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Abstract—Optimizing the quality of machine learning (ML)
services for individual consumers with specific objectives is
crucial for improving consumer satisfaction. In this context, end-
to-end ensemble ML serving (EEMLS) faces many challenges
in selecting and deploying ensembles of ML models on diverse
resources across the edge-cloud continuum. This paper provides
a method for evaluating the runtime performance of inference
services via consumer-defined metrics. We enable ML consumers
to define high-level metrics and consider consumer satisfaction
in estimating service costs. Moreover, we introduce a time-
efficient ensemble selection algorithm to optimize the EEMLS
with intricate trade-offs between service quality and costs. Our
intensive experiments demonstrate that the algorithm can be
executed periodically despite the extensive search space, enabling
dedicated optimization for individual consumers in dynamic
contexts.

Index Terms—ML Serving, Ensemble Selection, Ensemble ML,
End-to-End ML, Performance Evaluation

I. INTRODUCTION

End-to-end ensemble ML serving (EEMLS) has been in-
creasingly deployed in various application domains, utilizing
multiple ML models to enhance predictive performance and
generalization [1]. Despite such advantages, using ensembles
of ML models complicates the optimization while coordinating
multiple models and considering trade-offs between service
quality and costs. In many cases, the optimization objectives of
ML consumers are represented by distinct metrics in specific
contexts.

We consider the above-mentioned objectives when ML
providers deploy and optimize dedicated ensembles of ML
models for individual consumers at runtime to enhance con-
sumer satisfaction. First, evaluating the quality of EEMLS is
challenging. Different consumers can define multiple high-
level metrics, called consumer-defined metrics (CDMs), to in-
dicate their optimization objectives. That enables the EEMLS
to tailor service quality to individual consumers, ensuring more
effective and relevant outcomes to consumer expectations.
Currently, most EEMLS platforms support common metrics,
such as inference accuracy, response time, and resource usage,
but not CDMs [2]. Second, selecting/deploying optimal en-
sembles is time-consuming due to: (1) The large search space
within the massive number of ML models and computing
resources in the edge-cloud continuum. (2) Estimating service
costs based on consumer satisfaction can significantly increase
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Fig. 1. An EEMLS for Object Classification in Autonomous Driving (OCAD).

the complexity of the optimization when considering numer-
ous trade-offs between CDMs and costs. (3) The performance
variability of services and ML models in EEMLS across dif-
ferent runtime contexts further complicates the optimization.

To tackle the above-mentioned challenges, this paper
presents an approach for optimizing the EEMLS following
multiple consumer objectives. Our contributions are:

• We present a method for evaluating the performance of
individual inference services based on CDMs. Specifically, we
provide a metric specification and develop an evaluation en-
gine to support calculating CDMs from real-time monitoring.

• We introduce a time-efficient algorithm for selecting en-
sembles and resources following consumer-specific objectives.
The algorithm enables continuous quality optimization for
individual consumers within dynamic runtime contexts.

• We present analyses on the optimization results in real-
world scenarios. We compare our optimization method with
the prevalent method used in state-of-the-art EEMLS plat-
forms, including Cocktail [2] and FrugalML [3].

The rest of this paper is organized as follows: Section II
introduces our running example. Sections III and IV present
our method for evaluating inference services and an ensem-
ble selection algorithm for EEMLS optimization. Section V
and VI explain our experiment and related work. Finally, we
conclude the paper in Section VII.

II. RUNNING EXAMPLE & OPTIMIZATION FRAMEWORK

In Fig. 1, we illustrate a real-world EEMLS designed for
Object Classification in Autonomous Driving (OCAD). It is a
representative ML application deployed in edge-cloud systems,
providing classification services to multiple consumers with
varying runtime contexts. These contexts represent multiple
utilization purposes of OCAD. For example, analyzing the
operating environments (e.g., pedestrian and vehicle density)
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Fig. 2. The workflow and essential components in EEMLS optimization.

around autonomous cars and delivery robots with IoT devices.
Depending on the quality requirements, the OrchestrationSer-
vice provisions an optimal ensemble of AtomicObjectClassifi-
cation (AOC) as an ensemble of multiple inference services.
Services in this OCAD are deployed as microservices across
edge-cloud resources. The AOCs provide object classification
services utilizing 9 variants of VGG16 models whose accuracy
is optimized for classifying several specific objects among
13 classes (e.g., pedestrians, cars, and bicycles). We obtained
these models and datasets from our collaboration project on
autonomous driving. OCAD is a real-world example where the
Ensemble-based ML Inference must be frequently optimized
to maintain the service quality for individual consumers.

