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Abstract—The integration of communication and radar
systems could enhance the robustness of future communication
systems to support advanced application demands, e.g., target
sensing, data exchange, and parallel computation. In this article,
we investigate the beamforming design for integrated sensing,
computing, and communication (ISCC) in the Internet of Robotic
Things (IoRT) scenario. Specifically, we assume that each robot
uploads its preprocessed sensing information to the access
point (AP). Meanwhile, leveraging the additive features of the
spatial wireless channels between robots and AP, over-the-air
computation (AirComp) through multirobot cooperation could
bolster system performance, particularly in tasks like target
localization through sensing. To get a full picture of the effects of
antenna array structures and beampatterns on the ISCC system,
we evaluate the performance by considering the shared and
separated antenna structures, as well as the omnidirectional and
directional beampatterns. Based on these setups, the nonconvex
optimization problems for the performance tradeoff between
sensing and AirComp are formulated to minimize the mean-
squared error (MSE) of AirComp and sensing. To efficiently
solve these optimization problems, we designed the gradi-
ent descent augmented Lagrangian (GDAL) algorithm, which
involves dynamically adjusting the step sizes while updating the
variables. Simulation results show that the separated antenna
structure achieves a lower AirComp MSE than the shared
antenna setup because it has greater beam steering Degrees of
Freedom. Moreover, the beampattern types have almost no effect
on the AirComp MSE for the given antenna structure setup. This
comprehensive investigation provides useful guidelines for ISCC
framework implementation in IoRT applications.

Index Terms—Beamforming, integrated sensing, computing,
and communication (ISCC), Internet of Robotic Things (IoRT),
over-the-air computation (AirComp).
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I. INTRODUCTION

THE EVOLVING wireless technology has been regarded
as a pivotal facilitator for the future Internet of Robotic

Things (IoRT), a specific use case of the Internet of Things
(IoT) ecosystem, owing to its enhanced functionalities in
connectivity, communication, and interaction [1]. A smart
IoRT system allows robots to exchange information with other
robots or an access point (AP) via communication links while
simultaneously processing environmental perceptions [i.e.,
integrated sensing and communication (ISAC)] to meet various
Quality-of-Service (QoS) requirements, such as accurate target
localization and low-latency communications [2], [3], [4]. In
such a system, continuous sensing (e.g., radar sensing) by each
robot for target detection or tracking collects vast amounts
of data, posing new challenges for timely data processing.
To address these challenges, designing an efficient integrated
sensing, computing, and communication (ISCC) framework
tailored to meet the demanding QoS requirements in IoRT is
of paramount importance.

The ISCC is crucial for IoRT systems to achieve real-time
decision making, efficient resource utilization, and robust fault
tolerance.

1) Real-Time Decision Making: The IoRT system operates
in dynamic and uncertain environments where quick
decision making is required. In the ISCC system
framework, the robots can collect real-time data from
their surroundings via sensing (e.g., radar), process it
locally or collaboratively, and make autonomous decisions
without relying solely on a centralized controller or human
intervention [5].

2) Enhanced Resource Utilization Efficiency: Integrated
IoRT systems can enhance resource utilization efficiency
by leveraging distributed sensing and computation.
Specifically, instead of transmitting raw sensor data to
a central processing unit (e.g., an edge server), robots
can preprocess and analyze data locally to reduce data
transmission and further minimize latency. Moreover,
both radar sensing and data transmission using the
same spectrum and signals can improve spectral and
energy efficiencies, making IoRT systems more effi-
cient and scalable for simultaneously serving multiple
robots [6].

3) Robust Error-Fault Tolerance: The IoRT system enables
robots to collaborate with each other to achieve common
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goals or tasks. For example, when multiple robots send
their collected sensing information about one common
target to the edge server via multiaccess wireless chan-
nels, the localization parameter estimation leveraging
the information from multiple robots could achieve an
enhanced robustness for errors (faults) compared to a
single robot [7].

The dual-functional waveform design has been widely
investigated in radar-communication systems [8], [9], [10],
[11], [12], [13], [14]. The optimal waveform design with con-
straint of a fixed transmit power, for achieving the sensing and
downlink communication performance tradeoff has been inves-
tigated in [11] where the radar system was mounted at the base
station (BS). By fully using the waiting time in conventional
pulsed radar to transmit dedicated communication signals, the
waveform has been designed to improve the communication
spectrum efficiency and probability of target detection in a full-
duplex ISAC scheme [13]. From the perspective of information
theory [mutual information (MI)], another waveform has been
designed to maximize the sensing and communication MI [14].
To detect the target behind the obstacle, the reconfigurable
intelligent surface (RIS) has also been utilized to assist the
downlink simultaneous target sensing and communication via
beamforming design [15]. In [16], unmanned aerial vehicles
(UAVs) have been designed to provide ISAC services for
multiple IoT nodes to maximize the minimum data rate.
Although the aforementioned works focus on ISAC waveform
design to enhance system performance, they all consider a
shared antenna setup for dual-functional radar-communication
waveform radiation. The alternative separated antenna con-
figuration, where communication and sensing use different
antenna arrays on the robot, is often overlooked. This approach
has been shown to improve the Degrees of Freedom (DoFs)
for beam steering in both communication and sensing [17].
Moreover, the relevant processing schemes for data collected
during the sensing stage were not included in the ISAC system
evaluation.

