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and Robert W. Heath Jr. , Fellow, IEEE

Abstract— The use of one-bit analog-to-digital converter (ADC)
has been considered as a viable alternative to high resolution
counterparts in realizing and commercializing massive multiple-
input multiple-output (MIMO) systems. However, the issue of
discarding the amplitude information by one-bit quantizers has
to be compensated. Thus, carefully tailored methods need to
be developed for one-bit channel estimation and data detection
as the conventional ones cannot be used. To address these
issues, the problems of one-bit channel estimation and data
detection for MIMO orthogonal frequency division multiplexing
(OFDM) system that operates over uncorrelated frequency
selective channels are investigated here. We first develop channel
estimators that exploit Gaussian discriminant analysis (GDA)
classifier and approximate versions of it as the so-called
weak classifiers in an adaptive boosting (AdaBoost) approach.
Particularly, the combination of the approximate GDA classifiers
with AdaBoost offers the benefit of scalability with the linear
order of computations, which is critical in massive MIMO-OFDM
systems. We then take advantage of the same idea for proposing
the data detectors. Numerical results validate the efficiency of
the proposed channel estimators and data detectors compared
to other methods. They show comparable/better performance to
that of the state-of-the-art methods, but require dramatically
lower computational complexities and run times.

Index Terms— One-bit ADC, channel estimation, data
detection, massive MIMO-OFDM, frequency selective channel,
AdaBoost.

I. INTRODUCTION

UTilization of a large number of antennas at the
base station (BS) in communication systems has been

explored for the purpose of enhancing data rates and network
capacity [1], [2]. Massive multiple-input multiple-output
(MIMO) communication systems have been demonstrated to
offer remarkable advantages, but the hardware cost and high
power consumption are two main difficulties (among others),
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hindering their commercial usage. To address these issues,
first analog-to-digital converters (ADCs) have been recognized
as one of the parts of the receivers that have high power
consumption and expensive price [3], [4]. Then, employing
low-resolution ADCs has been suggested as a viable
alternative instead of using high-resolution counterparts [5],
[6]. However, the use of low-resolution ADCs in multi-
user MIMO-OFDM systems poses several challenges in the
receiver design. For instance, the non-linearities caused by few
bit quantizers may prohibit us from exploiting conventional
receivers like zero-forcing (ZF) and minimum mean square
error (MMSE) detectors [7]. The reason is that the conven-
tional procedure of isolating narrowband OFDM subcarries
using a discrete Fourier transform (DFT) at the receiver is not
valid when low-resolution ADCs are used. Instead, different
receiver architectures need to be employed/designed to process
the baseband time-domain signals for the tasks such as channel
estimation, and/or data detection.

Channel estimation and/or data detection in massive MIMO
systems with one-bit ADCs have been explored in several
papers, considering the cases of single-carrier (SC) and
multi-carriers (MC) signalling. The authors of [8] have
revised the non-convex optimization problem of the maximum
likelihood (ML) channel estimator and proposed a sub-optimal
channel estimator referred to as near-ML (nML). The same
methodology has been used to develop the nML-based data
detector as well. Convex optimization approaches have been
exploited in [9] for estimating MC-OFDM channel, whereas
a data detector has been developed based on a soft-output
MMSE algorithm. In [10], the Bussgang decomposition [11]
has been employed to develop Bussgang-based minimum
mean-squared error (BMMSE) channel estimators and data
detectors for both SC and MC-OFDM systems. Analogous
to [10], the authors of [12] took advantage of the Bussgang
decomposition to estimate the optimal nonzero thresholds
in the problem of one-bit quantizer design. Multiple works
such as [13], [14], [15], [16], and [17] have considered
the problem of joint channel estimation and data detection,
where the known pilot sequence is augmented with a portion
of detected data to build a longer virtual pilot sequence
and subsequently utilize it to refine the channel estimate.
For instance, the authors of [13] have developed a bilinear
generalized approximate message passing (BiGAMP) method,
while the authors of [16] have proposed a variational Bayesian
(VB) algorithm to do so.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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One interesting idea presented by different researchers is to
treat one-bit channel estimation and data detection as binary
classification problems, where the output of one-bit ADCs can
be viewed as class labels. Moreover, a proper transformation
of the known pilots or channel state information (CSI) plays
the role of the classification features, while the unknown
channel/data vectors act as the corresponding separating
hyperplanes. For instance, the binary soft-margin support
vector machine (SVM) has been considered by the authors
of [17] and [18] as a powerful method for one-bit channel
estimation and data detection in SC and MC-OFDM scenarios.
Although the soft-margin SVM-based estimators have good
properties, their performance relies on careful hyperparameter
selection. Deep neural networks (DNN) have been also used
for one-bit channel estimation in several works such as [19],
[20], and [21]. The main disadvantage of such estimators is
that not only a sufficiently large data set is required for the
training process, but the offline training procedure needs to be
executed carefully. In [22], [23], and [24], several blind/semi-
blind learning-based data detectors have been presented for
massive MIMO systems that employ one-bit ADCs.

Angular domain channel estimators have been reported
in [25], [26], [27], [28], [29], [30], [31], and [32]. In [25]
and [26], compressive sensing (CS) techniques have been
adopted to recover sparse millimeter wave (mmWave) channels
quantized by few-bit ADCs. The authors of [30] have
considered the combination of harmonic retrieval methods
with a modified expected-maximization GAMP (EM-GAMP)
to devise an angular domain one-bit mmWave channel
estimation approach called gridless GAMP (GL-GAMP). For
such channels, a sparsity enforcing with Toeplitz matrix
reconstruction (SE-TMR) method was also presented in [31]
recently. Moreover, the authors of [32] have used the
Toeplotz matrix reconstruction notion from [31] together with
ℓ1 regularized logistic regression classification method [33]
to come up with a novel angular domain channel estimator
called ℓ1 regularized logistic regression with Toeplitz matrix
reconstruction (L1-RLR-TMR) for one-bit mmWave systems.
They also have employed the alternating direction method
of multipliers (ADMM) [34] for solving the optimization
problem of L1-RLR-TMR in an efficient manner.