From our prior work [4], two components have been de-
veloped to support the EEMLS deployments: the Observation
Service for collecting metrics from the EEMLS system and
consumer (feedback on service quality) and the Benchmarking
component is responsible for profiling the inference services
before runtime deployments, as shown in Fig. 2. This paper
presents new Performance Evaluation Engine (built atop the
Metrics & Metadata Storage) and Ensemble Optimization to
evaluate and select the optimal ensembles.

III. RUNTIME PERFORMANCE EVALUATION METHOD
USING CONSUMER-DEFINED METRICS

A. Consumer-defined metric definition and specification

1) Definition of Consumer-defined metric (CDM): A CDM
is a high-level metric aggregated from other metrics within
a certain context. A context refers to a specific utilization
purpose of a consumer. The shifts in utilization cause context
changes in runtime (or dynamic runtime context). Then, CDMs
are performance indicators, allowing consumers to specify the
quality requirements and optimization objectives. CDMs are
used in runtime performance evaluation and quality estima-
tion, supporting the ensemble selection. Optimizing CDMs,
EEMLS can be more responsive to real-time changes for the
specific and dynamic utilization of consumers.

Generally, the consumers can define a metric cdmi =
fi(Mi × Ci) where fi is an aggregation function (e.g.,
sum,max, or consumer’s specialized functions). Mi = {mi1,
. . . , min} is a set of input metrics. Since metrics in Mi can
be measured in different contexts with different meanings,
Ci = {ci1, . . . , cin} is a set of runtime contexts corresponding
to the metrics in Mi. A context cij includes multiple attributes.
Each attribute in cij imposes the utilization condition where
mij is measured. In the simplest case, a CDM can be directly
mapped to a common metric without considering context.

2) Specification of CDM : We design a metric specification
for consumers to specify complex CDMs. As illustrated in
Fig. 3, the consumer can specify a reference to the aggregation
function (e.g., function name) and the input when defining
a CDM. The input is a list of {metric, value, context}. The
metric (mij) indicates the metric name and the value can be
a specific value or value range (in case the consumers only
consider the metrics in a specific value/range). Then, each
context (cij) includes a list of {attribute, value}, represent-
ing a consumer-specific utilization. Our metric specification
allows real-time integration/modification of CDMs without
significant engineering.

3) Example: Fig. 3 provides an excerpt of the metric
specification in OCAD and illustrates the dependency be-
tween CDMs and runtime contexts. A consumer defines
an error risk metric errorRisk2 as the function ER2 ap-
plied on several miss rates, i.e., missRateOfRider and
missRateOfCarAsTruck (as other CDMs). The miss rates are
aggregated based on inference accuracy (a common metric) in
specific contexts. Here, the contexts indicate the consumer’s
utilization for classifying cars and trucks (not the overall infer-
ence accuracy). The attributes of the contexts are: label class
reported from consumer feedback and predicted class moni-
tored from the EEMLS system.

B. Evaluating inference services based on CDMs

The Evaluation Engine evaluates inference services based
on the following steps: (1) Loading all aggregation func-
tions specified in the CDM specification; such functions are
consumer-specific implementations or common ones imple-
mented in the engine. (2) Obtaining the metrics and executing
the functions (fi) with corresponding input for calculating in-
dividual CDMs, which will be added/updated to the inference
service profiles. (3) Filtering the profiles to exclude inference
services that do not satisfy the ML contract.

Our engine provides a configurable evaluation window,
allowing consumers to specify ranges for obtaining metrics
to evaluate the performance of inference services (e.g., within
a specific time period or a number of recent inferences).
Thus, the engine can capture the most relevant monitoring
data for calculating CDMs. That enables real-time adjustments
to consumer-specific objectives, providing more responsive
and effective optimization tailored to the current needs and
priorities of individual consumers. By filtering unqualified
inference services, the engine also significantly decreases the
search space for the ensemble selection algorithm.