In mobile IoRT systems, the robots need to continuously
perform sensing for environment perception, object detection
(e.g., obstacles and landmarks), and localization [2]. There will
be enormous amounts of raw data collected at the sensors.
Therefore, related data processing (computation) scheme is
necessary. However, the limited battery capacity of mobile
robots necessitates the design of energy-efficient computation
schemes. Currently, the binary computation task offloading
scheme for data processing has been widely investigated [18],
[19], [20], [21], [22], [23]. In this scheme, computation tasks
are executed either locally at the user, remotely at the AP, or
at another user device with computation capabilities [22]. The
computation results are then fed back to the user via communi-
cation links. Additionally, a new computation paradigm called
air computation (AirComp), which fully utilizes the additive
properties of analog signals via multiaccess wireless channels
through multi-IoT device cooperation, has been proposed as
a promising method for fast data aggregation at a centralized
receiver (e.g., BS or AP) or for distributed computations in
the physical layer [24], [25], [26], [27], [28]. This approach
eliminates the need for additional computation operations at

the receiver side. In the IoRT system, limited observation
of the target or false detection due to blockages between
the robot and target can affect target detection accuracy at
a single robot. Alternatively, target localization accuracy can
be improved using the AirComp scheme, where multiple
robots cooperatively send their locally computed estimates of
target parameters to the AP. In such a scheme, the parameter
estimation accuracy for the common target only needs to be
approximately correct, and the use of AirComp in a distributed
IoRT system enhances the overall estimation accuracy [28].
The final computation result is then broadcast to the robots via
downlink communications, reducing the computational burden
and prolonging battery life at each robot, thereby improv-
ing accurate target localization. Therefore, the integration of
AirComp with ISAC technology, i.e., the ISCC framework,
has many advantages, such as improved spectrum efficiency
using the same spectrum resources and enhanced system
performance (e.g., target localization) through multidevice
cooperation [6], [25], [29], [30], [31]. In [6], the radar and
communication signals transmitted through shared or sepa-
rated antenna arrays have been considered for wireless sensor
networks. The beamforming design has been optimized to
minimize AirComp errors. The beampattern has been designed
in [32] to achieve a performance tradeoff between sensing and
AirComp constrained by the power budget at each device. In
particular, omnidirectional and directional beampatterns were
considered. Similarly, the performance tradeoff among com-
munication, sensing, and computation under power constraints
has been investigated in [30]. Qi et al. [25] designed beam-
forming for sending a superposition-coded signal to the BS
over the uplink channel for computation and communication.
The minimum communication data rate and power constraints
have been considered when determining the optimal beam-
forming matrix. However, the aforementioned literature does
not have a comprehensive analysis of the antenna array
structures (shared or separated) and the beampatterns (omni-
directional or directional). Furthermore, these works evaluate
the system performance using a random Gaussian channel
realization rather than considering practical path loss in high-
frequency bands or link conditions such as blockage. Those
realistic setups will be considered in this article in the IoRT
scenario, as depicted in Fig. 1.

The specific contributions of this article are as follows.
1) In addition to the shared and separated antenna array

structures at each robot for both communication and
sensing, we also take into account the omnidirectional
and directional beampatterns to conduct a comprehen-
sive comparison between these near-realistic setups in
an IoRT scenario.

2) To achieve a performance tradeoff between sensing and
AirComp, several nonconvex mean-squared error (MSE)
minimization-based optimization problems are formu-
lated under the constraints of maximum transmit power
and sensing QoS requirements for different antenna
array setups and beampatterns.

3) To solve these nonconvex optimization problems effi-
ciently, we designed a gradient descent augmented
Lagrangian (GDAL) algorithm with adaptive adjustment
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Fig. 1. ISCC framework implemented in an IoRT scenario.

of the step size when updating the variable using
gradient descent method.

4) The propagation of electromagnetic wave signals
between the robot and AP is prone to being blocked
in the high-frequency bands. Here, we also explore the
AirComp MSE affected by the robot–AP link blockage
that happened with a certain probability.

The remainder of this article is organized as follows.
Section II introduces the system models for two different
antenna structures at robots. The optimal beampattern design
for radar sensing is described in Section III. Section IV
introduces the optimization problem and gives corresponding
algorithm for the performance tradeoff optimization between
sensing and AirComp. Numerical simulation results and
conclusion remarks are presented in Sections V and VI,
respectively.

Notations: In this article, we use bold lowercase letters (e.g.,
a) and bold uppercase letters (e.g., A) to represent vectors and
matrices, respectively. By normal fonts (e.g., a), we denote the
scalars. Moreover, Tr(·) stands for the trace operation, (·)H

denotes the Hermitian transpose operation, ‖·‖F represents the
Frobenius norm of a matrix, | · | is the absolute value, and I
is the identity matrix.

II. SYSTEM MODEL

Consider a scenario with K robots randomly distributed
at the sector coverage area of an AP with a radius of R0,
as illustrated in Fig. 1. There is a common point-like static
target located at [x0, y0]. Accurate parameter estimation (e.g.,
coordinates and angle) of the target becomes of paramount
importance for safety operation at the robot itself, or for
end-to-end wireless link quality guarantees for the robot
through proper propagation path scheduling. In this IoRT
scenario with an ISCC framework, each robot simultaneously
transmits the signals for target sensing and data transmission
to the AP for AirComp. Assuming that the data symbols
sent from each robot to the AP convey the estimated posi-
tion information about the target in the last time slot, the
AirComp using multirobot cooperation could improve the

target localization accuracy [6]. This is crucial for centralized
resource management on the whole IoRT scenario.