Despite the significance of scalability and efficiency in
one-bit massive MIMO-OFDM systems, the existing channel
estimators and data detectors may not fulfill the requirement of
having low computational complexity in challenging scenarios
with large number of unknowns. In other words, there is a gap
between the desirable computational complexity and that of
the existing methods to the best of our knowledge. Therefore,
the objective of this work is to fill the aforementioned gap
by proposing one-bit channel estimators and data detectors
that have linear order of computations with respect to the
system parameters including the number of antennas at BS,
the number of users, and the number of OFDM sub-carriers.

In this paper, we develop channel estimation and data
detection algorithms for MIMO-OFDM systems that exploit
one-bit ADCs at the BS. The channel considered here
is a frequency selective channel. Inspired by outstanding
properties that classification/learning-based methods have

shown in solving one-bit channel estimation and data
detection, we design Gaussian discriminant analysis (GDA)-
based classification method [35] (known also as linear
discriminant analysis (LDA)) and its approximations as
so-called weak classifiers, employed in each iteration of an
adaptive boosting (AdaBoost)-based scheme [33], [36]. The
low computational complexity required for implementation of
both GDA-based classifiers and AdaBoost make the proposed
algorithms efficient, and easily scalable. In addition, flexibility
in selecting the number of AdaBoost iterations enables us to
gain competitive accuracy with low computational complexity.

The main contributions of our work are the following:
• An AdaBoost-based channel estimation approach for one-

bit MIMO-OFDM system that operates over uncorrelated
frequency selective fading channels is proposed. In each
iteration of the AdaBoost-based approach, the GDA
classification method along with two efficient approx-
imations are considered as the weak classifiers. These
approximate classifiers are derived by manipulating the
GDA estimator. The combination of AdaBoost and GDA
(and especially its approximations) enables us to estimate
the channel in a remarkably efficient and yet precise
manner. Specifically, using the approximations of GDA
as weak classifiers at the heart of our AdaBoost approach
results in having the linear order of computational
complexity with respect to the problem dimension. This
makes the proposed AdaBoost-based approach a versatile
and also powerful tool that can be used in one-bit
MIMO-OFDM systems with large number of channel
entries. Numerical results validate the efficiency of the
proposed AdaBoost-based channel estimator compared to
other existing methods. Particularly, the AdaBoost-based
channel estimators possess similar normalized MSE
(NMSE) in channel estimation as the SVM-based
method of [17] and BiGAMP method of [13], whereas
the computational complexity required to implement
our methods is substantially less than those of the
SVM-based and BiGAMP methods in scenarios with
large dimensions.

• We then tailor the main idea of the proposed
AdaBoost-based channel estimator to fit the one-bit
MIMO-OFDM data detection problem. Analogous to the
proposed one-bit channel estimator, we design the data
detector as an AdaBoost-based approach with considering
GDA and its approximations as the weak classifiers in
each iteration. The proposed one-bit data detector has
desirable properties like scalability (with linear order
of computations) and providing accurate data estimates.
These properties are very useful in feasibility of designing
one-bit MIMO-OFDM systems with high bandwidth
and large number of sub-carriers. Numerical results
demonstrate the strength of the proposed AdaBoost-based
data detector compared to other existing methods.

The rest of the paper is organized as follows. The considered
system model is presented in Section II. A brief review of
GDA and AdaBoost are also presented in Section II. The
proposed AdaBoost-based one-bit channel estimator and data
detector are designed in Section III. Simulation results and
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the conclusion are presented in Section IV and Section V,
respectively.

Notation: Upper-case and lower-case bold-face letters
denote matrices and vectors, respectively, while scalars are
denoted by lower-case letters. The mathematical expectation,
transpose, conjugate transpose, and inverse of a square matrix
are denoted by E{·}, {·}T , {·}H , and (·)−1, respectively,
while ∥ · ∥2 and ∥ · ∥F denote the Euclidean norm of a vector
and the Frobenius norm of a matrix. The Hadamard product
is denoted by ⊙. The n × n identity matrix is denoted by
In. The operator diag{π} generates a diagonal matrix by
plugging the entries of the vector π into its main diagonal.
The operators ℜ{·} and ℑ{·} return respectively the real and
imaginary parts of the bracketed argument. The function 1{·}
is the indicator function that is equal to 1 if its argument is
true and 0 otherwise.

II. SYSTEM MODEL AND PRELIMINARIES

A. One-Bit Massive MIMO-OFDM System Model

We assume a massive MIMO system comprising of K users,
each equipped with a single-antenna, and an M -antenna BS
where users deploy high-resolution ADCs. Each antenna of
the BS converts the real and imaginary components of the
received signal from the users separately through a pair of one-
bit ADCs. We specifically examine an uplink multiuser OFDM
system with Nc sub-carriers that operates over a frequency
selective channel. The OFDM symbol in the frequency domain
from the kth user is represented by xFD

k ∈ CNc×1. To avoid
confusion, we use the notations “TD” and “FD” to distinguish
between time and frequency domains, respectively. We add a
cyclic prefix (CP) of length Ncp and assume that the number of
channel taps Ltap satisfies the condition Ltap−1 ≤ Ncp ≤ Nc.
It is assumed that Ltap is known.1 Upon removing the CP, the
one-bit quantized received signal at the ith antenna of the BS
in the time domain can be expressed as follows:

yTD
i = Q

(
K∑

k=1

GTD
i,k FHxFD

k + nTD
i

)
(1)

where F ∈ CNc×Nc denotes the normalized DFT matrix, and
GTD

i,k is a circulant matrix whose first column is defined by
gTD

i,k = [(hTD
i,k )T , 0, . . . , 0]T . Here, hTD

i,k ∈ CLtap×1 is a vector
that contains the Ltap channel taps associated with the kth

user. The entries of hTD
i,k are considered to be independent and

identically distributed (i.i.d.), generated form the distribution
CN

(
0, 1

Ltap

)
. Moreover, nTD

i ∼ CN (0, σ2
nINc) represents

additive Gaussian noise at the ith antenna at the BS, whereas
the notation Q(·) ≜ sign(ℜ{·}) + jsign(ℑ{·}) represents the
element-wise one-bit quantizer. The output of the operator
sign(·) is +1 when the argument is a non-negative number,
otherwise, the output is −1.