IV. TIME-EFFICIENT ALGORITHM FOR SELECTING
ENSEMBLE IN EEMLS OPTIMIZATION

A. Overview of the ensemble selection algorithm

Let us describe a naive algorithm (in Algorithm 1) whose
variables are explained in Table I. An EM is a combination
of multiple ML models that work together to improve the
inference performance. An ED is a specific deployment of an
EM on specific resources (list of inference services). Since
no prior work has incorporated CDMs into cost estimation
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Fig. 3. Example of CDMs and their dependencies in OCAD

Algorithm 1 Naive ensemble selection algorithm
Require: M: M = {m1, . . . ,mm} set of ML models
Require: D: D = {d1, . . . , dd} set of available resources
Require: k: number of ML models in the ensemble
Require: P : the minimum throughput requirement

1: procedure ENSEMBLEDEPLOYMENT(M, D, k, P )
2: for each EM of k from M do
3: # Find all ED(s) of EM on D satisfying P
4: LED ← FINDDEPLOYEMENT(EM , D, P )
5: for each ED of LED do
6: ES ← OBJECTIVEFUNCTION(ED)
7: Store ES for this ED
8: end for
9: end for

10: Select ED with the highest ES
11: end procedure

and quality optimization, we use the naive algorithm as the
baseline for the complexity evaluation. The algorithm includes:

• Step 1: Selecting individual EM (s) consisting of k out
of m (m = |M|) number of available models (line 2).

• Step 2: Finding all ED(s) (or LED) of each EM on
available resources D, satisfying throughput requirement P
(line 4). Since all ML models in the ensemble must perform
the same number of inferences in parallel, they must be
deployed with reasonable numbers of replicas (or scales) to
ensure the throughput satisfies P .

• Step 3: Scoring each ED as ES (line 6). We estimate
consumer satisfaction with service quality/cost by applying an
objective function on the performance of the ED .

• Step 4: Selecting the optimal ED (line 10). With con-
sumer satisfaction quantified by a numerical value (ES ) for
all possible ED(s) of all EM (s) (in steps 1-3), we select the
optimal ED that achieves the highest ES .

1) Complexity of the naive algorithm: Let’s assume that
the ML provider has M = {m1, . . . , mm} ML models and
D = {d1, . . . , dd} types of resources. The consumers expect

TABLE I
VARIABLE DESCRIPTION IN ALGORITHM 1

Variable Description
EM Ensemble of ML models
ED Ensemble deployment - A specific deployment of an EM
LED List of ensemble deployments - List of ED(s)
ES Ensemble score - The score of an ensemble

the EEMLS to utilize a minimum of kmin to a maximum of
kmax ML models. Then, the complexity of the naive algorithm
depends on the two first steps. In Step 1, we must select
combinations of k ∈ {kmin , . . . , kmax} out of m models. The
number of possible EM (s) is

∑kmax

kmin

mCk. In Step 2, we must
estimate the number of replicas (referred to as scales) of ML
models within each EM and find all possible deployments of
these replicas on D, as distinct ED(s). Let S be a set of scales
of k ML models in an EM , we have S = {s1, . . . , sk} where
si is estimated as the minimum scale (in the worst-case) of
the model mi to satisfy the throughput requirement P . Note
that an ED is a specific deployment of an EM on specific
resources, so an ED is also a list of inference services. The
number of inference services in each ED will be

∑
S. With

d = |D| types of resources, the number of possible ED(s) for
each EM is d

∑
S . Combining Step 1 and Step 2, the total

ED(s) reaches approximately
∑kmax

kmin

mCk × d
∑

S .
2) Objective function: A significant challenge in EEMLS

optimization arises when managing trade-offs among mul-
tiple CDMs and service costs. In Step 3, we use an ob-
jective function to estimate consumer satisfaction with ser-
vice quality and cost. Output of the function is a number:
ES = quality score+cost score. We define quality score =∑

αi × f i
score(cdmi) and cost score = β× fcost

score(ml cost).
Here, cdmi is a CDM obtained by estimating the performance
of an ED (Section IV-B). The f i

score is a function that
maps values of cdmi to the range [0,1], reflecting consumer
satisfaction with the metric. This way, the quality score is
a quantification of the service quality from the consumer
perspective. In the cost score, fcost

score is also a function that
maps the service cost (ml cost in Section IV-C) to the range
[0,1], reflecting consumer satisfaction with the service cost.
Currently, we provide linear and logarithmic functions for the

3
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mapping (explained in Section IV-C). Consumers can specify
αi and β as weighted factors to prioritize the metrics or service
cost in their trade-offs. These weighted factors are currently
fine-tuned based on heuristic observations.

B. Estimating performance of an ensemble deployment

We need to evaluate the performance of individual ED(s)
to calculate the quality score and cost score. Before that,
we must identify and evaluate the performance of all possible
inference services (by deploying M on D as M×D). Any
ED including unqualified inference services will be excluded.
Since precise performance estimation of an ED can be chal-
lenging, we estimate performance in the worst scenario using
common aggregation methods (e.g., max , min , and average).
That ensures the performance of the ED(s) always satisfies
consumer requirements at runtime. The estimation results are
aggregated CDMs, indicating the performance of an ED when
combining certain inference services.

