integrate the user into the procedure makes Bayesian
optimization well suited to customizing settings to an
individual. This capability has been exploited to tune
hearing devices (Nielsen et al., 2015) and other assistive
technologies (Snoek, 2013). Piovarci et al. (2020) used an
approach influenced by Bayesian optimization to ex-
plicitly search for design parameters in surfaces and styli
for drawing haptics that exhibit target friction and vi-
bration objective values. However, the goal of Piovarci
et al. (2020) was to obtain parameter values that yield
predetermined friction and vibration qualities and so they
do not strictly perform multi-objective optimization over
the design space. Chan et al. (2022) reported the results of
a between-subjects experiment that investigated the ad-
vantages and disadvantages of using Bayesian optimi-
zation in interaction technique design versus manual
design space exploration. The core focus of Chan et al.
(2022) was investigating when designers generate design
candidates and evaluate these designs on themselves, as
opposed to with a group of end users.

Multi-objective Bayesian optimization

Many methods have been proposed for multi-objective
optimization of black-box objectives from evolutionary
approaches (Knowles, 2006) to Bayesian approaches
(Hernandez-Lobato et al., 2016; Picheny, 2015; Zuluaga
et al., 2016). Multi-objective optimization has been
employed in many engineering problems, such as in user
interface design. It has been used to optimize linkages for
haptic interfaces (Hayward et al., 1994), mid-air text
entry (Sridhar et al., 2015), and keyboard layout opti-
mization (Dunlop and Levine, 2012). These methods
either relied on reducing the multiple objectives into a
single objective by a linearized weighted sum (Sridhar
et al., 2015) or by variations on grid search or trial-and-
error (Dunlop and Levine, 2012; Hayward et al., 1994).
Feit et al. (2015) provided an extensive overview of the
challenges and methods available in applying multi-
objective optimization to keyboard design. However,
none of those methods use Bayesian optimization to
converge to the Pareto-optimal parameters, without ap-
plying heuristics, by optimizing over black-box objective
functions.

Most of these methods assumed that the multiple
objectives are independent; however, Shah and
Ghahramani (2016) described an approach that incor-
porates the correlation between expensive objectives. In
this paper, we build on the formulation introduced by

Shah and Ghahramani (2016) and apply it to interaction
design for groups.

Practical approaches to MOBO: The
Global GP and the Warm-Start GP

When optimizing a single objective, it is possible to de-
termine a single “best” design.1 By contrast, when per-
forming multi-objective optimization, there is no single
optimum but rather the set of operating points that represent
optimal trade-offs between the design objectives. For ex-
ample, consider three hypothetical designs A, B, and C: A
delivers high speed but poor accuracy; B delivers high
accuracy but poor speed; and C delivers moderate accuracy
and moderate speed. All of these designs may be considered
optimal if their performance in one of the two objectives
cannot be improved without making the other objective
worse. The set of operating points for which one objective
cannot be increased without the other objectives decreasing
is referred to as the set of Pareto-optimal designs or the
Pareto front.

In Bayesian optimization, the goal is to optimize over
black-box objective functions by sequentially choosing new
test points at which to evaluate those objectives. As new
samples are collected, a surrogate model relating the design
parameters to their approximate objective function values is
updated. It is typical to use a Gaussian process regression
(GP) as this surrogate model. A GP is a non-parametric
method that models functions, giving uncertainty estimates
about function values and often allowing analytically
tractable inference. An acquisition function is consulted to
determine which point should be sampled next. Acquisition
functions propose sampling points by trading off explora-
tion (sampling where the inference uncertainty is high) and
exploitation (sampling where the surrogate models predict
high objective values). For multi-objective Bayesian opti-
mization, the acquisition assessment is typically performed
with reference to the Pareto hypervolume (Zitzler and
Thiele, 1999). The Pareto hypervolume is the volume
bounded by a fixed reference point on one side and the
multidimensional Pareto front on the other side. The ac-
quisition function effectively seeks to sample a new design
point that will increase the Pareto hypervolume as this
corresponds to a new point that advances the Pareto front.
We leverage the acquisition function called CEIPV (Cor-
related Expected Improvement in Pareto hyperVolume),
proposed by Shah and Ghahramani (2016).

Previous works have applied MOBO to interface design
problems, but they have focused solely on optimizing for
individual users (Chan et al., 2022; Liao et al., 2023). In this
paper, we demonstrate two methods that facilitate the ap-
plication and broaden the utility of MOBO by addressing
two unique requirements commonly encountered in
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interaction design problems. The first requirement is the
common goal in interaction design to arrive at a configu-
ration that performs well for most users. This reflects the
need to release products that are acceptable to a broad user
base. The second requirement is the goal of supporting
efficient customization methods from some broadly ac-
ceptable initial configuration. This reflects a desirable
quality for an interaction technique to perform generally
well from the outset but to also quickly adapt to individual
user needs. We refer to the two proposed methods as the
Global GP and the Warm-Start GP and introduce each
below.

Global GP: Concise user group modeling

Running the standard MOBO procedure produces a distinct
set of Pareto-optimal designs for each individual user. Each
Pareto front obtained potentially reflects the unique pref-
erences and abilities of these individual users. In interaction
design, we typically want to find a configuration that is
suitable for a broad user base rather than a design that works
well for one person but poorly for the majority. Therefore,
we wish to combine the Pareto-optimal designs obtained for
all users sampled individually into a single “global” model
that reflects the broader preferences and abilities of the user
group. Here we use the term “global” to refer to the user
group as distinct from individual users.

To fulfill this task, we construct a Global GP that
incorporates all the data from all users. A GP is a
probability distribution over possible functions and es-
timates the model relating input values, x, to function
values, y. In the context of interaction design, x refers to
design parameter values while y is the measured per-
formance. Since a GP captures the probability distribu-
tion over all possible functions, one can derive the means
of the functions and the variances to indicate the confi-
dence of the predictions. The Global GP is constructed by
providing all observed pairings of design parameters and
objectives from all participants to form a single GP
model. We can then inspect the Global GP to obtain the
estimated mean and variance of y (i.e., performance
objectives) at any x (i.e., design parameter settings) and
use this to predict the expected performance of the group
given a particular design instance. To obtain the Pareto-
optimal designs from this Global GP, we conduct a fine-
grid sampling of the design parameter space. Given
appropriate bounds for each parameter and normaliza-
tion, the design parameter space is a hypercube in R

n and
so we do an exhaustive fine-grid sampling on that hy-
percube with the resolution specifying the coarseness, c,
of the sampling. Given c, we divide each dimension of the
parameter spaceX into c equally spaced grid points, 0 and
1 inclusive. After sampling, we have cn samples, which
we use to output the set of global Pareto-optimal designs.