We stress here that because of the nonlinear distortion
imposed by one-bit quantizers, different OFDM sub-carriers
are not separable by the fast Fourier transform (FFT) operation
as opposed to the conventional MIMO-OFDM systems. As a

1It is very common for wireless systems to be designed based on an upper
bound of Ltap that is derived from measurements.

result, we are obliged to develop the proposed channel
estimators and data detectors based on the wideband time
domain representation instead of exploiting the narrowband
frequency domain signals associated with each sub-carrier.

B. Binary Classification via GDA

GDA (also known as LDA) is a classification approach that
models the training examples associated with each class as
samples of a normal distribution. Consider a training set that
contains m training examples with n features and two classes
denoted by {x(j)}j=1,··· ,m and y(j) ∈ {1,−1}j=1,··· ,m,
respectively. GDA assumes that the corresponding training
examples x(j) for each class of y(j) are normally distributed
with different means µ1 and µ−1, respectively, and the
same covariance matrix Σ. Therefore, depending on y(j), the
conditional probability density function (PDF) of x(j) can be
given as one of the following equations:

p(x(j)|y(j) = −1)=
1

(2π)n/2|Σ|1/2
exp
(
− 1

2
(x(j) − µ−1)

T

×Σ−1(x(j) − µ−1)
)

(2)

p(x(j)|y(j) = 1)=
1

(2π)n/2|Σ|1/2
exp
(
− 1

2
(x(j) − µ1)

T

×Σ−1(x(j) − µ1)
)

(3)

To implement binary GDA, we need to estimate µ−1, µ1,
and Σ from the training data. The means and the covariance
matrix can be estimated as follows [35]

µ̂−1 =

m∑
j=1

1{y(j) = −1}x(j)

m∑
j=1

1{y(j) = −1}
(4)

µ̂1 =

m∑
j=1

1{y(j) = 1}x(j)

m∑
j=1

1{y(j) = 1}
(5)

Σ̂ =
1
m

m∑
j=1

(x(j) − µ̂y(j))(x(j) − µ̂y(j))T . (6)

The decision boundary is then given as

hGDA = Σ̂
−1 (

µ̂1 − µ̂−1

)
. (7)

C. AdaBoost

The objective of AdaBoost is to iteratively train a set
of weak classifiers on the same data set to create a strong
classifier. A weak classifier is identified as a classifier whose
classification performance is only marginally better than
random guessing. A new weak classifier is trained on a
weighted version of the training data set, where the weights
associated with the misclassified examples in the previous
iteration are increased. Given a training set with m examples,
AdaBoost learns a weak classifier in the tth iteration which
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is denoted by h(t)(x). The AdaBoost algorithm is outlined in
Algorithm 1. Here, w

(t)
j is the weight of the jth example at

the tth iteration, ϵ(t) is the weighted error of the tth weak
classifier, and α(t) is the weight of the tth weak classifier.
Moreover, Z(t+1) is a normalization constant that ensures the
weights sum up to 1. Despite there exists various ways to
define the update rule for w

(t+1)
j , Algorithm 1 employs the

exponential function to do so.
In our derivations, we use GDA and its approximate ver-

sions as weak classifiers, although there are many linear binary
classifiers available in the literature that can be considered
as weak classifiers. The main reason for the aforementioned
choice is that these classifiers can be implemented with low
computational complexities, particularly when the dimension
of the unknown variables scales up.

Algorithm 1 AdaBoost Algorithm
Input: Training set S, number of weak classifiers T .
Output: Final classifier HAda.
Initialize weights w

(1)
j = 1/m for j = 1, 2, . . . ,m.

for t = 1 to T do
Train weak classifier h(t)(x) on the weighted training set
(S,w(t)).
Compute error as ϵ(t) =

∑m
j=1 w

(t)
j 1(h(t)(x(j)) ̸= y(j)).

Compute α(t) = 1
2 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w
(t+1)
j = w

(t)
j exp(α(t)1(h(t)(x(j)) ̸= y(j))), ∀j.

Compute Z(t+1) =
∑m

j=1 w
(t+1)
j and normalize weights

as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Output HAda(x) =

∑T
t=1 α(t)h(t)(x).

III. PROPOSED CLASSIFICATION-BASED WIDEBAND
CHANNEL ESTIMATION AND DATA DETECTION

WITH ONE-BIT ADCS

A. Proposed Classification-Based Channel Estimation

For estimating the frequency selective channels explained in
Section II that is utilized in the OFDM system, the frequency
domain pilot vector xFD

k ∈ CNc×1 is first transformed into
the time domain using the inverse FFT (IFFT) operation. The
resultant time domain vector is then transmitted by the kth

user. The one-bit quantized received signal at the ith antenna
of the BS in (1) can be reorganized as

yTD
i = Q

(
K∑

k=1

ΦTD
k gTD

i,k + nTD
i

)

= Q

(
K∑

k=1

ΦTD
k,Ltap

hTD
i,k + nTD

i

)
= Q

(
ΦTD

Ltap
hTD

i + nTD
i

)
(8)

where ΦTD
k ∈ CNc×Nc is a circulant matrix whose

first column is ϕTD
k ≜ FHxFD

k , ΦTD
k,Ltap

∈ CNc×Ltap

denotes a matrix which contains only the first Ltap columns
of ΦTD

k , ΦTD
Ltap

∈ CNc×KLtap and hTD
i ∈ CKLtap×1

respectively concatenate ΦTD
k,Ltap

and hTD
i,k for k = 1, . . . ,K

as ΦTD
Ltap

≜ [ΦTD
1,Ltap

,ΦTD
2,Ltap

, . . . ,ΦTD
K,Ltap

] and hTD
i ≜

[(hTD
i,1 )T , (hTD

i,2 )T , . . . , (hTD
i,K)T ]T .