C. Estimating cost of an ensemble deployment

In our work, we only consider ml cost as the sum
of model cost (the cost of utilizing ML models) and
quality cost (the cost for certain inference quality, repre-
senting consumer satisfaction). Specifically, the model cost
is static and available on the marketplaces [5]. However, the
quality cost is dynamic, estimated based on metrics observed
on each inference and the current performance of associated
inference services. To estimate the quality cost , we map the
values of each cdmi to mValuei ∈ [0, 1], using a logarithmic
or linear function, illustrated in Fig. 4. The consumer and
provider will agree upon the mapping function, the expected
value range (maximum/minimum), and the maximum cost
(qCostmax

i ) that the consumer must pay for the quality in-
dicated by cdmi. The cost incurred by cdmi is qCost i, that
equals to qCostmax

i ×mValuei if cdmi needs to be maximized,
or qCostmax

i ×(1−mValuei) if cdmi needs to be minimized.
The qCost i being 0 indicates that the inference quality on
cdmi does not meet the consumer minimum requirement.
If the qCost i equals to qCostmax

i , the inference quality on
cdmi completely meets the consumer requirement. Eventually,
the quality cost of an inference is the sum of all qCost i
corresponding to all CDMs on all inference services.

D. Scale Reduction Algorithm

We notice that the reason for the rapid-expanding search
space in the naive algorithm is the increase of the scale S
when increasing P . Therefore, we present the scale reduction
algorithm to enhance the naive algorithm by reducing S.
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Fig. 5. The patterns of service quality and cost in OCAD.

In Step 2, we need to perform two tasks: estimating the
scale S and selecting resources to deploy the ML models.
To reduce the number of ED(s), we divide the scales of
all ML models by the minimum value in S. Specifically,
Sreduced = ceil(S/min(S)). For example, if S = {15, 20,
25, 22}, min(S) is 15 and Sreduced = ceil(S/15) = {1,
2, 2, 2}. We proceed with resource selection and calculate
the ES as usual with the new Sreduced . This way, we reduce∑

S = 82 to
∑

Sreduced = 7. Thus, the number of ED(s)
has decreased exponentially. After selecting the optimal ED ,
as the result is a list of inference services associated with
Sreduced , these inference services must be scaled up by a factor
of min(S) (used previously) to satisfy P . When we group
these inference services by their ML models, we obtain the
new scales as Sup = min(S) × Sreduced . Using the previous
example, Sup = {15, 30, 30, 30}. Then, the scales of most ML
models in Sup will be larger than their original versions in S,
causing throughput redundancy. Hence, for each ML model,
we remove redundant inference services in descending order
of ml cost . The remaining inference services are the output
of the Ensemble Optimization.

V. EXPERIMENTS

We conduct experiments with the OCAD running example
(Section II) on multiple devices of Raspberry Pi 4, Jetson
Nano, Jetson Xavier AGX, Beelink BT3, Thinkstation P620,
and VMs on GCP (Google Cloud Platform) with different
configurations. The dataset is open under our git repository1.

A. Experiment 1 - Evaluating the EEMLS via CDMs &
optimizing the EEMLS in real-time

We experiment with a consumer whose objective is to
maximize inference accuracy in classifying cars and minimize
the miss rate in misclassifying cars as trucks. We simulate
the dynamic input data by randomly changing the object
distribution (the number of images belonging to different
object classes within a specific period) every 10 minutes. Then,
we monitor the service cost and quality (via quality score).

1) Evaluating EEMLS: We evaluate the performance of
individual inference services from the consumer perspective.
In Fig. 5, we illustrate the service quality of the EEMLS
via the quality score. At the beginning, the service quality
is relatively low due to the use of randomly initialized ED
and insufficient monitoring data for the evaluation. Later, as
the EEMLS is optimized according to CDMs within a specific

1https://github.com/rdsea/ROHE/tree/main/datasets/UCC2024
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runtime context, the quality score remains consistently high
from the third data point. Then, the quality cost follows the
same pattern, optimized for consumer-specific objectives via
CDMs and reflecting consumer satisfaction.