We set c = 16 for our applications which was determined
by the empirical trade-off between design parameter
specificity and computation time.

This method is computationally expensive but since it
runs as a post-processing step, it is practical and feasible to
perform and provides a comprehensive summary of the
optimal design parameter sets. Figure 1 illustrates the high-
level process of constructing the Global GP and extracting
the Pareto-optimal designs.

Besides using GPs as base models, other approaches,
such as regression models and deep neural nets, may be
applied to constructing a global-level model. However,
these methods have various requirements and limitations. A
deep neural net requires a large amount of data and high-
dimensional input. That typically demands a large number
of users, which is not usually feasible for human-in-the-loop
optimization. Parametric regressions, such as linear re-
gressions, require assumptions of the model (e.g., the
number of degrees and the landscape of input and output),
which are also not always viable for HCI problems. Fur-
thermore, deep neural nets and parametric regression
models are not capable of capturing the uncertainty of the
predictions. In comparison, a non-parametric GP is a more
general and natural choice, and it effectively models the
uncertainty of the prediction.

Warm-Start GP: Efficient initialization for user-
specific customizations

Another common use case encountered in interaction design
is optimizing the parameters of a technique to the particular
abilities and preferences of an individual. This custom-
ization or personalization process can also be efficiently
performed with the aid of multi-objective Bayesian opti-
mization. Ideally, this process should be as fast as possible
and one way to enhance efficiency is to initialize the MOBO
procedure with a generalized appreciation of the design
space. In practice, this can be achieved by selecting some
subset of the data collected from all users to initialize the
Bayesian optimization procedure when personalizing a
technique to a new user. The problem then is to select a
sparse subset of size K from the whole dataset that is
representative of the whole dataset so as to quickly adapt to
the needs of the new user. These selected points are used to
construct a Warm-Start GP which then provides the ini-
tialization for running Bayesian optimization with the new
user. Figure 2 illustrates this general procedure.

We simplify and adapt the greedy selection approach
taken by Titsias (2009) by using the approximation to the
marginal likelihood of the entire dataset with the size K
subset given by Seeger et al. (2003). We refer the reader to
those papers for more details on the greedy algorithm in
Titsias (2009) and the approximation and hyperparameter
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tuning in Seeger et al. (2003). The central idea is to select the
K points by iteratively adding a training point greedily from
the complete dataset that maximizes the approximate
marginal likelihood of the complete dataset. This approx-
imate marginal likelihood of the complete dataset is de-
termined from the GP constructed from the sparse subset
and using the model to compute the approximate marginal
likelihood over the complete dataset. We also apply the
following heuristic to reduce computation time. First, in-
stead of including the entire dataset as initial candidates for
the sparse subset, we first reduce the set of all possible
candidates to a randomly selected subset. For the touch-
button temporal pointing task described in Study 2, we set
the size of that randomly selected subset to be 100, cor-
responding to half of the size of the total number of data
points collected (200). Next, from that reduced dataset, we
apply the likelihood maximization process as stated above
to greedily select the candidate point to be in the sparse
subset of size K. We setK to 5 in the application described in
Study 2. This method produces an appropriate prior which
can adapt to a new user from newly given samples to obtain
a personalized optimal design parameter set. Although there
have been alternative methods proposed for sparsifying GPs

(Bauer et al., 2016; Burt et al., 2020; Cao et al., 2013), we
pursued this computationally efficient approach that retains
representative data points from the original dataset.

Feasibility check for the proposed approaches

We now describe the key properties that render a design task
suitable for the proposed techniques. As is the case with
conventional Bayesian optimization, our Global GP and
Warm-Start GP approaches perform better when applied to
design problems characterized by a smooth objective sur-
face. In practical terms, this implies a requirement that the
user performance or experience at a given design instance is
not radically different from similar nearby design instances
in the parameter space. The approaches can accommodate
continuous, discrete, and ordinal design objectives; how-
ever, it is worth noting that discrete and ordinal data may
lead to suboptimal outcomes due to the discontinuities these
objective types may introduce in the objective surface. Prior
work (Frazier, 2018; Moriconi et al., 2019) suggests that
MOBO may accommodate up to 20 parameters, however,
this may not be practical in most human-in-the-loop ap-
plications due to the number of evaluations required to even

Figure 1. TheGlobal GP aggregates all observations from the user-specific optimization processes. The consolidated model can thereby
estimate the group’s average performance at any given design parameter value. After constructing the Global GP, we perform a fine-
grid sampling of the design space to identify the global Pareto-optimal design instances.

Figure 2. We extract the most representative observations from the current pool of users to form aWarm-Start GP. ThisWarm-Start
GP serves as an informative prior, allowing rapid adaptation to individuals with fewer BO iterations.
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sparsely explore the design space. Within this paper, we
examine up to five parameters and three objectives, which
we demonstrate good applicability in typical interaction
technique design problems. While further research is re-
quired to validate the suitability of our approaches in other
domains, we anticipate good applicability across different
classes of interaction design problems, such as pointing,
selection, and general temporal input tasks.

Implementation details

In this section, we provide implementation details for the
GP and the proposed approaches. Following Shah and
Ghahramani (2016), we use correlated multi-objective
GP models as surrogate models—the Multi-task GP
model and the Semiparametric Latent Factor GP. GPs ap-
plied to multi-objective scenarios have to take into account
the covariances between the different objectives (inter-task)
as well as the covariances between the individual datapoints
within each task (intra-task). The main difference between
these two types of GP models is that they have different
covariance matrices. The analytical form and further details
are available in the original paper (Shah and Ghahramani,
2016). For Multi-task GPs, the intra-task covariance is
separated from the inter-task covariance, and for Semi-
parametric Latent Factor GPs, linear combinations of the
intra-task covariances are taken with inter-task covariances
as factors. As the inter-task and intra-task covariances are
decoupled in Multi-task GPs, they are more computation-
ally efficient than Semiparametric Latent Factor GPs. We
found that Multi-task GPs are computationally more effi-
cient than Semiparametric Latent Factor GPs. However, the
latter is better able to model the interdependence between
each of the objectives. Therefore, to balance between
computational efficiency and slightly better modeling of the
distinct objectives, for L = 2 objectives, we use the Sem-
iparametric Latent Factor GP, and for L ≥ 3, we use the
Multi-task GP. We use the ARD Matérn 5/2 kernel and
assume that each objective is observed with Gaussian noise.