The robots and AP are assumed to be equipped with
uniform linear arrays (ULAs) of NR and NA antenna elements,
respectively. In particular, the Nt antenna elements out of the
NR ones at each robot are used for signal transmission, and
the other Nr = NR − Nt ones are used for signal reception.
The channel between the AP and each robot k ∈ K =
{1, 2, . . . , K} is assumed to be block-fading and the channel
state information (CSI) is assumed to be accurately known
at the AP. In mobile robotic networks operating in high-
frequency bands, the electromagnetic wave signal propagation
between AP and robots is prone to being blocked by the sur-
rounding environment.1 Here, we assume that the propagation
link between AP and each robot is in a Line-of-Sight (LoS)
condition with probability 1−pb, where pb ∈ [0, 1] denotes the
blockage probability, and the path loss is calculated according
to Third Generation Partnership Project (3GPP) [35].

The received signal model at the AP depends on the antenna
configurations of the robots, i.e., the sensing signals and the
communication symbols can be either jointly transmitted using
one shared transmitting antenna array via a dual-functional
waveform or separately sent via two isolated ULAs. Both
options will be presented in the following sections.

A. Shared Antenna Configuration

In the shared antenna configuration, all the Nt transmitting
antenna elements at each robot are used for both target sensing
and data transmission to the AP, and the other Nr antennas
are used for signal reception. The data symbols transmitted
by the kth robot for AirComp are expressed as sk[t] =
{gk,1(·), gk,2(·), . . . , gk,M(·)} ∈ C

M×1, where M is the number
of functions to be computed [25], and gk,m(·) represents
the preprocessing function at the kth robot. We assume the
transmitted data symbols to be independent and identically
distributed (i.i.d.), with zero mean and unit variance, i.e.,
E[sk[t]sk[t]H] = IM and E[sk[t]s�[t]H] = 0∀ k �= �. Then, the
transmitted signal can be written as

xk[t] = Fksk[t] (1)

where Fk ∈ C
Nt×M denotes the beamforming precoder imple-

mented at the kth robot. Generally, the signals reflected by
the target are vanished at the AP due to the long distance
between the robot and AP. Thus, the received signal vector
with the beamforming combiner W ∈ C

NA×M at the AP can
be formulated as

y[t] =
K∑

k=1

WHHkFksk[t]+WHn (2)

where Hk ∈ C
NA×Nt denotes the multiple-input–multiple-

output (MIMO) channel between the kth robot and AP, and n ∈
C

NA×1 is the AWGN noise vector such that n ∼ CN (0, σ 2
n I).

Limited by the power budget Pmax for the precoder design at
each robot, we should meet the following constraint:

‖Fk‖2F ≤ Pmax ∀k. (3)

1The blockage effect can be mitigated by emerging relaying technologies,
such as smart repeaters and reconfigurable metasurfaces, refer to [33] and [34]
for more details.
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Assuming that the channel matrix Hk between AP and each
robot is known at the AP,2 the ideal received signal ỹ[t] (i.e.,
no link blockage and with optimal beamforming design) is
given by

ỹ[t] =
√

Pt

M

K∑

k=1

UHHkVksk[t] (4)

where Pt ≤ Pmax denotes the transmit power at the robot
for both sensing and AirComp signal transmission via the
dual-functional waveform, Vk ∈ C

Nt×M contains the first M
right singular vectors in the singular value decomposition
(SVD) of Hk, i.e., the optimal beamforming precoders for
implementation, U ∈ C

NA×M collects the first M left singular
vectors of the SVD of

∑K
k=1 Hk, i.e., the designed aggregation

beamforming combiner at AP for receiving the signals from
all the K robots. Note that the beamforming design steered to
the dominant signal reception directions based on SVD of the
MIMO channel by exploiting channel sparsity has been widely
utilized for maximizing the received signal power [38], [39].
Thereby, we derive the aforementioned optimal precoders at
each robot based on the channel between the robot and AP,
and the optimal aggregation combiners at AP according to the
summation of all the channels between robots and AP. Then,
we can get the ideal received signal in (9) and regard it as a
benchmark for MSE computation of the received signal (2) as

MSEAirComp = Et

[
|y[t]− ỹ[t]|2

]

=
K∑

k=1

‖WHHkFk − A‖2F + σ 2
n ‖W‖2F (5)

where A �
√

Pt
M UHHkVk.

B. Separated Antenna Configuration

Unlike the shared antenna configuration for both sensing
and communication via the dual-functional waveform at each
robot, the transmitting antennas are split into two sub-ULA
arrays (Nt = Ns+Nc) in the separated antenna structure. Here,
Ns antenna elements are used for radar sensing and Nc antenna
elements are used for data transmission to the AP. The sensing
symbols at the kth robot can be denoted as dk[t] ∈ C

M̄×1

where M̄ represents the number of beams for radar sensing
(M̄ ≥ 1), and E[dk[t]dk[t]H] = IM̄ and E[dk[t]dt[t]H] =
0∀ k �= �. Similar to the shared antenna configuration, the
data symbols uploaded to the AP for AirComp are expressed
as sk[t] ∈ C

M×1, where M is the number of functions to be
computed. Then, the transmitted signals from each robot can
be written as

xk[t] =
[

F̄kdk[t]
Fksk[t]

]
(6)

where Fk ∈ C
Nc×M and F̄k ∈ C

Ns×M̄ are the beamformers for
data transmission and radar sensing, respectively. Ignoring the
signals reflected from the target to the AP, due to the large

2For related channel estimation methods, refer to [36] and [37].

distance, the received aggregated symbol vector y[t] at the AP
can be expressed as

y[t] =
K∑

k=1

(
WHHkFksk[t]+WHH̄kF̄kdk[t]

