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Abstract: Additive manufacturing (AM) methods have been gaining momentum because they pro-
vide vast design and fabrication possibilities, increasing the accessibility of state-of-the-art hardware
through recent developments in user-friendly computer-aided drawing/engineering/manufacturing
(CAD/CAE/CAM) tools. However, in comparison to the conventional manufacturing methods, AM
processes have some disadvantages, including the machining precision and fabrication process times.
The first issue has been mostly resolved through the recent advances in manufacturing hardware,
sensors, and controller systems. However, the latter has been widely investigated by researchers
with different toolpath planning perspectives. As a contribution to these investigations, the present
study proposes a toolpath planning method for AM, which aims to provide highly continuous yet
distance-optimized solutions. The approach is based on the utilization of the signed distance field
(SDF), clustering, and minimization of toolpath distances among cluster centroids. The method was
tested on various geometries with simple closed curves to complex geometries with holes, which pro-
vides effective toolpaths, e.g., with relative distance reduction percentages up to 16.5% in comparison
to conventional rectilinear infill patterns.

Keywords: additive manufacturing; fused filament fabrication (FFF); toolpath planning; signed
distance fields; clustering algorithms; optimization

1. Introduction

Additive manufacturing (AM) forms objects by fusing or bonding materials primarily
including metals, polymers, ceramics, and composites [1–4]. AM provides flexibility in
product design and effective solutions for complex geometry fabrication, leading to on-
demand production, reduced material and energy consumption during fabrication, and
custom automation solutions, to name a few [5,6]. Therefore, AM has recently undergone
tremendous progress in the biomedical, construction, automotive, defense, and aerospace
industries [7–9]. Over the last decades, the products fabricated with AM technologies
reached an annual growth rate of approximately 26% [10]. For instance, various AM
methods, e.g., fused filament fabrication (FFF) and directed energy deposition (DED),
gain ever-increasing attention due to their corresponding printing systems becoming less-
expensive and easier-to-use. In addition to these, novel systems with lower maintenance
costs and energy efficiency, as well as a wide range of cost-effective materials such as
polymers, metals, and ceramics, also make them favorable manufacturing solutions [11].
However, as seen in many different AM methods, the manufactured products contain
defects due to machining precision and fabrication process times. The recent advances in
the manufacturing hardware, sensors, vibration compensation, and controller systems have
a great impact on the resolution for machine precision-related issues [12–15]. Nonethe-
less, process time optimization has been widely investigated by researchers with different
toolpath planning perspectives and bypassing methods [16]. In principle, toolpaths are
generated by transforming STL (stereolithography)-based computer aided drawing (CAD)
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files into layers, and filling these layers with lines or curves based on selected infill pat-
terns [17]. Traditionally, the slicer software produces successive layers with infill patterns,
which are commonly based on rectilinear geometries with angular variations, also known
as zig-zag infill patterns [18–20]. In addition to the rectilinear geometries, various patterns
including grids, honeycombs, triangles, and gyroids have also been investigated in the
literature [10,21,22]. However, the continuity of material deposition, which plays an impor-
tant role for the structural integrity and manufacturing process time, is rather challenging
with the conventional infill patterns and toolpath generation perspectives [23,24]. Hence,
in recent years, Jin et al. and Habib et al. developed toolpath planning algorithms, which
use contours for the sliced layer boundaries and continuous infill patterns for the interior
regions [25,26]. Moreover, Bui et al. and Liu et al. also proposed planning strategies with
collision detection and resolution algorithms, which aim at optimizing the nozzle move-
ments while achieving desired manufacturing quality [5,27]. In addition to these novel
studies, Rauch et al. and Evjemo et al. proposed multi-axis toolpath generation algorithms
for manufacturing metallic thin-walled structures to be used with DED methods [28,29].