For both GP forms, there are several hyperparameters
that need to be tuned. Specifically, they include the intertask
covariance parameters, the kernel parameters, and the noise
estimates for each objective. They are tuned at each step of
the optimization, when an additional observation is added,
by maximizing the log-likelihood by performing gradient
ascent with L-BFGS-B.

A further simplification for implementation purposes is
the conversion of the continuous design space into a discrete
one. This helps avoid the requirement to exhaustively search
the space when optimizing the acquisition function. The
approach involves evaluating a candidate list of sample
points that provide representative coverage of the design
space. Appropriate bounds for each parameter are chosen,
and after normalization, this sets the limits of the hypercube.

The candidate list is then constructed by sampling from the
parameter hypercube using a Sobol sequence as described
by Snoek (2013). The choice of the number of candidates
involves a trade-off between search resolution and com-
putation time. The acquisition function is evaluated at each
of these candidates and the candidate with the highest ac-
quisition value is selected as the point to sample in the next
iteration.

Study 1: Individual-to-group design with
the Global GP

In this study, we seek to validate our Global GP method for
deriving a set of optimal designs that are representative of a
group of users. We do this within the context of a design
problem in 3D touch interaction loosely based on the Go-Go
technique (Poupyrev et al., 1996). In the first phase of the
study, participants performed 3D touch selections while the
MOBO procedure sought to identify their individual set of
Pareto optimal designs. The data from the individual par-
ticipants was then used to generate a set of global Pareto-
optimal designs using our Global GP method. In the second
phase of the study, we evaluated the performance of two
designs taken from this global Pareto-optimal set against a
baseline configuration roughly based on the design of the
original Go-Go technique (Poupyrev et al., 1996).

3D touch interaction is a subclass of 3D object selection
based on the virtual hand metaphor. A wide array of se-
lection techniques have been proposed and tailored to
different applications by trading off between accuracy and
speed (Argelaguet and Andujar, 2013; Bowman et al., 1999;
Poupyrev and Ichikawa, 1999). Depending on the metaphor
and the implementation of the interaction, the number of
design parameters can range from 3 to 10 (Argelaguet and
Andujar, 2013; Frees et al., 2007; König et al., 2009; Meyer
et al., 1988). A more detailed summary of 3D selection and
pointing techniques can be found in Argelaguet and Andujar
(2013).

TheGo-Go technique (Poupyrev et al., 1996) is a popular
technique that enables users to touch virtual targets ap-
pearing beyond their physical reach. It employs a control-
display gain approach that selectively applies a linear or
non-linear scaling on the virtual hand according to the
physical position of the real hand. Two parameters deter-
mine the selection of the mapping schema and the degree of
the non-linearity. The general task of finding ideal control-
display gain function parameters can be both challenging
and time-consuming. Previously, the gain function of
pointing devices has been decided by either extensive trial-
and-error (Casiez and Roussel, 2011) or by heuristic iter-
ation (Nancel et al., 2015; Yun et al., 2015). These ap-
proaches are costly in terms of time and effort and difficult
to conduct without prior expertise. Perhaps as a
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consequence of this difficulty, the Go-Go technique as
described in Poupyrev et al. (1996) recommends parameter
settings without providing clear rationale. Many similar
interaction techniques presented in the literature also con-
tain parameter values that were arbitrarily chosen or derived
from informal pilot testing. As an illustration of an alter-
native approach, this study demonstrates how MOBO can
efficiently and systematically guide the identification of
design parameters most suitable for a sampled user
population.

Design parameterization and objectives

The original Go-Go technique scaled hand motions by
computing offsets with respect to the user’s chest. To better
capture the direction and dynamic range of this motion, we
relocated the reference frame to the hand’s position when
fully retracted to the shoulder, as shown in Figure 3. We
defined the distal bound of the operation range as the
distance between the origin and the hand when the arm is
fully extended, as shown in Figure 3(a). The Go-Go
technique’s scaling mechanism was applied over this op-
eration range.

The 3D touch design was parameterized according to
four variables as described in Table 1. There are two pa-
rameters, x1 and x2, that determine the resulting virtual hand
position in 3D space. The first parameter, x1, is referred to as
D in the original Go-Go technique publication and describes
the normalized distance in the operation range at which the
mapping transitions from linear to non-linear scaling. The
second parameter, x2, is the non-linear scaling factor and is
referred to as k in the original publication. Appropriate
parameter ranges were determined by pilot testing. We set
the parameter x1 2 [0, 1] and the parameter x2 2 [0, 0.5].

In an effort to further improve selection performance, we
augment the original Go-Go technique by introducing a
haptic cue when the target is reached. Previous works have

shown that vibration can effectively assist selection (Pfeiffer
and Stuerzlinger, 2015; Sallnäs and Zhai, 2003), and it is
widely employed in commercial VR controllers. We se-
lected two parameters to describe this vibrotactile feedback:
the activation-vibration gap, x3, and the vibration amplitude,
x4. The activation-vibration gap is the distance from the
target at which the cue is activated and was bound to values
between 15 cm before and 5 cm after the target. The vi-
bration amplitude is the intensity of the cue and was bound
between 0 and the maximum voltage level (3.1 V, 2.6 g).
The duration of the vibration feedback was fixed at 300 ms.

Input selection techniques are characterized by a trade-
off between speed and accuracy. We therefore chose two
proxy measures of speed and accuracy to guide the opti-
mization process: completion time and spatial errors in
target acquisition. Completion time refers to the average
duration between the moment of the first movement and the
moment the target is successfully selected. Spatial error is
the maximum overshoot distance, that is, the 3D Euclidean
distance between the cursor represented by a virtual hand
and the target’s position. Both completion time and spatial
error are minimization metrics, i.e., a smaller value indicates
better performance. We convert these metrics into objec-
tives which we subsequently refer to as speed and accuracy,
before passing them into the optimizer. Based on pilot
testing, we linearly map the completion time ranged
[1,600 ms, 900 ms] to speed ranged [�1, 1] and linearly
map the spatial error ranged [2 cm, 0 cm] to accuracy ranged
[�1, 1].

Phase 1: User-specific optimizations

In this first phase of the study, participants were exposed to
the standard MOBO procedure and the design parameters
were optimized at the individual level. A set of global
designs were then derived using the Global GP method,
providing the basis for Phase 2 described later.