)+WHn (7)

where H̄k ∈ C
NA×Ns and Hk ∈ C

NA×Nc represent the MIMO
channels between AP and the kth robot for sensing signals
and data transmission, respectively, and n ∈ C

NA×1 is the i.i.d.
noise vector such that n ∼ CN (0, σ 2

n I).
Similar to the shared antenna configuration, both designed

transmitting precoders F̄k and Fk should meet the maximal
transmit power constraint that takes the following form:

‖F̄k‖2F + ‖Fk‖2F ≤ Pmax ∀k. (8)

Similar to the signal model of the shared antenna structure,
the ideal received signal ỹ[t] (given the knowledge about
channel Hk between AP and each robot) can be expressed as

ỹ[t] =
√

Pt

M

K∑

k=1

UHHkVksk[t] (9)

where Pt ≤ Pmax is the transmit power for AirComp, and
Vk ∈ C

Ns×M and U ∈ C
NA×M have the same expressions as

in (9).
The corresponding MSE between the received signal (7) and

the ideal one ỹ[t] in (9) is given by

MSEAirComp = Et

[
|y[t]− ỹ[t]|2

]

=
K∑

k=1

‖WHHkFk − A‖2F

+
K∑

k=1

‖WHH̄kF̄k‖2F + σ 2
n ‖W‖2F . (10)

III. BEAMPATTERN DESIGN

According to the knowledge level about the target, the
beampattern design can be divided into two types: omnidi-
rectional and directional beampatterns. The former design is
suitable for the blinding sensing stage, where there is a lack of
knowledge about the target direction. It is the case for example
during the initial target sensing stage. On the other hand, the
second design is specifically targeted for situations where the
sensing directions are known and the target is being tracked.
Corresponding beampattern designs are introduced next.

A. Omnidirectional Beampattern Design

For the omnidirectional beampattern, the beamforming
matrix Fk should be orthogonal with an identity covariance
matrix [11]. To minimize the AirComp errors defined in (5)
and (10), the following optimization problems are formulated
for two different antenna configurations that are stated in
Section II. For shared antenna configuration

P1.1 min
F,W

F1.1(Fk, W)

=
K∑

k=1

‖WHHkFk − A‖2F + σ 2
n ‖W‖2F (11a)
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s.t. ‖Fk‖2F = Pmax ∀k (11b)

and for separated antenna configuration

P2.1 min
F,W,F̄

F2.1
(
Fk, W, F̄k

)

=
K∑

k=1

‖WHHkFk − A‖2F

+
K∑

k=1

‖WHH̄kF̄k‖2F + σ 2
n ‖W‖2F (12a)

s.t. ‖Fk‖2F + ‖F̄k‖2F = Pmax∀k. (12b)

Note that those two problems are nonconvex due to the
quadratic power constraints in (11b) and (12b). Although an
alternating optimization (AO) approach can be utilized to solve
problem P1.1 as described in [32], the joint optimization of
F = {F1, . . . , Fk, . . . , FK} and F̄ = {F̄1, . . . , F̄k, . . . , F̄K}
makes it an inefficient approach for solving problem P2.1.
Here, we design a GDAL algorithm. In particular, the gradient
descent approach is utilized to update the desired variables
Fk, F̄k, and W based on the augmented Lagrangian function.
In the following, the detailed procedures using the proposed
GDAL approach for solving problem P2.1 are presented.3

First, the augmented Lagrangian function for problem P2.1
is defined in (13), shown at the bottom of the page, where
λk denotes the Lagrange multiplier and ρ represents the
penalty parameter. After initializing the required parameters,
we calculate the gradients with respect to Fk, W, and F̄k at
each iteration as follows:

∇WLP2.1 = 2
K∑

k=1

HkFk
(
WHHkFk − A

)

+2
K∑

k=1

H̄H
k F̄kWHH̄kF̄k + 2σ 2

n W (14)

∇FkLP2.1 = 2HH
k W

(
WHHkFk − A

)+ 2λkFk

+2ρ
(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)
∀k (15)

∇F̄k
LP2.1 = 2H̄H

k W
(
WHH̄kF̄k − A

)+ 2λkF̄k

+2ρ
(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)
∀k. (16)

Then, the optimization variables at the lth iteration can be
updated as

Wl+1 = Wl −�l
W∇WLP2.1 (17)

Fl+1
k = Fl

k −�l
Fk
∇FkLP2.1 ∀k (18)

F̄l+1
k = F̄l

k −�l
F̄k
∇F̄k

LP2.1 ∀k. (19)

3The procedure for solving problem P1.1 follows similar steps, and thus,
it is not presented here for the sake of brevity.

Traditional stochastic gradient descent approaches use a
global step size for all variables, which is inefficient as it
does not account for the scale of the gradients. Alternatively,
the step sizes �l

W, �l
Fk

, and �l
F̄k

at the lth iteration can
be adaptively updated using the adaptive gradient algorithm
(AdaGrad) [40], [41], [42] based on accumulated historical
gradients. This approach accelerates the convergence process
compared to fixed step size methods. Specifically, parameters
with larger gradients will experience a rapid decrease in their
effective step size, preventing overshooting and stabilizing
the convergence process. Conversely, parameters with smaller
accumulated gradients will maintain relatively larger step
sizes, speeding up convergence. This strategy is particularly
useful in avoiding large and unstable updates, facilitating a
more stable and potentially faster convergence. Here, we use a
general way of updating each element of the step size matrices
�l

W, �l
Fk

, and �l
F̄k

. Using a unified notation � for any of
these matrices, the update rule for the (i, j)th element can be
written as

[�l+1]i,j = [�l]i,j√
[Gl]i,j + ζ

∀i, j (20)

where ζ is a small positive scalar added to avoid division
by zero, and the element [Gl]i,j records the sum of squared
partial derivative for each element (ith row and jth column)
of the corresponding variables accumulated over iterations. By
implementing (20), we can dynamically adjusting the step size
for individual elements of each variable.