To simplify our derivations, we use the notation “R” as
subscript when scalars, vectors, or matrices are composed of
real numbers. Therefore, we transform (8) into the real domain
as

yTD
i,R = sign

(
ΦTD

R hTD
i,R + nTD

i,R

)
(9)

where

yTD
i,R ≜

[
ℜ{yTD

i }T ,ℑ{yTD
i }T

]T
=
[
yTD

i,R,1, . . . , y
TD
i,R,2Nc

]T ∈ {±1}2Nc×1 (10)

ΦR ≜

[
ℜ{ΦTD

Ltap
} −ℑ{ΦTD

Ltap
}

ℑ{ΦTD
Ltap

} ℜ{ΦTD
Ltap

}

]
=
[
ϕTD

R,1, ϕ
TD
R,2, . . . ,ϕ

TD
R,2Nc

]T
∈ R2Nc×2KLtap (11)

hTD
i,R ≜

[
ℜ{hTD

i }T ,ℑ{hTD
i }T

]T ∈ R2KLtap×1 (12)

nTD
i,R ≜

[
ℜ{nTD

i }T ,ℑ{nTD
i }T

]T ∈ R2Nc×1. (13)

Note that
(
ϕTD

R,j

)T

with j ∈ {1, 2, . . . , 2Nc} is the jth row
of ΦR here. Additionally, as suggested by (12), estimating
{hTD

i }i=1,2,...,M is equivalent to estimating {hTD
i,R}i=1,2,...,M .

We emphasize that binary classification methods can be
employed for estimating hTD

i,R in (9). Here, ϕTD
R,j and yTD

i,R,j

with j ∈ {1, 2, . . . , 2Nc} serve as the training examples and
class labels, respectively. In other words, (9)-(12) can be
viewed as a binary classification problem with the training
set Si = {x(j) = ϕTD

R,j , y
(j) = yTD

i,R,j}j=1,2,...,2Nc and the
decision boundary hTD

i,R based on the definitions provided in
the prequel. Hence, we can exploit the GDA classification
method as the weak classifier in each iteration of an
AdaBoost-based approach for estimating hTD

i,R . The compu-
tation of the means and covariance matrix (4)-(6) then should
be revised in the tth iteration of the proposed AdaBoost-based
approach as

µ̂
(t)
−1 =

2Nc∑
j=1

1{yTD
i,R,j = −1}w(t)

j ϕTD
R,j (14)

µ̂
(t)
1 =

2Nc∑
j=1

1{yTD
i,R,j = 1}w(t)

j ϕTD
R,j (15)

Σ̂
(t)

=
2Nc∑
j=1

w
(t)
j (ϕTD

R,j − µ̂
(t)

yTD
i,R,j

)(ϕTD
R,j − µ̂

(t)

yTD
i,R,j

)T (16)

ĥTD,(t)
i,R =

(
Σ̂

(t)
)−1 (

µ̂
(t)
1 − µ̂

(t)
−1

)
(17)

where w
(t)
j represents the weight of the jth training example

at the tth iteration.
To implement (17), the inverse of the matrix Σ̂

(t)
should

be calculated, which requires the computational complex-
ity of O

(
(KLtap)2.373

)
using the Coppersmith–Winograd

algorithm. This computational complexity can considerably



ESFANDIARI et al.: AdaBoost-BASED EFFICIENT CHANNEL ESTIMATION AND DATA DETECTION 13939

restrict the time efficiency of implementing (17), especially
when the multiplication of K and Ltap grows larger. At the
same time, as a weak classifier is required to be slightly
better than random guesses, the accurate knowledge of the
inverse of Σ̂

(t)
is not needed. Thus, it is reasonable to consider

approximating (17) to avoid calculating
(
Σ̂

(t)
)−1

. Towards
this end, two approximations of (17) are introduced in the
following.

Approximation 1: As the first approximation, we propose to
modify (16) as

Σ̂
(t)

1 ≜ diag
{

σ̂
(t)
1

}
(18)

where

σ̂
(t)
1 =

2Nc∑
j=1

w
(t)
j

(
(ϕTD

R,j − µ̂
(t)

yTD
i,R,j

)⊙ (ϕTD
R,j − µ̂

(t)

yTD
i,R,j

)
)

(19)

The essence of this approximation is to set all off-diagonal
elements of Σ̂

(t)
in (16) to zero and preserve only its diagonal

elements. In other words, only the diagonal elements of the
original matrix Σ̂

(t)
in (16) need to be computed as the vector

σ̂
(t)
1 in (19), and Σ̂

(t)

1 is defined using σ̂
(t)
1 as (18). Then, (17)

is modified as

ĥTD,(t)
i,R,app1 ≜

(
Σ̂

(t)

1

)−1 (
µ̂

(t)
1 − µ̂

(t)
−1

)
(20)

Note that the use of Σ̂
(t)

1 instead of the original
Σ̂

(t)
considerably reduces the computational complexity of

computing ĥTD,(t)
i,R .

Approximation 2: We propose to set Σ̂
(t)

= I2KLtap in (17).
Then, the modified estimate of hTD,(t)

i,R is expressed as

ĥTD,(t)
i,R,app2 ≜ µ̂

(t)
1 − µ̂

(t)
−1 (21)

where the weak classifier of (17) is approximated as the
distance between the mean vectors of the two classes in (21).
We stress here that the latter requires substantially less
computations compared to that of the former.

The steps of the proposed methods are outlined in
Algorithm 2.2 It should be noted that Algorithm 1 presents the
generic procedure of the AdaBoost approach for using weak
binary classifiers h(t)(x) to build a strong binary classifier
HAda(x), whereas we exploit the core idea of AdaBoost
to use the weak channel estimates h(t)

i to build a strong
channel estimate ĥTD

i,R in Algorithm 2. We emphasize here
the difference of h(t)(x) and HAda(x) with h(t)

i and ĥTD
i,R ,

that is, the former represents binary classifier while the latter
denotes the separating hyperplane in a binary classification
problem.

Note that a normalization step is applied to the output of the
AdaBoost-based methods outlined in Algorithm 2. The reason
for this is that the estimates provided by these methods only

2Although α(t) = 1
2

ln
(

1−ϵ(t)

ϵ(t)

)
in the original AdaBoost algorithm

(refer to Algorithm 1), we have observed that setting α(t) = 1
4

ln
(

1−ϵ(t)

ϵ(t)

)
in Algorithms 2 and 3 results in better performance for the problems solved
in this paper.

