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The best least squares approximation of amatrix, typically e.g. characterising gain factors in narrowband problems, by
a unitary one is addressed by the Procrustes problem. Here, we extend this idea to the case ofmatrices of analytic func-
tions, and characterise a broadband equivalent to the narrowband approach which we term the polynomial Procrustes
problem. Its solution relies on an analytic singular value decomposition, and for the case of spectrally majorised, dis-
tinct singular values, we demonstrate the application of a suitable algorithm to three problems via simulations: (i) time
delay estimation, (ii) paraunitary matrix completion, and (iii) general paraunitary approximations.

Video to this article can be found online at https://doi.org/10.1016/
j.sctalk.2024.100318.

Figures and tables

Science Talks 10 (2024) 100318

⁎ Corresponding author.
E-mail address: stephan.weiss@strath.ac.uk (S. Weiss).

Fig. 1. Example of the Procrustes solution [1] for a 2 × 2 matrix with column vectors r1and r2 (in blue), finding the closest unitary matrix whose columns form an ortho-
normal basis with basis vectors q1 and q2 (in red). We are looking for an extension of this problem to the case of polynomial or generally analytic matrices [2–4] in order
to admit e.g. the approximation of matrices of transfer functions by paraunitary systems representing lossless filter banks, as desired in e.g. [5–7].
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Fig. 2. Example for the analytic singular values σm zð Þ, m ¼ 1, 2, of a 2 × 2 matrix of analytic functions when evaluate on the unit circle; note that analyticity for the 2nd
singular value requires the singular value to become negative [8–11]. Various algorithms can help to address such singular value decompositions: analytic solutions for
the similar EVD case are obtainable in [12–15]; under some circumstances, analytic solutions are free of intersections [16] such that a number of other polynomial matrix
SVD algorithms such as in [17–19] suffice.

Fig. 3. Autocorrelation raa τ½ �a lowpass signal a n½ �; for a signal b n½ �, which is shifted by a fractional delay of 7.3 sampling periods [20], determining this fractional delay from
the cross-correlation sequence rba τ½ � is difficult, since its peak is ill-defined.

Fig. 4. Polynomial Procrustes solution applied to the cross-correlation function rba τ½ � in Fig. 3 yields an allpass whose (a) phase response and (b) group delay permit to extract
the fractional delay akin to approaches in [21–24].

Fig. 5. Paraunitary matrix completion problem: finding the orthogonal complement to a lowpass filter h1 n½ �.
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Fig. 6. (a) Lowpass filter h1 n½ � for a Daubechies D2wavelet [25] of length 4 (in blue), the identified solution (m ¼ 2, in red), and the known orthogonal complement of the D2
wavelet of length 4 (in green): an allpass ambiguity leads to a Procrustes solution that does not possess maximum compactness; (b) corresponding magnitude responses, with
the given lowpass response (in blue), and the identified solution (red) as well as the Daubechies D2 highpass filter (green); phase ambiguity to the solution means that the
identified response and the ideal D2 filter possess the same magnitude responses.

Fig. 7. Ensemble test generated over a number of systems generated by random innovation filter [26], where the mismatch between the ground truth and the identified
Procrustes solution is evaluated for different dimensions M and for different orders of the ground truth solution; for small orders, the mismatch is close to machine accuracy;
for higher orders, a preset truncation parameter of 1e-10 limits the accuracy.
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