In the next step, the Lagrange multiplier λk and penalty
parameter ρ are updated as

λl+1
k = λl

k + ρ
(
‖Fl

k‖2F + ‖F̄l
k‖2F − Pmax

)
∀k (21)

ρl+1 =

⎧
⎪⎨

⎪⎩

min(ξρl, ρmax), δl ≥ δth

max(
ρl

ξ
, ρmin), δl < δ′th

ρl, otherwise

(22)

where δl indicates the constraint violation between ‖Fl
k‖2F +‖F̄l

k‖2F and Pmax, ξ is a scaling factor (e.g., 2) and ρmax is
a maximum value for ρl+1 to prevent it from growing too
large. In particular, ρl+1 will be increased if the violation is
significant, i.e., δl ≥ δth; otherwise, ρl+1 will be decreased if
the violation δl is minor, i.e., δl < δ′th. A minimum constraint
ρmin is considered to prevent ρl+1 from becoming too small.

The GDAL algorithm is stopped once the bias of the value
of the Lagrangian function is not greater than the tolerance
ε or the maximum number of iterations L is reached. The
detailed procedures of the GDAL algorithm are summarized
in Algorithm 1. Thus, the optimal sensing precoder matrix
F∗k for each robot is derived, which will be used for the
precoder and combiner design to achieve a performance
tradeoff optimization in the next section.

LP1.2(Fk, W, F̄k, λk, ρ) = F1.2
(
Fk, W, F̄k

)+
K∑

k=1

λk

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)
+ ρ

2

K∑

k=1

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)2
(13)
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B. Directional Beampattern Design

For the directional radar beampattern design, the directions
of interest are specified in advance to design the covariance
matrix Rk = FkFH

k ∈ C
Nt×Nt (Hermitian positive-definite

matrix). Given the angle directions of interest, the covari-
ance matrix Rk design can refer to the procedures stated
in [43], [44]

min
Fk

∣∣g(θ)− a(θ)HFkFH
k a(θ)

∣∣ (23a)

s.t. ‖Fk‖2F = Pt ∀k (23b)

where a(θ) ∈ C
Nt×1 represents the steering vector in the direc-

tion of θ ∈ [−π/2, π/2] at the ULA of Nt transmitting antenna
elements [33], g(θ) denotes the desired beampattern [43], and
Pt ≤ Pmax is the transmit power for radar sensing.4

Similar to the omnidirectional beampattern design, the MSE
minimization problems about AirComp can be formulated as

P3.1 min
F,W

F3.1(Fk, W)

=
K∑

k=1

‖WHHkFk − A‖2F + σ 2
n ‖W‖2F (24a)

s.t. FkFH
k = Rk ∀k (24b)

and

P4.1 min
F,W,F̄

F4.1
(
Fk, W, F̄k

)

=
K∑

k=1

‖WHHkFk − A‖2F

+
K∑

k=1

‖WHH̄kF̄k‖2F + σ 2
n ‖W‖2F (25a)

s.t. F̄kF̄H
k = Rk∀k, (25b)

‖Fk‖2F + ‖F̄k‖2F = Pmax ∀k (25c)

for shared antenna configuration setup and separated antenna
setup, respectively.

Similar to problems P1.1 and P2.1, both P3.1 and P4.1
are nonconvex, and they can also be solved by the proposed
GDAL algorithm presented in Algorithm 1. First, we define
the augmented Lagrangian functions for P3.1 and P4.1 in (26)
and (27), respectively, shown at the bottom of the page. Then,

4This problem can be easily solved using the cvx toolbox [45], [46], more
detailed discussion is out of the scope of this article.

Algorithm 1: GDAL Algorithm for Problem P2.1

Input: Initialize W0, F0, F̄0, λ0, ρ0, tolerance ε, step
sizes �0

Fk
,�0

W and �0
F̄k

, maximum number of
iterations L.

Output: Optimal F, W and F̄
1 l← 0 ;
2 while l < L do
3 Sequentially update the parameters:
4 Compute the value of the Lagrangian function in

(13);
5 Compute gradients of augmented Lagrangian function

with respect to F̄k, Fk and W defined in (14)-(16);
6 Update F̄k, Fk and W using gradient descent

approach according to (17)–(19);
7 Adaptively update the step sizes according to (20);
8 Update λl+1

k according to (21);
9 Update ρl+1 defined in (22);

10 Check convergence criteria:
11 if convergence criteria met then
12 Output F, W and F̄;
13 break;

14 l← l+ 1 ;

the problems can be solved by following the similar procedures
described in Algorithm 1.5

IV. BEAMFORMING DESIGN FOR PERFORMANCE

TRADEOFF OPTIMIZATION

In addition to the shared and separated antenna con-
figurations presented in Section II, two beampatterns
(omnidirectional and directional) for sensing are also consid-
ered here. Therefore, there are four different combinations
of beampattern schemes, as suggested by the optimal beam-
pattern design problems of P1.1–P4.1, which are formulated
in Section III. In this section, we consider the performance
tradeoff optimization problems between AirComp and sensing
given a weighting factor α ∈ [0, 1] and the optimal beampat-
terns F∗ = {F∗1, . . . , F∗K} that obtained from P1.1–P4.1. For a
large α, the optimization efforts are directed toward minimiz-
ing the AirComp MSE, potentially at the expense of sensing
accuracy. Conversely, for a small α, there is more emphasis

5The detailed procedures are not presented again for the sake of brevity,
as they follow the same steps.