Figure 3. The experiment setup for the 3D touch task. (a) The reference origin and operation range as adapted from the original Go-Go
technique design. (b) The interaction is enhanced with vibrotactile feedback via the vibrator added to the controller. (c) All possible
locations of targets.
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Participants. In total, we recruited 20 paid participants (nine
female) from our university for the whole of Study 1. Their
average age was 23.3 years (sd = 0.8). We randomly divided
them into two groups. The group who participated in the
first study will subsequently be labeled as the “experienced”
group in Phase 2 of the study. The “novice” group only
participated in Phase 2. Participants in the experienced
group received 20, and participants in the novice group
received 10 as a token of appreciation for their involvement.

Task. Participants performed a 3D touch task in a VR setup
where the completion time and overshoot error were
measured. Selection was performed based on a dwell
threshold (0.5 s) with a cursor representing the virtual hand.

Apparatus and prototype. We built the 3D touch interaction
application in Unity 3D. Participants wore aMeta Quest and
performed the task with the companion hand controllers.
These controllers were modified to include the custom
vibration motors as shown in Figure 3(b).

Setup and procedure. We followed task arrangements used
in Cha and Myung (2013) for 3D target acquisition. Each
iteration of the task contained 36 trials (selecting a single
target), drawn randomly from the radial distances, target
widths, the azimuth, and inclination angles, to ensure the
index of difficulty across trials was well distributed. The
possible target locations are shown in Figure 3(c). A 5-min
break was given every ten iterations. The whole procedure
lasted approximately 90 min.

MOBO hyperparameters. The design configurations used in
the first 10 task iterations of the experiment were randomly
selected. The subsequent 40 task iterations utilized design
configurations proposed by the MOBO procedure. The
design space was discretized into 40 possible cue
configurations.

Results of the user-specific optimizations

Participants exhibited natural differences in their perfor-
mance and this is reflected in the identified optimal designs.
Figure 4 shows the Pareto front and Pareto-optimal designs
obtained for two illustrative participants. The optimal de-
signs obtained for the first participant (left two plots)

generally show superior performance in both objectives
compared with the second participant. The two participants
yielded rather distinct parameter designs suggesting that the
MOBO procedure has successfully captured user-specific
optimal designs.

Phase 2: Evaluation of the global designs from the
Global GP

In this second phase of the study, we evaluated the per-
formances of the global designs derived from the data
collected in Phase 1 against a baseline design configuration.
The purpose of this evaluation was to assess the quality of
the designs produced by the Global GP method. If designs
extracted by the Global GP perform as well or better than the
baseline configuration, this indicates that the approach can
effectively produce designs suitable for a group of users.

This evaluation was performed by both an experienced
group who participated in Phase 1 and a novice group who
were completely new to the study. There was a 2-day gap
between Phase 1 and Phase 2. The structure of the evalu-
ation was a 5 (designs) × 2 (groups of participants) mixed-
design experiment with two independent variables. Each
participant tested all of the design instances; thus, this factor
is within-subjects. The two groups of participants is a
between-subjects factor.

Generating global Pareto-optimal designs

We used the Global GP method based on all observations
from all the participants in Phase 1 to generate a set of global
Pareto-optimal designs. Each design parameter was equally
divided into 16 levels for grid search in the Global GP
method. The set of derived Pareto-optimal global designs is
presented in Figure 5.

We grouped the global designs into a speed-oriented
subset and an accuracy-oriented subset. The speed-oriented
subset prioritized completion time over spatial errors, while
the reverse is true for the accuracy-oriented subset. We then
generated two final designs for evaluation by averaging over
the individual parameter values in each subset.

These two final designs were then compared against the
baseline Go-Go technique. As noted earlier, the original Go-
Go technique does not include vibration feedback. To en-
sure a fair comparison, we augmented the standard Go-Go
technique so that the vibration cue will be generated as the
user contacts the target with the virtual hand (x3 = 0 cm).
This reflects a common setting used in VR interactions
(Wang et al., 2020). The vibration amplitude (x4) was set to
1 g, which was the most preferred and effective amplitude
among four alternatives (0.5 g, 1 g, 1.5 g, and 2 g) presented
in a pilot test. The three conditions evaluated in Phase 2 are
summarized in Table 2.

Table 1. Design parameterization of the 3D touch interaction.

Design parameter Range

x1: Distance threshold, D [0, 1]
x2: Scale factor, k [0, 0.5]
x3: Activation-vibration gap [15 cm, �5 cm]
x4: Vibration amplitude [0 g, 2.6 g]
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Evaluation setup

The three design conditions were presented in four rounds,
where each round consisted of 36 trials (target selections).
The condition order was counterbalanced with a Latin
square. The evaluation phase lasted approximately 15 min
for each participant.

Performance of the global designs

Figure 6 shows the mean completion time and spatial
error for each condition and participant group. For the
mean completion time of the experienced users, the
speed-oriented design, the accuracy-oriented design,
and Go-Go technique were 1,038 ms (sd = 77.64),
1,081 ms (sd = 87.72), and 1,111 ms (sd = 80.32), re-
spectively. For the mean completion time of the novice

users, the speed-oriented design, the accuracy-oriented
design, and Go-Go technique were 1,12 ms (sd =
126.28), 1,18 ms (sd = 127.10), and 1,167 ms (sd =
120.88), respectively. For the mean spatial error of the
experienced users, the speed-oriented design, the
accuracy-oriented design, and Go-Go technique were
2.34 cm (sd = 1.76), 0.97 cm (sd = 0.49), and 1.55 cm
(sd = 0.85), respectively. For the mean spatial error of the
novice users, the speed-oriented design, the accuracy-
oriented design, and Go-Go technique were 2.03 cm
(sd = 1.17), 0.96 cm (sd = 0.68), and 1.83 cm (sd = 0.78),
respectively.

We conducted a mixed-design analysis of variance
(mixed ANOVA) to examine the effect of interfaces and
user experience levels. Sphericity was assessed with
Mauchley’s test, and if violated, Greenhouse-Geisser cor-
rections were employed. The results revealed significant
within-subject effects for both completion time (F (2, 36) =
7.48, p < .005) and spatial errors (F (1.432, 25.781) = 19.28,
p < .001). Tests of between-subjects effects indicated there
were no differences found between user experience levels
(all p > .05). However, the generally higher completion
times for novice users suggests a learning effect.

Pairwise comparisons were run for all conditions on both
completion time and spatial errors and the significant

Figure 4. The Pareto front and Pareto-optimal designs obtained for two illustrative participants (a and b).