Algorithm 2 One-Bit GDA-AdaBoost Algorithms for Channel
Estimation
Input: Si = {x(j) = ϕTD

R,j , y
(j) = yTD

i,R,j}j=1,2,...,2Nc for i ∈
{1, 2, . . . ,M} whose elements are defined in (10) and (11),
and number of weak classifiers T .
Output: ĥTD

i,R for i ∈ {1, 2, . . . ,M}.
for i = 1 to M do

Initialize weights w
(1)
j = 1

2Nc
for j ∈ {1, 2, . . . , 2Nc}.

for t = 1 to T do
Use the training set Si to compute µ̂

(t)
−1, µ̂

(t)
1 , Σ̂

(t)
,

and Σ̂
(t)

1 via (14)-(16) and (18), respectively. Then,
compute the tth weak classifier as:

one-bit GDA-Ada
h(t)

i =
(
Σ̂

(t)
)−1 (

µ̂
(t)
1 − µ̂

(t)
−1

)
one-bit GDA-Ada-1

h(t)
i =

(
Σ̂

(t)

1

)−1 (
µ̂

(t)
1 − µ̂

(t)
−1

)
one-bit GDA-Ada-2

h(t)
i = µ̂

(t)
1 − µ̂

(t)
−1.

Compute error as
ϵ(t) =

∑2Nc
j=1 w

(t)
j 1

{
sign((ϕTD

R,j)
T h(t)

i ) ̸= y(j)
}

.

Compute α(t) = 1
4 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w
(t+1)
j =w

(t)
j exp

(
α(t)1

{
sign((ϕTD

R,j)
T h(t)

i ) ̸=y(j)
})

,
∀j.
Compute Z(t+1) =

∑2Nc
j=1 w

(t+1)
j and normalize

weights as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Construct h̃TD

i,R =
∑T

t=1 α(t)h(t)
i , and then normalize as

ĥTD
i,R =

√
Kh̃TD

i,R

∥h̃TD
i,R∥2

.
end for

specify the direction of hTD
i,R , while the magnitude remains

unknown since the one-bit ADCs preserve only the sign of the
received signals. Therefore, βhTD

i,R for any β > 0 will yield
the same yTD

i,R as in (10). Here, since we assume that 2KLtap

elements of hTD
i,R are independent with variance 1/(2Ltap),

the last normalization step is added to ensure that the channel
estimates have squared norm of K.

Remark 1: To ensure the clarity of presentation, we used
a loop to estimate hTD

i,R for i ∈ {1, 2, . . . ,M} in
Algorithm 2. However, it is important to note that these M
channel vectors can be estimated in parallel, resulting in a
reduction in the overall run time of the channel estimation
procedure.

Remark 2: The key feature of AdaBoost that allows us
to approximate (17) as (20) and (21) without sacrificing
estimation performance is that it can incorporate weak clas-
sifiers that are only slightly better than random guessing and
combine them to form a strong classifier. The approximations
of (20) and (21) are justifiable because they are certainly better
than random guessing, hence they can be treated as weak
classifiers. In this regard, AdaBoost is a powerful approach
to build a strong classifier out of weak classifiers with low
computational complexity.
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B. Proposed Classification-Based Data Detection

In this section, we propose AdaBoost-based methods for
one-bit data detection in OFDM systems with frequency
selective channels. To begin with, the one-bit quantized
received signal at the ith antenna of the BS in (1) can be
rewritten as

yTD
i = Q

(
K∑

k=1

GTD
i,k FHxFD

k + nTD
i

)
= Q

(
GFD

i xFD + nTD
i

)
(22)

where GFD
i ≜ [GTD

i,1 FH , . . . ,GTD
i,KFH ] ∈ CNc×KNc and

xFD ≜ [(xFD
1 )T , (xFD

2 )T , . . . , (xFD
K )T ]T ∈ CKNc×1. The

former represents the pre-estimated/known CSI, while the
latter is the symbol vectors transmitted over Nc subcarriers
by the K users. The objective here is to recover the
vector xFD and then identify the symbols transmitted.
Placing all {yTD

i }i=1,2,...,M in a vector as yTD ≜
[(yTD

1 )T , (yTD
2 )T , . . . , (yTD

M )T ]T ∈ CMNc×1, we obtain

yTD = Q
(
GFDxFD + nTD

)
(23)

where GFD ≜ [(GFD
1 )T , (GFD

2 )T , . . . , (GFD
M )T ]T ∈

CMNc×KNc . The real domain transformation of (23) is given
as

yTD
R = sign

(
GFD

R xFD
R + nTD

R

)
(24)

where

yTD
R ≜

[
ℜ{yTD}T ,ℑ{yTD}T

]T
=
[
yTD
R,1, . . . , y

TD
R,2MNc

]T ∈ {±1}2MNc×1 (25)

GFD
R ≜

[
ℜ{GFD} −ℑ{GFD}
ℑ{GFD} ℜ{GFD}

]
=
[
gFD

R,1,g
FD
R,2, . . . ,g

FD
R,2MNc

]T ∈ R2MNc×2KNc (26)

xFD
R ≜

[
ℜ{xFD}T ,ℑ{xFD}T

]T ∈ R2KNc×1 (27)

nTD
R ≜

[
ℜ{nTD}T ,ℑ{nTD}T

]T ∈ R2MNc×1. (28)

Here
{(

gFD
R,j

)T}
j=1,...,2MNc

is the jth row of GFD
R .

Analogous to the problem of estimating hTD
i,R in (9), the

problem of estimating xFD
R in (24) can be treated as a binary

classification problem where xFD
R serves as the separating

hyperplane between two classes. Therefore, we can constitute
the binary classification training set as Sd = {x(j) =
gFD

R,j , y
(j) = yTD

R,j}j=1,2,...,2MNc based on (24)-(26) with
the aim of estimating xFD

R as the corresponding separating
hyperplane. Thus, the GDA classification method along with
two approximations derived in Subsection III-A can be used
as weak classifiers in each iteration of an AdaBoost-based
approach for recovering xFD

R . In this regard, the counterparts
of (17), (20), and (21) with respect to xFD

R are respectively
expressed as

x̂FD,(t)
d =

(
Σ̂

(t)

d

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
(29)

x̂FD,(t)
d,app1 =

(
Σ̂

(t)

d,1

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
(30)

x̂FD,(t)
d,app2 = µ̂

(t)
d,1 − µ̂

(t)
d,−1 (31)

where

µ̂
(t)
d,−1 =

2MNc∑
j=1

1{yTD
R,j = −1}w(t)

j gFD
R,j (32)

µ̂
(t)
d,1 =

2MNc∑
j=1

1{yTD
R,j = 1}w(t)

j gFD
R,j (33)

Σ̂
(t)

d =
2MNc∑
j=1

w
(t)
j (gFD

R,j − µ̂
(t)

d,yTD
R,j

)(gFD
R,j − µ̂

(t)

d,yTD
R,j

)T (34)

Σ̂
(t)

d,1 = diag
{

σ̂
(t)
d,1

}
(35)

σ̂
(t)
d,1 =

2MNc∑
j=1

w
(t)
j

(
(gFD

R,j − µ̂
(t)

d,yTD
R,j

)⊙ (gFD
R,j − µ̂

(t)

d,yTD
R,j

)
)

.