As a contribution to the novel studies in the field of toolpath generation and optimiza-
tion, the current study presents a framework by means of signed distance field (SDF) and
cluster-based methods using distance optimization algorithms. The study is organized as
follows. Section 2 (Materials and Methods) provides an overview of SDF, clusters, and
the present framework for toolpath planning while Section 3 (Results and Discussions)
provides the results and comparison of distances obtained by the current and conventional
toolpath generation methods. Closing remarks, limitations, and future plans are provided
in Section 4 (Conclusions).

2. Materials and Methods

The working principles of the present method comprise (I) slicing of a three-dimensional
(3-D) geometry based on the selected z-axis resolution; (II) generation of SDF for each slice;
(III) SDF partitioning for defining clusters of proximate position data sets and toolpath
optimization based on the clusters; and (IV) machine-instruction (G-Code) generation
based on the optimized toolpaths for AM, which is an optional step and briefly explained in
Appendix A. The workflow is schematized in Figure 1. The entire workflow was executed
with in-house codes written in Mathematica 13.0 technical computing software [30], which
can be found in a Github repository [31].

In the present study, two options can be used to define the domain, which comprise
geometries generated with implicit functions by using ImplicitRegion[] and RegionPlot3D[]
functions readily available in Mathematica, and geometries imported in a STL file format.
Since the STL files are widely used for industrial and academic purposes, the focus here is
kept on the latter option. Hence, the imported geometries are sliced with DiscretizeRegion[],
a default Mathematica function, along the z-axis and a user-defined thickness value, e.g.,
between 0.1 mm and 0.2 mm, which are commonly used in the FFF method. As illustrated in
the first step in Figure 1, the generated thin yet 3-D slices are then projected as 2-D polygons
by means of the RegionPlot[] function. The polygon bounds are used to determine the
reference contours (or isolines) ω comprising points with the assigned distance value of
zero, f (ω) = 0. As illustrated in Figure 2, the signed distance function d(q, ω) for any point
q is calculated with respect to ω. To elaborate,

f (q) =
{

0 if q ∈ ω,
d(q, ω) if q /∈ ω.

(1)
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Figure 1. Workflow: (I) Three-dimensional (3-D) geometry slicing and two-dimensional (2-D)
projection, (II) generation of signed distance fields, (III) clustering and distance minimization
for optimal toolpaths, (IV) generation of G-Code and additive manufacturing by means of the
computed toolpaths.

Figure 2. Signed distance field calculations for a hollow ellipse.

As depicted in the second step in Figure 1, connecting points with equal distance
values to the closest polygon bounds results in the generation of continuous isolines, i.e.,
forming the SDF [32–34]. To refine the SDF, the enclosed isolines within the polygon bounds
are processed. Thereafter, the remaining isolines can be used to generate toolpaths for
AM purposes. However, for complex geometries, toolpaths generated by means of this
strategy may end up with long process times, which is mainly due to high-probability of
non-productive nozzle movements. Therefore, distance-based optimization among the
generated isolines can reduce such nozzle movements. In order to execute the optimization,
isolines are first partitioned into smaller point sets by means of clustering algorithms, which
is a powerful approach for determining patterns with a certain degree of similarity [35].
The generated clusters represent the proximate sets of points based on distance. For the
clustering, Mathematica’s built-in FindClusters[] function is used with three different
methods, namely, ’NeighborhoodContraction’, ’Agglomerate’, and ’DBSCAN’ (density-
based spatial clustering of applications with noise). These methods have been successfully
implemented to classify and cluster large data sets in financial problems, vehicle motion
trajectories, and positioning and tracking problems in the fields of transportation and
urbanization, to name a few [36,37]. The ’NeighborhoodContraction’ method is a neighbor-
based clustering method, which is suitable for arbitrary cluster shapes and sizes [38]. It
constructs clusters by using neighborhoods based on distance, geometry, and density [39].
The ’Agglomerate’ method, on the other hand, partitions data by using an agglomerative
clustering approach, which is suitable for clusters of similar densities but may fail with
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clusters of varying sizes [40]. It is a hierarchical method, i.e., sub-clusters are successively
merged based on their distance measures to form the clusters [41,42]. In addition to these
methods, the ’DBSCAN’ method is also one of the commonly used clustering algorithms,
which groups set of points that are packed closely. It is an efficient way of clustering
large spatial data, which is based on distance and density metrics [43]. In this method, a
sufficient number of points form a cluster, and the process of clustering continues until all
the density-connected clusters are detected [44].