Figure 5. The predicted Pareto-optimal objective values from the Global GP and the global Pareto-optimal designs.

Table 2. The Three Design Conditions Evaluated in Phase 2.

Condition x1 x2 x3 x4 (g)

Speed oriented 0.05 0.10 5.77 cm 2.00
Accuracy oriented 0.09 0.04 10.76 cm 0.91
Go-Go technique 0.67 0.17 0.00 cm 1.00
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differences are noted in Figure 6. For completion time, both
the speed-oriented and the accuracy-oriented designs out-
performed the baseline design (all p < .05). No significant
difference was found between the two global designs. With
respect to spatial errors, the accuracy-oriented design was
shown to be significantly better than the speed-oriented
design and the baseline design (all p < .001). However, the
speed-oriented design was not superior to the baseline in
reducing spatial errors. Overall, both global designs brought
significantly better or comparable performances to the users
for both metrics. As expected, the speed-oriented design
successfully delivered shorter completion times than the
baseline, and the accuracy-oriented design significantly
reduced spatial errors.

Summary

In this study, we showed the efficacy of deriving global
Pareto-optimal design instances from user-specific obser-
vations using the Global GP method. The results of the
comparative evaluation show that our global designs bring
better or comparable performances for the user group
compared with the baseline. This approach highlights how
MOBO and the Global GP method can eliminate much of
the design labor that is typically required to aggregate the
preferences and behaviors of multiple individuals into a
single sound design.

Study 2: Group-to-individual design with
the Warm-Start GP

The second study validates our method for initializing the
multi-objective Bayesian optimization procedure in order to
enhance the efficiency of interaction optimization at the
individual level. We refer to this initialization process as
constructing a Warm-Start GP. This demonstration of the
Warm-Start GP is contextualized by the design challenge of
producing an adaptive touch-button for a temporal pointing
task. To further highlight the capabilities of the MOBO

procedure, we tackle this problem using a design param-
eterization of five variables and with respect to three ob-
jectives. One of these design objectives is based on a
subjective user rating which has high relevance to many
HCI design problems.

The approach we employed in this study to validate the
Warm-Start GP method involved two phases. In Phase 1,
participants were exposed to the standard MOBO proce-
dure. The dataset generated in Phase 1 was then used to
produce the MOBO initialization for Phase 2. In Phase 2,
the same group of participants (which we refer to as the
experienced user group) and a new group of users (which
we refer to as the novice user group) completed the MOBO
procedure in two different variants: once with the warm-
start initialization and once with the default initialization.
Using this protocol, we investigate whether our Warm-Start
GP model can effectively leverage previously collected
information on user performances and deliver more rapid
adaptation to individual users.

The design problem examined has high relevance given
that pressing a touch-button is a fundamental interaction on
touchscreen devices. When the finger contacts a button, a
key-click vibration signal is generated to notify the user of
the activation of the matching function. Such a key-click
signal affects the user’s typing speed and errors on a soft
keyboard (Ma et al., 2015) and subjective preferences (Pitts
et al., 2009). The design of a touch-button is not a trivial
task, though. Previous research has shown that an optimal
point to trigger a button is not as the finger makes contact
with the button (Kim et al., 2013; Liao et al., 2020). Rather,
it is somewhere within the travel range. As our first study
shows, determining proper haptic feedback for target se-
lection is also not straightforward. Various haptic feedback
leads to different sensations and performances. Further, the
optimal point to render the haptic cue is not at the same point
as where the selection happens (Figure 5). Additionally,
vibration feedback is a continuous cue which lasts for a
certain duration (Kim and Lee, 2013), and yet, the button
triggering is momentary. Determining when and how to
render a continuous cue to match a momentary event has not

Figure 6. Results of the comparative study on three designs (two global designs and Go-Go technique) and over experienced and novice
user groups. The error bars denote 1 standard deviation. The one-star (*) and two-star (**) symbols indicate p < .05 and p <
.001 significant differences, respectively.
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been previously explored. Despite the prevalence of touch-
buttons in our daily experiences and the challenges of
designing them, there have been few attempts to investigate
and iterate their design. Previous research attempted to
optimize single objectives with iterative experimentation,
including maximizing the button’s information communi-
cation (Chen et al., 2011; Liao et al., 2017; Richter et al.,
2010), minimizing typing error (Ma et al., 2015), and
creating realistic physical-button sensations (Kim and Lee,
2013). However, iterative experimentation is not conducive
to the efficient exploration of a multi-dimensional design
space (Chang et al., 2020; Chen et al., 2011; Park et al.,
2020; Richter et al., 2010) and risks omitting promising
designs. Liao et al. (2020) applied Bayesian optimization to
the task of designing the haptic characteristics of a push-
button. However, Liao et al.’s (2020) study is on physical
buttons and the method is limited to optimizing a single
objective.

In this study, we sought to derive an adaptive model of
touch-button pressing for temporal pointing tasks. Temporal
pointing refers to tasks consisting of entering certain dis-
crete inputs within a short time window (Lee and Oulasvirta,
2016). It is not only a common interaction for games in
which a function must be elicited at a particular moment (for
instance, to attack an enemy); it is also a synchronization
task (Wing and Kristofferson, 1973) that occurs in daily
input experiences. To our knowledge, no prior work has
applied multi-objective optimization methods to search for
the optimal button design for such a task.

Design parameterization and objectives

Prior work has demonstrated that the activation point of the
push-button affects typing speed (Kim et al., 2018), and that
the vibration emission timing impacts temporal errors (Liao
et al., 2020). We translate the depth sensing of a push-button
to the pressing force level on a touch-button. This approach
is illustrated in Figure 7, where the activation of the button
functionality and the vibration may occur at different times
and after the user’s first initial contact with the button. Each
event is triggered when a certain level of pressing force is
detected. In this illustrated example, the force threshold for
activating the button is lower than the force threshold for
activating vibration, so the button would be activated prior
to the vibration cue being generated.

We examine five design parameters as summarized in
Table 3. x1 (Button-Activation Point) and x2 (Vibration
Point) were explained in the previous paragraph and are
illustrated in Figure 7. x3 (Initial Vibration Amplitude) and
x4 (Final Vibration Amplitude) define the amplitude level of
the vibration cue after the detected force exceeds the vi-
bration point—that is, the moment that the vibration should
be generated. When x3 and x4 have different values, the

amplitude linearly increases or decreases over the Vibration
Duration, which is defined as x5.