(36)

Note that w
(t)
j is the weight assigned to the jth training

example in the tth iteration. In addition, the notation “d”
is used as subscript in (29)-(36) to avoid confusion with
channel estimation part’s of equations. Let x(t)

d represent the
estimated signal in the tth iteration using either one of the
weak classifiers in (29)-(31). A normalization step is needed
to match the power of the estimated signal with that of the
actual transmitted signal.3 Then, we have

x̄(t)
d =

√
KNcx

(t)
d

∥x(t)
d ∥2

= [x̄(t)
d,1, x̄

(t)
d,2, . . . , x̄

(t)
d,2KNc

]T . (37)

The next step is to map/project the elements of x̄(t)
d to one

member of the transmitted signal constellations set denoted
by F by solving the following optimization problem symbol-
by-symbol:

x̃
(t)
d,k = arg min

x∈F
|x− (x̄(t)

d,k + jx̄
(t)
d,k+KNc

)|

for k = 1, 2, . . . ,KNc (38)

where x̃
(t)
d,k is the kth entry of the estimated signal

in the tth iteration. Thus, the signal vector is x̃(t)
d =

[x̃(t)
d,1, x̃

(t)
d,2, . . . , x̃

(t)
d,KNc

]T .
Transforming x̃(t)

d into the real domain as x̆(t)
d =

[ℜ{x̃(t)
d }T ,ℑ{x̃(t)

d }T ]T , we can obtain ϵ(t), α(t), and w
(t+1)
j

for j = 1, 2, . . . , 2MNc. After executing T iterations,
the AdaBoost output is x̃FD

R =
∑T

t=1 α(t)x̆(t)
d . Analogous

to (37) and (38), the final steps are to first normalize x̃FD
R ,

and then perform the symbol-by-symbol mapping as follows

x̄FD
R =

√
KNcx̃FD

R

∥x̃FD
R ∥2

= [x̄FD
R,1, x̄

FD
R,2, . . . , x̄

FD
R,2KNc

]T (39)

x̂FD
k = arg min

x∈F
|x− (x̄FD

R,k + jx̄FD
R,k+KNc

)|

for k = 1, 2, . . . ,KNc (40)

where x̂FD
k is the kth entry of the final estimate. Thus, the

final estimate is x̂FD ≜ [x̂FD
1 , x̂FD

2 , . . . , x̂FD
KNc

]T . The steps of
the proposed data detection methods are listed in Algorithm 3.

3Such normalization is also used in [8] and [17] for example.
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Algorithm 3 One-Bit GDA-AdaBoost Algorithms for Data
Detection

Input: Sd = {x(j) = gFD
R,j , y

(j) = yTD
R,j}j=1,2,...,2MNc

whose elements are defined in (25) and (26), and number
of weak classifiers T .
Output: x̂FD.
Initialize w

(1)
j = 1

2MNc
for j ∈ {1, 2, . . . , 2MNc}.

for t = 1 to T do
Use the training set Sd to compute µ̂

(t)
d,−1, µ̂

(t)
d,1, Σ̂

(t)

d , and

Σ̂
(t)

d,1 via (32)-(36). Then, compute the tth weak classifier
as:

one-bit GDA-Ada
x(t)

d =
(
Σ̂

(t)

d

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
one-bit GDA-Ada-1

x(t)
d =

(
Σ̂

(t)

d,1

)−1 (
µ̂

(t)
d,1 − µ̂

(t)
d,−1

)
one-bit GDA-Ada-2

x(t)
d = µ̂

(t)
d,1 − µ̂

(t)
d,−1.

Normalize x(t)
d as x̄(t)

d =
√

KNcx
(t)
d

∥x(t)
d ∥2

, and denote the kth

entry of x̄(t)
d as x̄

(t)
d,k for k ∈ {1, 2, . . . , 2KNc}.

for k′ = 1 to KNc do
Solve the optimization problem (38) to detect x̃

(t)
d,k′ .

end for
Construct x̃(t)

d = [x̃(t)
d,1, x̃

(t)
d,2, . . . , x̃

(t)
d,KNc

]T and x̆(t)
d =

[ℜ{x̃(t)
d }T ,ℑ{x̃(t)

d }T ]T .
Compute error as
ϵ(t) =

∑2MNc
j=1 w

(t)
j 1

{
sign((gFD

R,j)
T x̆(t)

d ) ̸= y(j)
}

.

Compute α(t) = 1
4 ln

(
1−ϵ(t)

ϵ(t)

)
.

Update w
(t+1)
j =w

(t)
j exp

(
α(t)1

{
sign((gFD

R,j)
T x̆(t)

d )̸=y(j)
})

,
∀j.
Compute Z(t+1) =

∑2MNc
j=1 w

(t+1)
j and normalize

weights as w
(t+1)
j =

w
(t+1)
j

Z(t+1) , ∀j.
end for
Construct x̃FD

R =
∑T

t=1 α(t)x̆(t)
d , and then normalize as

x̄FD
R =

√
KNcx̃

FD
R

∥x̃FD
R ∥2

. Denote the kth entry of x̄FD
R as x̄FD

R,k

for k ∈ {1, 2, . . . , 2KNc}.
for k′ = 1 to KNc do

Solve the optimization problem (40) to detect x̂FD
k′ .

end for
Construct x̂FD = [x̂FD

1 , x̂FD
2 , . . . , x̂FD

KNc
]T .