As shown in the third step of Figure 1, the clustering process is followed by toolpath
optimization between the clusters. For this purpose, cluster centroids are first computed by
averaging the coordinates of the point sets in each cluster. Thereafter, the distance traveled
by the nozzle between the clusters is determined based on the total distance minimization.
This can be achieved by constructing a cost matrix based on a distance metric between each
cluster centroid d(m, n), for which m and n refer to centroid positions, such that [5,17]

d(m1, n1) d(m1, n2) ... d(m1, nj)
d(m2, n1) ... ... ...

... ... ... ...
d(mi, n1) ... ... d(mi, nj)

. (2)

The optimal permutation(s) Π can be then obtained through the minimization of the
total distances [45] so that

min ∑
∏

d(m, n). (3)

3. Results and Discussion

In order to compare the proposed method with the conventional toolpath generation
strategies, various sample geometries with and without holes regardless of their convex
or concave boundaries, which comprise ’Stanford Bunny’, ’Square with Holes’, ’Helical
Gear’, and ’Polygons with Holes’, were investigated and are depicted in Figure 3. For
comparison purposes, a conventional in-house rectilinear toolpath code with an alternating
angle combination of a 0◦ and 90◦ variation is used, which is readily available in a Github
repository [31]. For both methods, z- and xy-resolutions are 0.2 mm while the infill density
is set to be 100%. The comparison metric is taken as the absolute value of the relative
toolpath distance reduction percentage so that

REL(%) =

∣∣∣∣∣dSDF
toolpath − dConventional

toolpath

dConventional
toolpath

∣∣∣∣∣× 100%. (4)

The comparative study in Figure 4 demonstrates that REL(%) values for the depicted
layer of ’Stanford Bunny’ are 2.9%, 3.5%, and 2.8% for three different clustering options,
’NeighborhoodContraction’, ’Agglomerate’, and ’DBSCAN’, respectively. This shows that
for the geometries without hole(s), the conventional rectilinear toolpaths can be an effective
solution. On the other hand, for more complex layers with the holes, the present method
produces results with shorter toolpaths compared to the conventional rectilinear toolpath
planning. For the investigated layer of ’Square with Holes’, REL(%) values of 7.3%, 7.4%,
and 6.2% are obtained with the ’NeighborhoodContraction’, ’Agglomerate’, and ’DBSCAN’
clustering options, respectively. Meanwhile, REL(%) values of 11.2%, 16.5%, and 15.1%
for the tested layer of ’Polygons with Holes’ are obtained by means of the aforementioned
clustering options. Interestingly, there is a variation of REL(%) for the ’Helical Gear’
sample. Although the ’Agglomerate’ clustering option provides a shorter toolpath than
the conventional method with a REL(%) value of 1.3%, both ’NeighborhoodContraction’
and ’DBSCAN’ produce longer toolpaths with REL(%) values of 5.1% and 7.5%. This is
presumably due to the position data sets being intertwined especially at the gear teeth
regions, which can cause inaccurate clustering.
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Figure 3. Tested samples and generated toolpaths for selected sections by means of the current
SDF−based and conventional rectilinear methods. The in−plane resolution was chosen to be 0.2 mm.
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Figure 4. Generated toolpaths and number of clusters for various geometries by means of the
current SDF−based and conventional rectilinear methods. The in−plane resolution was chosen
to be 0.2 mm. SDF* and NC** refer to signed distance field and NC** refers to neighborhood
contraction, respectively.