LP2.1(Fk, W, λk, ρ) = F2.1(Fk, W)+
K∑

k=1

λkTr
(
FkFH

k − Rk
)+ ρ

2

K∑

k=1

‖FkFH
k − Rk‖2F (26)

LP2.2(Fk, W, F̄k, λ
1
k, λ

2
k, ρ1, ρ2) = F2.2

(
Fk, W, F̄k

)+
K∑

k=1

λ1
kTr

(
F̄kF̄H

k − Rk
)+ ρ1

2

K∑

k=1

‖F̄kF̄H
k − Rk‖2F

+
K∑

k=1

λ2
k

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)
+ ρ2

2

K∑

k=1

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)2
(27)
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on minimizing the sensing MSE, which improves sensing
accuracy but may potentially decrease AirComp performance.
In the case of cooperative communications and sensing, such
as the use of dual-functional waveform for both sensing and
communication that is sent by the same antenna, increasing α

may not significantly affect the sensing MSE, especially when
resources (e.g., transmit power) are abundant. However, in the
competitive relationship between sensing and communication
for resource allocation, an increase in α (i.e., more emphasis
on communication for AirComp) might result in decreased
sensing performance, especially when using separated antenna
configurations for sensing and communication. Moreover,
a lower sensing MSE is expected to be achieved with a
directional beampattern compared to an omnidirectional one
for a given antenna setup.

A. Problem Formulation With Performance Tradeoff
Optimization

After deriving the optimal beamformer F∗k for each robot ∀k,
the performance tradeoff optimization problems for all robots,
by considering the total power constraint and sensing QoS
requirement, can be reformulated as

P1.2 min
F,W

αF1.1(Fk, W)+ (1− α)

K∑

k=1

‖Fk − F∗k‖2F (28a)

s.t. ‖Fk‖2F ≤ Pmax ∀k, (28b)

‖Fk‖−2
F ≤

β

Nrσ 2
n
∀k (28c)

where the second term is weighted by (1 − α) in (28a),
and it represents the sensing performance loss. The con-
straint in (28c) indicates the sensing QoS requirement with
a threshold β [32]. This tradeoff optimization problem cor-
responds to the one formulated in P1.1 with the shared
antenna structure and omnidirectional beampattern (denoted
as the “shared-omni” scheme). For the other combinations
of schemes, in terms of separated antenna structure with
omnidirectional beampattern (denoted as “separated-omni”
scheme), shared antenna structure with directional beampattern
(denoted as “shared-direction” scheme), and separated antenna
structure with directional beampattern (denoted as “separated-
direction” scheme), the tradeoff optimization problems can be
represented, respectively, as

P2.2 min
F,W,F̄

αF2.1
(
Fk, W, F̄k

)+ (1− α)

K∑

k=1

‖F̄k − F̄∗k‖2F (29a)

s.t. ‖Fk‖2F + ‖F̄k‖2F ≤ Pmax ∀k, (29b)

‖F̄k‖−2
F ≤

β

Nrσ 2
n
∀k (29c)

and

P3.2 min
F,W

αF3.1(Fk, W)+ (1− α)

K∑

k=1

‖Fk − F∗k‖2F (30a)

s.t. (28b) and (28c) (30b)

and

P4.2 min
F,W,F̄

αF4.1
(
Fk, W, F̄k

)+ (1− α)

K∑

k=1

‖F̄k − F̄∗k‖2F (31a)

s.t. (29b) and (29c) (31b)

which are corresponding to the beampattern design schemes
in problems P2.1, P3.1, and P4.1, respectively.

B. Gradient Descent Augmented Lagrangian Method

Similar to the optimization problems P1.1–P1.4, we use the
proposed GDAL algorithm to derive the desired F, W, and F̄.
To demonstrate the procedures, we only select a more complex
problem, i.e., problem P4.2 for the scheme of “separated-
direction,” and show the detailed derivation only for this
problem. The corresponding derivations for P1.2−P3.2 follow
similar procedures, which are not covered here for the sake of
brevity.

First, the augmented Lagrangian function is defined in (32),
shown at the bottom of the page, taking into account the max-
imum transmit power Pmax and their sensing QoS requirement
β. Before updating the variables Fl

k, Wl, and F̄l
k at the lth

iteration using the gradient descent method, the corresponding
gradients are computed as

∇WLP4.2 = 2α

K∑

k=1

HkFk
(
WHHkFk − A

)

+2α

[
K∑

k=1

H̄H
k F̄kWHH̄kF̄k + 2σ 2

n W

]
(33)

∇FkLP4.2 = 2αHH
k W

(
WHHkFk − A

)+ 2λ1
kFk

+2ρ1

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)
∀k (34)

∇F̄k
LP4.2 = 2αH̄H

k WWHH̄kF̄k + 2(1− α)
(
F̄k − F̄∗k

)

+2ρ1

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)
F̄k

−2ρ2

(
‖Fk‖−2

F −
β

Nrσ 2
n

)
F̄k

‖F̄k‖4F
+2λ1

k F̄k − 2λ2
k

F̄k

‖F̄k‖4F
∀k (35)

LP4.2(Fk, W, F̄k, λ
1
k, λ

2
k, ρ1, ρ2) = αF4.1

(
Fk, W, F̄k

)+ (1− α)

K∑

k=1

‖F̄k − F̄∗k‖2F +
K∑

k=1

λ1

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)

+ρ1

2

K∑

k=1

(
‖Fk‖2F + ‖F̄k‖2F − Pmax

)2 +
K∑

k=1

λ2
k

(
‖Fk‖−2

F −
β

Nrσ 2
n

)

+ρ2

2

K∑

k=1

(
‖Fk‖−2

F −
β

Nrσ 2
n

)2

. (32)
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Algorithm 2: GDAL Algorithm for Problem P4.2

Input: Initialize F0
k, W0, F̄0

k , λ0
1, λ0

2, ρ0
1 , ρ0

2 , �0
Fk

,�0
W,

�0
F̄k

, tolerance ε, and maximum number of
iterations L.