We emphasize here that the loops associated
with (38) and (40) are only included for the sake of
presentation clarity in Algorithm 3, and the symbol-by-
symbol detection can be executed concurrently. It is also
worth noting that post-processing can be performed for
refining the outputs of (40) as have been suggested in [8]
and [17]. The former has exploited the ML criterion to select
the final data symbol from a properly designed data candidate
set [8], whereas the latter has resorted to a minimum weighted
Hamming distance-based criterion [37] to pick up the refined
data symbol from a data candidate set. Despite the efficiency
of the aforementioned post-processing data refinements,

we do not use them here and the simulation results are
provided without considering the post-processing in the next
section.

Remark 3: One of the advantages of the proposed
AdaBoost-based algorithms is that the sufficient number of
weak classifiers for obtaining a reasonable accuracy is of
order of a few tens. In other words, increasing T over just
a few tens does not change the performance of the proposed
AdaBoost-based algorithms dramatically. We recommend to
set T = 10 for the proposed channel estimators and data
detectors because this value has been found to be effective
in reaching accurate results. The impact of using different
values of T for channel estimation and data detection will
be examined in the next section though.

C. Computational Complexity

Implementing one-bit GDA-Ada, one-bit GDA-
Ada-1, and one-bit GDA-Ada-2 channel estimators
described in Algorithm 2 require O (TMmax
{(KLtap)2.373, (KLtap)2Nc}), O (TMKLtapNc), and
O (TMKLtapNc) flops, respectively. Noteworthy to mention
that one-bit GDA-Ada-1 and one-bit GDA-Ada-2 channel
estimators have first-order (linear) theoretical computational
complexity with respect to M , K, Ltap, and Nc, which
is analogous to Bayesian-based methods [13], [14] (see
Table I). However, it will be shown in the next section that
the run times required for implementing one-bit GDA-Ada-1
and one-bit GDA-Ada-2 channel estimators are significantly
lower than the run time required for implementing the
BiGAMP-based channel estimator though (see Fig. 2).
Moreover, the computations for one-bit GDA-Ada-1 and one-
bit GDA-Ada-2 channel estimators can be straightforwardly
parallelized.

In addition, implementing one-bit GDA-Ada, one-bit GDA-
Ada-1, and one-bit GDA-Ada-2 data detectors presented
in Algorithm 3 require O

(
Tmax{(KNc)2.373, M K2N3

c }
)
,

O
(
TMKN2

c

)
, and O

(
TMKN2

c

)
flops, respectively. Similar

to the channel estimation case, one-bit GDA-Ada-1 and
one-bit GDA-Ada-2 data detectors have first-order (linear)
computational complexity with respect to M and K. However,
they have second-order (quadratic) computational complexity
with respect to Nc. We stress here that although the order of
computational complexity of one-bit GDA-Ada-1 and one-bit
GDA-Ada-2 data detectors is the same as the Bayesian-based
methods [13], [14] (see Table II), it will be illustrated in the
next section that the run times needed for implementing one-
bit GDA-Ada-1 and one-bit GDA-Ada-2 data detectors are
dramatically lower than the run time needed for implementing
the BiGAMP-based data detector (see Fig. 6). In addition, the
computations for one-bit GDA-Ada-1 and one-bit GDA-Ada-2
data detectors can be straightforwardly parallelized.

IV. SIMULATION RESULTS

In this section, numerical results that demonstrate the
efficiency as well as superiority of the proposed wideband
channel estimators and data detectors compared to other
existing techniques are presented. In terms of computational
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Fig. 1. Performance comparison of different channel estimators with K = 2,
M = 16, Nc = 256, and Ltap = 8.

complexity and run time, the AdaBoost-based methods are
highly efficient, particularly when considering one-bit large-
scale MIMO-OFDM systems. We use T = 10 for the proposed
AdaBoost-based channel estimators and data detectors, unless
otherwise stated. For channel estimation figures, orthogonal
pilots are employed analogous to those suggested in [5, Eq.
(23)]. In addition, quadrature phase shift keying (QPSK)
constellations are used as the frequency domain symbols
in data detection figures. The hyperparameter C is set
to 1 for SVM-based channel estimator and data detector
of [17]. Furthermore, the modified finite Newton (MFN)
method [38] is used for implementing the ℓ2-SVMs as it is
one of the most efficient algorithms [17]. Performance of
different channel estimators and data detectors are compared
in terms of normalized MSE (NMSE) and bit-error-rate (BER),
respectively. The former is defined as

NMSE =
E{∥H− Ĥ∥2F}

KM

where H ≜ [hTD
1 ,hTD

2 , . . . ,hTD
M ] and Ĥ ≜

[ĥTD
1 , ĥTD

2 , . . . , ĥTD
M ]. The block-fading interval is divided

into two parts, where the first part and second part are
used for channel estimation and data detection, respectively.
Noteworthy to mention that the performance of the proposed
one-bit GDA-Ada method (when the covariance matrix has
to be computed exactly) is not reported in data detection
figures as its computational complexity is higher than those
of the proposed one-bit GDA-Ada-1 and one-bit GDA-Ada-2
methods for achieving similar performance.

In Fig. 1, the NMSE of the proposed AdaBoost-based
channel estimators are compared with those of BMMSE [10],
BiGAMP [13], and SVM [17]. It can be observed that
the performance of BMMSE is worse than other methods
tested, while BiGAMP possesses the best performance.
The AdaBoost-based channel estimators are very marginally
outperformed by BiGAMP and SVM that has no effect on the
follow up data detection.

Despite having comparable channel estimation performance,
the proposed one-bit GDA-Ada-1 and one-bit GDA-Ada-2
require substantially lower computational complexity com-
pared to those of the SVM-based and BiGAMP-based methods

Fig. 2. Average run time comparison of the proposed one-bit GDA-Ada-1
and one-bit GDA-Ada-2 methods with SVM and BiGAMP in estimating
channel between users and one antenna of the BS vs. the number of users K,
considering the scenario where Nc = 512, and Ltap = 16.