We aim to maximize the temporal performance (Lee and
Oulasvirta, 2016) of button pressing and the user’s sub-
jective rating. The temporal performance is assessed by two
separate objective measures: the mean value and the
standard deviation of the temporal errors of all the presses.
The three objectives that govern the optimization process
are summarized in Table 4.

Phase 1: User-specific optimizations

In Phase 1 of the study, participants completed the standard
MOBO procedure. The data collected from all participants
in Phase 1 was then used to generate the Warm-Start ini-
tialization. This initialization was subsequently evaluated in
Phase 2 as described later.

Participants. In total, 22 participants were recruited from our
local institution for the whole study. Among them,
10 participants completed both phases, which were per-
formed on different days (three female, average age =
23.5 years, sd = 5). This group of users is referred to as the

Figure 7. Illustrative design example where x1 (Button-
Activation Point) is a lower force threshold than x2 (Vibration
Point). The user starts pushing the button at t0. The detected
force exceeds the activation point at t1 and the button is activated.
At t2, the force reaches the vibration point and the tactile cue is
triggered. The initial vibration amplitude is set at x3 and the
vibration linearly decays until the amplitude becomes x4. The
vibration duration is x5, and thus the vibration stops at t3. The
user’s finger is completely lifted from the sensor at t4, and the
button is reset.

Table 3. Design parameterization of the touch-button.

Design parameter Range

x1: Button activation force level [15 g, 1515 g]
x2: Vibration activation force level [15 g, 1515 g]
x3: Initial vibration amplitude [0 g, 3.2 g]
x4: Final vibration amplitude [0 g, 3.2 g]
x5: Vibration duration [0 s, 1.5 s]
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“experienced user group.” The total duration for these
10 participants was 90 min, and participants received two
movie tickets, worth 24, in appreciation for their involve-
ment. Twelve additional participants were invited to par-
ticipate only in the second phase (four female, average age =
22.9 years, sd = 2.40). The duration for these participants
was about 30 min, and they received one movie ticket,
worth 12. This group of users is referred to as the “novice
user group.”

Task. Participants (the ones in the experienced user group)
were asked to perform a temporal pointing task. The graphical
interface for the task is shown in Figure 8(a). A red “bullet”
moves from right to left along the white bar as illustrated in
Figure 8(a). Participants were instructed to activate the button
when the bullet reached the center of the yellow target zone.
When the button is activated, the red bullet turns blue.

Apparatus and prototype. We implemented a smartphone
prototype (6 cm× 12.5 cm× 1 cm)with a force sensing resistor
(FSR 4022) and an embedded vibration motor (Precision
Microdrives 308–102,3 rise time 21 ms) as shown in Figures
9(a) and (b). The vibration motor was driven by a motor driver
(Sparkfun DRV2605L4), and the motor and the sensor were
controlled by an Arduino Uno. The study interface shown in
Figures 8(a) and (b) was implemented in processing.

Setup and procedure. In each iteration of the task, partici-
pants were presented with two levels of difficulty: easy
(bullet moving at 625 pixels/second rate) and hard

(1000 pixels/second). The two difficulty levels were pre-
sented in random order. Both difficulty levels required the
participant to complete 12 trials (or presses). The first five
presses at a given level were allocated as familiarization
trials and their data were not used for performance calcu-
lation. The remaining seven presses were used to calculate
the mean and standard deviation of the temporal error. After
all presses were completed at both difficulty levels, par-
ticipants were asked to rate the vibration design iteration
they had just experienced. The statement, “The vibration
cue synchronizes (matches) with the button pressing in-
teraction,” was presented to participants as illustrated in
Figure 8(b). Participants were asked to submit their sub-
jective rating on a scale from 0 to 100; 100 for strongly
agree and 0 for strongly disagree. Five levels [1, 2, 3, 4, 5]
were shown above the continuous slider to provide a coarse
reference frame. A 2-min break was given after every
15 iterations of the task to avoid fatigue. Phase 1 lasted for
approximately 60 min per participant.

MOBO hyperparameters. The design configurations used in
the first five task iterations were randomly selected. The
subsequent 45 task iterations used design configurations
proposed by the MOBO procedure. The design space was
discretized into 45 possible cue configurations.

Phase 2: Evaluation of the Warm-Start GP

A total of 500 (50 design configurations × 10 participants)
observations were collected in Phase 1 of the study. We

Figure 8. (a) A simplified sketch of the study interface during button pressing. The participant is asked to activate the button (the red
bullet turns blue) when the red bullet reaches the yellow target area. (b) After 24 presses, the user is then asked to rate the vibration
cue. (c) The study interaction.

Table 4. The design objectives of the touch-button.

Objective Description

Temporal error mean The temporal pointing is more accurate if this value is smaller.
Temporal error standard deviation The temporal pointing is more precise if this value is smaller.
Subjective user rating The vibration cue matches the click interaction more if this value is higher. Values from 0 to 100.
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applied theWarm-Start GP method on this dataset to select a
subset of representative points as an initialization for a new
GP model. We hypothesized that the number of “warm-
start” points included in the initialization would influence
the effectiveness of the adaptation. The reasoning behind
this was as follows. If too few points are included, they will
not provide a meaningful prior. Conversely, including too
many “warm-start” points may provide a too strong a prior,
leading to incoming observations of the new user having
potentially limited influence on the model.

To select a reasonable number of points, we created three
warm-start models with 5, 10, and 15 initial representative
observations. We used the data from the 10 participants in
Phase 1 to construct 10 surrogate GP models to simulate
each individual’s performance when given a design. We
then isolated one GP at a time and treated it as a synthetic
user. We applied the derivedWarm-Start GP models (with 5,
10, or 15 observations) on these synthetic users for 15 it-
erations, which gave us 15 new observations for each
synthetic user. We calculated the hypervolume based on
these new observations. The results of the simulation in-
dicate that five initial warm-start points is the best setting
since this initialization results in the highest hypervolume
increase within 15 iterations. We observed that with 10 or
15 prior observations, there is a tendency for the MOBO
procedure to initially suggest similar designs for all new
users, indicating that the prior is dominating and more
observations from the new user will be needed to achieve
more tailored optimization results.

Participants. Two groups of users were recruited for Phase 2.
The experienced users are the same 10 participants who
attended Phase 1. We further recruited 12 additional novice
users to validate the effectiveness of the Warm-Start GP on
new users (four female, average age = 22.9 years, sd = 2.4).
Both groups went through an identical procedure as de-
scribed below.