Output: Optimal F, W and F̄
1 l← 0 ;
2 while l < L do
3 Sequentially update the parameters:
4 Compute the Lagrangian function value in (32);
5 Compute gradients of ∇WLP4.2, ∇FkLP4.2 and

∇F̄k
LP4.2 according to (33)–(35);

6 Update Fl+1
k , Wl+1 and F̄l+1

k according to (17)-(19);
7 Update Lagrange multipliers (λ1

k)
l+1 and (λ2

k)
l+1 in

(36)–(37);
8 Update penalty parameter: ρl+1

1 and ρl+1
2 according

to the rule defined in (22);
9 Check convergence criteria:

10 if convergence criteria met then
11 Output F, W and F̄ ;
12 break;

13 l← l+ 1 ;

Then, these variables are updated according to the updating
rules defined in (17)–(19). Note that we also implement the
AdaGrad method to adaptively updating the step sizes �W,
�Fk , and �F̄k

for fast convergence. The Lagrange multipliers
λ1

k and λ2
k are sequentially updated as

(λ1
k)

l+1 = (λ1
k)

l + ρl
1

(
‖Fl+1

k ‖2F + ‖F̄l+1
k ‖2F − Pmax

)
∀k (36)

(λ2
k)

l+1 = (λ2
k)

l + ρl
2

(
‖F̄l+1

k ‖−2
F −

β

Nrσ 2
n

)
∀k. (37)

Corresponding updates of ρ1 and ρ2 follow the rule spec-
ified in (22). The overall algorithm stops once the bias of
the value of the Lagrangian function is not greater than the
tolerance ε or the maximum number of iterations L is reached.
Finally, we obtain Fk, W, and F̄k for sensing and AirComp
under the constraints. The detailed derivation procedures are
summarized in Algorithm 2.

C. Complexity Analysis

By implementing adaptive adjustments of the step size in
the gradient descent-based algorithm, the number of itera-
tions for convergence can potentially be reduced, as stated
in [47]. In this section, we analyze the worst case com-
putational complexity of Algorithm 1 for solving problem
P4.2.6 At each iteration l, the computational complexity is
dominated by the matrix multiplications required for cal-
culating the gradients when updating the variables (i.e.,
W, Fk, and F̄k). The related computational complexities are
O(KMNANt+MNA), O(KMNANc), and O(KMNANs), respec-
tively. Therefore, the worst case computational complexity
with L iterations using our GDAL algorithm for solving

6The computational analysis for solving P1.2–P3.2 follows a similar
procedure and is not presented here.

Fig. 2. AirComp MSE under different levels of power constraint:
K = 10, pb = 0.

problem P4.2 is O(LKMNANt+LMNA), where Nt = Nc+Ns as
defined in Section II-B. It is observed that the computational
complexity is proportional to the number of cooperative robots.
However, a certain number of robots is expected to be suffi-
cient to meet the QoS requirements in terms of sensing and
AirComp via uplink communications, which will be verified
in the next section. In this case, our scheme is scalable to an
IoRT scenario with a large number of robots because we only
need to select a subset of robots covered by the AP. Moreover,
our analysis is more practical as it considers the path loss and
blockage effects.

V. NUMERICAL SIMULATION

For comprehensive comparisons among the different com-
binations of antenna structures and beampattern types, the
performance evaluation using our proposed algorithms is
presented in this section. We assume that the AP has NA = 32
antenna elements, and each robot has a total of NR = 24
antenna elements. In the shared antenna structure setup, Nt =
Nr = 12 for signal transmission and reception. For a fair
comparison, we use the same number of antenna elements
at each robot in the separated antenna structure setup, e.g.,
Ns = Nc = 8 for sensing and communication, and Nr = 8
for signal reception at the robot. For the IoRT scenario
depicted in Fig. 1, the link condition between each robot
and AP is modeled as follows: the link is assumed to be
blocked with a probability pb, and path loss is calculated
following the 3GPP [35]. We assume that the robot–AP
link condition is either in LoS or Non-LoS (NLoS) with a
dominant single path propagation, i.e., M = 1. However,
we can extend it to any integer M according to the prac-
tical channel conditions to support the case of M > 1
AirComp functions. Furthermore, we use the abbreviation
terms “shared-omni,” “shared-direction,” “separated-omni,”
and “separated-direction” to distinguish between different
antenna and beampattern setups. The performance tradeoff
between AirComp and sensing is weighted by a factor α = 0.5
if no other specifications are given.
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(a) (b)

Fig. 3. MSE performance affected by the number of robots (Pmax = 0 dBm, pb = 0): (a) AirComp MSE and (b) sensing MSE.