4. Conclusions

The present study focuses on a framework generating optimal toolpaths based on SDF
and clustering algorithms. Although it is possible to utilize direct implicit functions as
geometric regions in Mathematica, here, STL files are used as input geometry files. The
reason for this choice is due to STL files being one of the common CAD formats used in the
additive manufacturing industries.

The current investigations demonstrate that for complex geometries, e.g., with holes,
the present approach is an effective way of generating toolpaths, which reduces non-
productive nozzle movements. Hence, process times, material, and energy consumption
during fabrication are reduced with such toolpath optimization strategies, which results in
sustainable process and material utilization solutions [46,47]. Particularly, the ’Agglomerate’
clustering algorithm is deduced to provide toolpaths with feasible distances. To illustrate,
for the investigated slice of the ’Polygons with Holes’ sample, a relative distance reduction
of up to 16.5% is achieved with the ’Agglomerate’ clustering algorithm in comparison
with the toolpath generated by means of the conventional rectilinear toolpath planning
method. Nevertheless, for closed geometries without holes, both the rectilinear and present



J. Manuf. Mater. Process. 2024, 8, 199 7 of 9

approaches produce toolpaths of comparable distances, i.e., a relative distance percentage
of 3.5% for the tested slice for ’Stanford Bunny’.

Even though the present method has merits, there are also various limitations inherited
from the input geometry files. For instance, the resolution and discrepancies of the geome-
try have direct effects on the final product surface quality; therefore, pre-processing, which
comprises contour smoothing and noise reductions, plays a critical role. Currently, the
default Mathematica mesh conversion and smoothing functions are used to address these
issues. However, these functions can be further investigated to improve the geometric accu-
racy and meet the dimensional standards for the final fabricated product. These limitations
also create a room for improvement and lead to new research opportunities. For example,
scalability studies for large and complex geometries, as well as optimization assessments for
the emerging areas of four- or five-axis manufacturing systems, are some examples for such
investigations to specify toolpath generation constraints and practical limits. Furthermore,
the development of collision-avoidance and support structure algorithms and rigorous
characterizations of part quality and structural integrity are other important topics, which
are planned to be investigated in detail as part of future work. In addition to these, due
to the current framework being based on clustering algorithms, high-performance, and
real-time computation strategies based on machine learning algorithms, the integration of
multi-nozzle systems and their AM implementations over clusters will be also evaluated in
upcoming research studies.

Funding: This research received no external funding.

Data Availability Statement: Codes and data supporting the reported results can be found in a
Github repository (https://github.com/metudust/Toolpath_and_GCode_Generator) (accessed on
10 September 2024).

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

A G-Code generator written in Mathematica technical computing software is also
provided in the Github repository [31]. The extrusion rate in the code is expressed as

Eextrusion =

[
h2π + 4h(w − h)

]
LM

D2π
, (A1)

which can be successfully tuned and used for FFF 3D printing. Here, w, h, L, M, D refer to
the extrusion width, layer height, travel length, multiplier ( ∼0.065 for the current toolpath
generator and printer in use), and nozzle diameter, respectively. Formulation details and
parameter definitions can be found in [24]. A brief explanation of the G-Code command
lines is depicted in Figure A1.

 

Command Nozzle Coordinate Nozzle Speed Material extrusion rate 

G1 X73.6868  Y93.3234  Z0.2 F1050. E0.0107
G1 X73.5539  Y92.9957  Z0.2 F1050. E0.0130
G1 X73.3433  Y92.7105 Z0.2 F1050. E0.0130
G1 X73.2886  Y92.4264  Z0.2 F1050. E0.0131

 

 

 

 
Following nozzle coordinate 

(73.5539, 92.9957, 0.2) 

Current nozzle coordinate 
(73.6868, 93.3234, 0.2) 

Figure A1. Schematic representation of the nozzle movement and material extrusion based on the
G-Code commands.
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of Surface Roughness in Hybrid Manufacturing–Milling after FDM Using Artificial Neural Networks. Appl. Sci. 2024, 14, 5980.
[CrossRef]
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