Evaluation setup

The evaluation was conducted 2 days after Phase 1 and
employed a repeated-measures design with one factor and

two conditions: MOBO performed with the Warm-Start GP
initialization and MOBO performed without including any
prior observations. The condition order was counter-
balanced. The tasks given to the participants were the
same as in Phase 1. For the MOBO condition without
initialization, the design configurations in the first five task
iterations were randomly selected. A further 10 task iter-
ations were performed with designs proposed by theMOBO
procedure. In the MOBO condition with the warm-start
initialization, no initial random sampling was performed
such that only 15 task iterations were performed with all
designs proposed by the MOBO procedure.

Results of evaluating the Warm-Start GP

The hypervolume increase for each condition over the
experiment iterations is plotted in Figure 10. We performed
two separate two-way repeated measures ANOVAs to an-
alyze the effect of initialization (with or without the Warm-
Start GP initialization) and iterations on the hypervolume
increase for each of the experienced user group and the
novice user group. For the experienced user group, we
found no statistically significant interaction between the
effect of initialization and iterations (F (14, 126) = 0.38, p >
.05). Simple main effects analysis showed that the hyper-
volume was significantly higher when the experienced users
start with the Warm-Start GP initialization than without (F
(Dudley et al., 2019; Hornbæk, 2013) = 23.43, p < .001).
Simple main effects analysis also showed that there were
significant differences between the iterations for the ex-
perienced user group (F (14, 126) = 31.88, p < .001). We
further performed paired samples t-tests to compare the
hypervolume between the with and without Warm-Start GP
initialization conditions at each iteration. There were sig-
nificant differences throughout all the iterations (all p < .05,
see significance level notation in Figure 10).

For the novice user group, there was a statistically
significant interaction between the effect of initialization
and iterations (F (14, 154) = 8.25, p < .001). Simple main
effects analysis showed that the hypervolume was signifi-
cantly higher when the novice users started with the Warm-
Start GP initialization than without (F (Hornbæk, 2013;
Koyama et al., 2020) = 19.24, p < .001) and there was also a
significant effect for iterations (F (14, 154) = 32.17, p <
.001). We then ran paired samples t-tests to compare the
hypervolume between the with and without Warm-Start GP
initialization conditions at each iteration. The results
showed that the Warm-Start GP produced significantly
higher hypervolume in iterations 1 to 11 (all p < .05, see
significance level notation in Figure 10). There were no
significant differences in the hypervolumes at iterations
12 to 15. This result shows that Warm-Start GP effectively
supported faster exploration for novice users.

Figure 9. (a) The smartphone prototype: Users were instructed
to touch the center of the force sensor. (b) The vibration motor
is mounted inside the smartphone prototype.
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Overall, this result suggests that our selected warm-
start points provided an appropriate prior and thus a
useful initialization for delivering rapid adaptation to the
individual users. Incorporating the Warm-Start GP ini-
tialization enabled the MOBO procedure to present more
designs offering improvements in the design objectives
for both novice and experienced users, manifesting as a
larger final hypervolume. Another way to frame this
result is that for novice users, just five iterations using the
Warm-Start GP initialization yielded a set of higher-
performing designs than 15 iterations without any
initialization.

Summary

This study demonstrates that the Warm-Start GP method
can provide an initialization delivering a faster hyper-
volume increase than that obtained byMOBO starting with
a standard initialization, which allows faster adaptation to
the preferences and abilities of an individual user. The
Warm-Start GP is effective not just for the same group of
users but also for new users, indicating that the Warm-Start
GP is an effective method for transferring a prior under-
standing of the design space to different user groups.
Despite the generally positive findings, different groups of
users may have various preferences and optimal designs.
Therefore, collecting data points from a larger pool of
users may produce a more general Warm-Start GP when
targeting new groups. Additionally, clustering the users
and generating various Warm-Start GPs may also result in
faster adaptation.

Discussion and future work

The novelty of this work chiefly lies in the demonstration of
two practical approaches facilitating the application of
MOBO in interaction technique design. To this end, we
have (i) introduced the Global GP concept for extracting
Pareto-optimal designs representative of a user group; (ii)
introduced the Warm-Start GP method for initializing the
MOBO procedure to enable more rapid adaptation at the
individual level; and (iii) demonstrated the efficacy of both
methods in two representative HCI design problems. Our
methods effectively identified the group-optimized designs
and reduced the time required for running individual
optimizations.

The approaches introduced in this paper further provide
efficient means of comprehending and predicting the out-
comes associated with various design choices. A notable
example is found in Study 1, where designers can refer to
the global Pareto-optimal design figure (see Figure 5) and
proactively make decisions favoring either speed or accu-
racy. In contrast, when following a conventional design
process, designers may face challenges in efficiently con-
structing group-level aggregated results, and may need to
expend additional effort in analyzing the implications of
different design choices.

While the studies presented exhibit promising results,
our work also highlights several open research questions.
The presented approaches employ user-specific observa-
tions to construct a global model in a post-hoc step. In the
future, it is worth investigating an online global model that
iteratively updates as more users’ data is aggregated. Fur-
ther, the current method unifies the observations from all

Figure 10. Impact of a Warm-Start GP initialization on experienced and novice users. The hypervolume increases throughout the
15 iterations for both experienced users and novice users during the evaluation. Error bars denote one standard error. We also
indicate the significance level for the difference in hypervolume for the conditions with and without initialization at each iteration. The
one-star (*) indicates p < .05, two-star (**) indicates p < .01, and three-star (***) indicates p < .001.
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users into a GP model. This approach may lead to unwanted
outcomes if there are distinct user groups that favor dras-
tically different designs, or if all users behave completely
differently. To accommodate such cases, future research
should explore the use of more advanced algorithms, such
as hierarchical Gaussian process regression (Park and Choi,
2010), which may help with clustering user groups ac-
cording to their distinct design preferences, and identify the
group to which each new user belongs. With this potential
extension, the Global GP and Warm-Start GP could po-
tentially perform similarly to the Jury Learning concept
proposed by Gordon et al. (2022) by, for example, identi-
fying which prior cluster of users can serve as a good
reference for the new user. Future work is also encouraged
to integrate Bayesian optimization with meta-learning or
transfer-learning techniques (Bai et al., 2023; Volpp et al.,
2019), which are alternative techniques for rapid user-
specific optimization based on previous optimization
experience.