Fig. 2 illustrates the AirComp MSE under different maxi-
mum transmit power budgets. The AirComp MSE increases
with the maximum power Pmax. Moreover, the MSE is in the
range of approximately 10−7 to 10−5. Those phenomena are
due to the path loss, which results in a low received power
level. It is meaningful for practical deployment, which is dif-
ferent from the case of simple Gaussian channel modeling with
zero mean and unit variance, as considered in [6] and [32]. It
is also interesting to observe that beampattern types (omni-
directional and directional) almost have no effect on the
AirComp MSE for the given antenna structure (shared or
separated). This is because the AP itself can realize a variable
beamwidth to cover all the robots within its sector area for
uplink aggregated signal reception [33]. In such a case, the
optimal beamforming combiner at the AP can be guaranteed.
Moreover, one of our objectives is to minimize the AirComp
MSE so that the expected beamforming precoder at each
robot can also be ensured compared to the optimal one using
our algorithm. Compared to the shared antenna setup, the
AirComp MSE of the separated antenna configuration can
be reduced by approximately 40%, even as the number of
robots increases. This verifies that the separated antenna array
for communication and sensing achieves a higher degree of
freedom for beam steering compared to the dual-functional
beamforming in a shared antenna structure.

If the number of robots increases, it is challenging to design
an aggregation beamforming combiner at the AP to receive the
uplink AirComp signals within its coverage. This is because
the larger the number of robots randomly distributed within
the AP’s coverage area, the larger the beamwidth is needed
for the AP to cover all the robots, which results in a lower
beamforming gain such that a larger MSE is obtained, as
shown in Fig. 3(a) at the top of the page. In addition, the
separated antenna structure has a lower AirComp MSE than
the shared antenna structure, which is similar to the results
shown in Fig. 2. This is because it has a higher degree of
freedom for spatial beam steering. Moreover, the beampattern
has almost no effect on the MSE for a given antenna structure.

Fig. 3(b) shows that the sensing MSE maintains a relatively
stable level for given setups though a slightly decrease for
the separated antenna configurations. It is due to the sensing
precoder is derived for each robot separately so that the sensing
performance can always be guaranteed, and it is almost not
affected by the number of robots. The increased number of
robots only has significant effects on aggregation beamforming
design at the AP, which reflects in the AirComp performance,
as illustrated in Fig. 3(a). Therefore, the expected average
system performance in terms of AirComp and sensing can be
achieved by selecting a subset of cooperative robots covered
by the AP, rather than using the information from all robots.
This approach helps to reduce the computational complexity of
implementing our proposed algorithm in practice, as stated in
Section IV-C. Furthermore, it is observed that the directional
beampattern achieves a lower sensing MSE for a given antenna
structure setup. The separated antenna structure configuration
yields a higher sensing MSE than the shared antenna setup
because the separated antenna setup has an enhanced DoF for
sensing beam steering but with a decreased transmit power.

The performance analysis above assumes a fair tradeoff
factor between sensing and AirComp, i.e., α = 0.5. The
weight of the sensing MSE decreases with increasing α. In
addition, the order of magnitude of the sensing MSE (i.e.,
beampattern) is larger than that of AirComp due to the path-
loss effect, as illustrated in Fig. 3. This results in a notable
decrease in the value of Lagrangian function with increasing
α, as depicted in Fig. 4. Moreover, the directional beampattern
achieves a lower value of the Lagrangian function compared
to the omnidirectional one for the given antenna setup and α.
Particularly, the optimization problems convert to the ones of
only minimizing the AirComp MSE when α = 1.

We also evaluate the blockage probability effects on the
AirComp MSE in Fig. 5. The blockage probability has remark-
able effects on the scheme of the separated antenna structure
compared to the shared antenna setup. This is due to the fact
that the separated antenna configuration has a power division
into two antenna arrays for sensing and AirComp, respectively.
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Fig. 4. Tradeoff factor effects on the value of the Lagrangian function:
K = 10, Pmax = 10 dBm, pb = 0.

Fig. 5. Blockage effects on the AirComp MSE: K = 5, Pmax = 0 dBm.

This causes uplink AirComp to have low transmit power.
Furthermore, the AirComp link between each robot and the AP
is not fully blocked even if a blockage event occurs [35], [48].
As a consequence, the AirComp MSE for the shared antenna
setup does not show a remarkably sharp increase with the
blockage probability.

VI. CONCLUSION

In this article, a comprehensive investigation of the antenna
structures and beampatterns for the ISCC system in an IoRT
scenario has been presented. There are four MSE minimization
optimization problems formulated among different setups in
terms of “shared-omni,” “shared-direction,” “separated-omni,”
and “separated-direction” that involve a weighted factor to
tradeoff the performance between AirComp and sensing. To
efficiently solve the formulated nonconvex optimization prob-
lems, we have designed the GDAL algorithm with an adaptive
adjustment of the step sizes in the variable updates. The
simulations have shown that the separated antenna structure
achieves a lower AirComp MSE than the shared antenna setups
because it has higher DoF for beam steering. Moreover, the

beampattern has almost no effect on the AirComp MSE for
a given antenna structure setup at the robots. The required
system performance in terms of AirComp MSE and sensing
MSE can be achieved by selecting only a subset of cooperative
robots rather than using all the robots within the AP’s
coverage. This scalability allows our proposed scheme to be
applicable to an IoRT scenario with a large number of robots.
Therefore, we must strike a balance between complexity
and target localization accuracy in practical IoRT scenarios.
Moreover, it is more sensitive to the blockage for the separated
antenna setups due to the power split for sensing and commu-
nication, which results in a remarkable increase in AirComp
MSE as the blockage probability increases. These findings
have meaningful guidelines for practical IoRT networks. For
instance, leveraging our proposed scheme for accurate target
localization, we can select appropriate radio propagation paths
to mitigate blockages, ensuring timely packet delivery within
specified low-latency constraints in deterministic wireless
networking.
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