TABLE I
ORDER OF COMPUTATIONAL COMPLEXITY FOR

DIFFERENT CHANNEL ESTIMATORS

as depicted in Fig. 2. We compare the required average run
time for estimating channel between users and one antenna
of the BS (i.e., average run time for estimating hTD

i ’s).
Although the average run times for performing the channel
estimation task are comparable for the one-bit GDA-Ada-1,
one-bit GDA-Ada-2, and SVM-based methods when K ≤ 5,
the SVM-based channel estimator needs much higher
computational complexity than those of the one-bit GDA-Ada-
1 and one-bit GDA-Ada-2 methods when K > 5. In addition,
the average run time for implementing the BiGAMP-based
channel estimator is significantly larger for all K’s compared
to the average run times required for executing the one-
bit GDA-Ada-1 and one-bit GDA-Ada-2 channel estimators.
We stress here that this advantage of the proposed methods
is rooted in using low computation demanding techniques as
weak classifiers in Algorithm 2. Moreover, the computational
complexity order of different channel estimators tested is listed
in Table I, where κ(·) represents a super-linear function and
I is the number of iterations required for implementing the
BiGAMP method.

In Fig. 3, a performance of the one-bit GDA-Ada-2
channel estimator is presented versus T for SNR ∈
{−5, 5, 15, 25} dB.4 It can be seen that the channel estimation

4As the behavior of all proposed Adaboost-based channel estimators with
respect to T follows the same pattern, only the performance of the one-bit
GDA-Ada-2 is shown in Fig. 3 to ensure the clarity of presentation.
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Fig. 3. NMSE comparison of the one-bit GDA-Ada-2 channel estimator for
different values of T with K = 4, M = 32, Nc = 512, and Ltap = 16.

Fig. 4. Performance comparison between the proposed AdaBoost-based
channel estimators, SVM, and BiGAMP with K = 2, M = 32, Ltap = 16,
and Nc ∈ {256, 1024}.

accuracy does not change substantially when T > 10 for
SNR ∈ {−5, 5, 15, 25} dB. As a result, opting T = 10 in
Algorithm 2 is a reasonable choice according to Fig. 3.

Fig. 4 compares the NMSE of the proposed AdaBoost-based
channel estimators with SVM and BiGAMP for Nc =
256 and Nc = 1024, where the NMSEs of the methods
tested are decreased for about 4 dB at high SNRs by
increasing Nc from 256 to 1024. Analogous to Fig. 1, the
proposed AdaBoost-based channel estimators possess quite
similar performance to the performance of the SVM-based
and BiGAMP-based channel estimators.

Fig. 5 compares the one-bit GDA-Ada-1 and one-bit GDA-
Ada-2 data detectors with the SVM and BiGAMP data
detectors for both cases of estimated CSI and perfect CSI.
It should be noted here that the estimated CSI of each
method is found by their corresponding channel estimators.
Moreover, 500 independently generated CSIs are considered
for calculating the BERs. It can be seen in Fig. 5 that the BERs
of the proposed AdaBoost-based data detectors outperform the
BERs of the SVM and BiGAMP data detectors at high SNRs
for both cases of estimated CSI and perfect CSI. In addition,
Fig. 5 shows that the performance of the one-bit GDA-Ada-1
method is slightly better than that of the one-bit GDA-Ada-2

Fig. 5. Performance comparison of different data detectors with K = 2,
M = 16, Nc = 256, Ltap = 8, and QPSK modulation.

Fig. 6. Average run time for implementing different data detectors with
various K, Nc = 512, M = 32, and Ltap = 8.

method at high SNRs. The better performance of the one-
bit GDA-Ada-1 and one-bit GDA-Ada-2 methods indicates
that the proposed methods are more robust to/independent of
specific channel realizations than the SVM and BiGAMP-
based methods. Indeed, the performance of the BiGAMP
method, for example, shows sensitivity to channel realizations
because it saturates and worsens compared to the performance
of the one-bit GDA-Ada-1 and one-bit GDA-Ada-2 methods
at high SNRs, meaning that for some channel realizations the
performance of the BiGAMP method may be significantly
worse than that of the one-bit GDA-Ada-1 and one-bit GDA-
Ada-2 methods.

An average run time comparison for implementing the one-
bit GDA-Ada-1, one-bit GDA-Ada-2, SVM, and BiGAMP
data detectors is presented in Fig. 6, where K ∈ {2, 3, . . . , 8}.
For K ≥ 4, the average run times of the SVM and BiGAMP
data detectors are substantially higher than those of the one-
bit GDA-Ada-1 and one-bit GDA-Ada-2 data detectors. The
orders of computational complexity of different data detectors
tested are listed in Table II.

The impact of choosing different T on the performance
of the one-bit GDA-Ada-2 data detector for SNR ∈
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TABLE II
ORDER OF COMPUTATIONAL COMPLEXITY FOR

DIFFERENT DATA DETECTORS

Fig. 7. The impact of different T on the performance of the one-bit
GDA-Ada-2 data detector with K = 4, Nc = 256, M = 32, Ltap = 16,
and QPSK modulation.

{−5, 0, 10, 20} dB is investigated in Fig. 7.5 It can be seen
that the change in BER is only marginal when T > 10 for
SNR ∈ {−5, 0, 10, 20} dB. As a result, opting T = 10 in
Algorithm 3 is a reasonable choice according to Fig. 7.

V. CONCLUSION

In this paper, we have found out and demonstrated that the
GDA classifier/approximate GDA classifier together with the
AdaBoost technique result in developing efficient and reliable
channel estimators and data detectors, specifically in large
scale scenarios such as MIMO-OFDM systems that operate
over frequency selective channels. It was shown that two of
the proposed AdaBoost-based channel estimators and data
detectors named one-bit GDA-Ada-1 and one-bit GDA-Ada-
2 require dramatically lower run time compared to those of
the BiGAMP-based and SVM-based methods, while providing
comparable/better accuracy. Numerical results were presented
to showcase the efficiency and robustness of the proposed
methods in large scale MIMO-OFDM systems. For one-
bit MIMO-OFDM systems, the use of AdaBoost with weak
classifiers can be viewed as a versatile framework where
any approximate binary classifiers with low computational
complexity can be employed as weak classifiers, resulting in
this AdaBoost framework being a highly promising tool for
dramatically reducing the computational complexity.

5As the behavior of all proposed Adaboost-based data detectors with respect
to T follows the same pattern, only the performance of the one-bit GDA-Ada-
2 is shown in Fig. 7 to ensure the clarity of presentation.
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