Our Warm-Start GP method selects a subset of prior
observations to construct an adaptive model; however,
determining the number of selected observations involves a
trade-off between offering an informative prior versus
providing a model capable of rapid adaptation. Incorpo-
rating too few prior observations may provide insufficient
information for guiding productive optimization in the
initial iterations. On the other hand, incorporating too many
prior observations may lead to the new user’s data being
consistently dominated by the initial points and so no user-
specific adaptation may occur. Currently, we determine the
appropriate number of “warm-start” points through simu-
lations, but designers could potentially proactively steer the
optimization behavior by varying the number of observa-
tions in the Warm-Start GP based on their needs. Future
work can also consider developing a dynamic approach: the
Warm-Start GP initially has more prior observations to
ensure meaningful acquisition, but the number of obser-
vations decreases as the adaptation continues, allowing the
MOBO procedure to gradually rely more on new obser-
vations. Also, for computational efficiency, the selection of
the Warm-Start observations involves randomly selecting a
subset of the prior observations. Future work may also wish
to explore more computationally efficient methods to
consider all the prior observations without making subsets.

An assumption made throughout this study is that user
performance or experience does not drastically vary due to
time or order effects. In reality, there are several well-known
user-related factors other than the design itself that are likely
to affect the user’s performance including fatigue, learning
effects, and attention. Incorporating the Global GP and
Warm-Start GP with non-stationary Bayesian optimization
(Snoek et al., 2014) is a direction worth investigating to
address this challenge. With subjective ratings, a user’s
preference may drift or be influenced by new exposures. For

instance, the rating of a system tends to be biased by recent
trials. These effects were not incorporated into our per-
formance models. How to resolve the issues raised by the
uncertainty of human users remains a compelling open
research question.

Conclusions

Interaction design often involves a large number of pa-
rameters that need to be decided while also considering
multiple design objectives. Although multi-objective
Bayesian optimization (MOBO) offers a principled
method for guiding design exploration, prior work has
largely ignored the practical need for interaction technique
design to meet the requirements of a population or group of
users. To bridge this gap, we present (i) the Global GP to
identify group-level optimal designs and (ii) theWarm-Start
GP for rapid adaptation based upon a suitable prior
extracted from the group-level data. We demonstrate the
effectiveness of theGlobal GP andWarm-Start GPmethods
in two challenging and representative design problems. We
show that the Global GP facilitates the identification of
group-level Pareto-optimal designs, and that these designs
are indeed competitive with a design arrived at by con-
ventional means. We also show that the Warm-Start GP
improves the efficiency of individual optimization by in-
corporating group-level data in the initialization for MOBO.
Both methods are readily applied to other design problems
involving multiple objectives and we hope that the guidance
provided in this paper will promote wider uptake of MOBO
in interaction technique design.
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Notes

1. Strictly, several designs may be equally good if they all achieve
the same performance in terms of the chosen objective.

2. https://www.interlinkelectronics.com/fsr-402
3. https://www.precisionmicrodrives.com/product/308-102-

8mm-vibration-motor-15mm-type
4. https://www.sparkfun.com/products/14538
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Piovarči M, Kaufman DM, Levin DIW, et al. (2020) Fabrication-
in-the-loop co-optimization of surfaces and styli for drawing
haptics. ACM Transactions on Graphics 39(4): 116:1-116:16.
doi: 10.1145/3386569.3392467

Pitts MJ, Williams MA, Wellings T, et al. (2009) Assessing
Subjective Response to Haptic Feedback in Automotive
Touchscreens. AutomotiveUI ’09. New York, NY, USA: As-
sociation for Computing Machinery, 11–18. DOI: 10.1145/
1620509.1620512.

Poupyrev I and Ichikawa T (1999) Manipulating objects in virtual
worlds: categorization and empirical evaluation of interaction
techniques. Journal of Visual Languages & Computing 10(1):
19–35. DOI: 10.1006/jvlc.1998.0112.

Poupyrev I, Billinghurst M, Weghorst S, et al. (1996) The go-go
interaction technique: non-linear mapping for direct ma-
nipulation in vr. In: Proceedings of the 9th Annual ACM
Symposium on User Interface Software and Technology.
UIST ’96, New York, NY, USA: Association for Computing
Machinery, p. 79–80. DOI: 10.1145/237091.237102.

Richter H, Ecker R, Deisler C, et al. (2010) Haptouch and the
2+1 state model: potentials of haptic feedback on touch based
in-vehicle information systems. In: Proceedings of the 2nd
International Conference on Automotive User Interfaces and
Interactive Vehicular Applications. AutomotiveUI ’10. New
York, NY, USA: Association for ComputingMachinery, 72–79.
DOI: 10.1145/1969773.1969787.

Sallnäs E and Zhai S (2003) Collaboration meets fitts’ law: passing
virtual objects with and without haptic force feedback. In:
INTERACT. Amsterdam: IOS Press.

Seeger MW, Williams CK and Lawrence N (2003) Fast forward
selection to speed up sparse Gaussian process regression.
AISTATS. Key West, FL, USA: Proceedings of Machine
Learning Research.

Shah A and Ghahramani Z (2016) Pareto frontier learning with
expensive correlated objectives. In International Conference on
Machine Learning. New York, NY: PMLR, pp. 1919–1927.
https://proceedings.mlr.press/v48/shahc16.html

Shahriari B, Swersky K, Wang Z, et al. (2016) Taking the human out
of the loop: a review of Bayesian optimization. Proceedings of the
IEEE ; 104(1): 148–175. DOI: 10.1109/JPROC.2015.2494218.

Snoek J (2013) Bayesian Optimization and Semiparametric
Models with Applications to Assistive Technology. PhD Thesis.
Toronto, ON, Canada: University of Toronto.

Snoek J, Swersky K, Zemel R, et al. (2014) Input warping for
bayesian optimization of non-stationary functions. In: Inter-
national conference on machine learning. New York, NY:
PMLR, pp. 1674–1682.

Sridhar S, Feit AM, Theobalt C, et al. (2015) Investigating the
dexterity of multi-finger input for mid-air text entry. In: Pro-
ceedings of the 33rd Annual ACMConference on Human Factors
in Computing Systems. CHI ’15. Seoul, Republic of Korea: ACM
Press, pp. 3643–3652. DOI: 10.1145/2702123.2702136.

Titsias M (2009) Variational learning of inducing variables in
sparse Gaussian processes. In Artificial Intelligence and Sta-
tistics. New York, NY: PMLR, 567–574. https://proceedings.
mlr.press/v5/titsias09a.html
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