2) Optimizing the EEMLS in real-time: In Fig. 6, we report
the number of possible ED(s) as the throughput requirement
(P ) increases. With larger P , the scales of ML models
increase, and the potential deployments across different types
of resources also multiply. This number in the naive algorithm
quickly reaches 1020. With the scale reduction algorithm,
the scales (S) of ML models in the ensemble are always
divided by the smallest scale. The sum of the reduced scales
(
∑

Sreduced) does not change considerably and has an upper
bound. That keeps the number of ED(s) under 105, allowing
our optimization to be performed frequently (short execution).

B. Experiment 2 - Optimizing EEMLS for individual con-
sumers based on consumer-specific objectives

This experiment has two consumers. The objective of Con-
sumer 1 is to maximize accuracy in classifying cars, maximize
confidence in classifying cars, and minimize the miss rate in
misclassifying cars as trucks. The objective of Consumer 2
is to maximize accuracy in classifying pedestrians, maximize
confidence in classifying pedestrians, and minimize the miss
rate in misclassifying pedestrians as riders. We compare our
optimization (Consumer-specific Optimization - CO) and the
Prevalent Optimization (PO) used in state-of-the-art EEMLS
platforms [2], [3]. The CO optimizes the EEMLS based on
consumer satisfaction with service quality via CDMs and
cost within specific runtime contexts, and PO optimizes the
EEMLS based on overall accuracy and cost. For simulating
real-world scenarios, we vary the object distribution to reflect
different time periods of a day when varying numbers of ob-
jects. The input object distribution changes every 10 minutes,
and the request frequency is 5 req/s. All metrics are evaluated
over the latest 1500 requests.

In Figs. 7 and 8, we illustrate the optimization effectiveness
for the two consumers on different metrics, observed from
CO (• marked lines) and PO (× marked lines). The overall
accuracy in both optimizations fluctuates as the object distri-
bution constantly changes. With EEMLS optimized based on
consumer-specific objectives, the overall accuracy in CO drops
several times for Consumer 1 because the input data has fewer
car images in those periods, but it remains higher than 0.965.
For Consumer 2, in the second half of the experiment, the
overall accuracy in CO even surpasses PO where pedestrians
dominate the distribution of the input data. Without consumer-
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Fig. 7. Compare optimization effectiveness of the EEMLS for Consumer 1
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Fig. 8. Compare optimization effectiveness of the EEMLS for Consumer 2
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specific objectives in PO, the risks of misclassifying are
significant. By varying weighted factors (αi and β), we achieve
different optimization effects with high accuracy in classifying
cars (Fig. 7) as well as pedestrians (Fig. 8) and reduce
miss rate(s) close to 0 after 10 minutes. Therefore, the CO
outperforms PO from the perspective of individual consumers.

VI. RELATED WORK

Evaluating the quality of inference services using CDMs:
In existing works, the optimization objectives are indicated
via common metrics [6]. Most studies, such as [7] and [8],
evaluate the quality of inference services based on throughput,
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response time, and resource utilization. Like our study, Cock-
tail [2] employs ensembles of ML models but only focuses on
accuracy and latency. Meanwhile, existing commercial plat-
forms supporting EEMLS, like Azure ML Studio [9] and AWS
Autogluon [10], support developers in monitoring end-to-end
metrics obtained from common ML tools/libraries. However,
the runtime contexts and metric aggregations have not been
addressed in the quality/cost evaluation. Similarly, frameworks
for MLaaS (e.g., Sinan [11], InFaas [12], and FrugalML [3])
limit the inference service quality to several common metrics.
Thus, high-level CDMs have not been supported. All above-
mentioned studies evaluate inference services for general pur-
poses using common metrics defined by the ML provider, so
they have not fully considered the consumer perspectives in the
evaluation. In contrast, our work allows consumers to define
high-level metrics within complex dependencies and contexts.
Optimizing the quality of EEMLS following consumer-specific
objectives: The most relevant works prior to ours are Cock-
tail [2] and FrugalML [3]. Specifically, Cocktail aims to reduce
deployment costs and latency with the trade-off in accuracy,
and FrugalML optimizes the ML utilization of multiple public
inference services with budget constraints. In other studies,
the service cost is estimated based on resource utilization
without considering consumer satisfaction with service qual-
ity [1]. MLaaS platforms like Clipper [13] and Sagemaker [14]
support ensemble ML serving with optimized latency and
resource utilization without considering ML-specific metrics.
Rafiki [15] is a framework focusing on the trade-off between
accuracy and latency. Many public ML services like Google
Vision [16] apply service costs for individual inferences,
but the cost is fixed regardless of consumer satisfaction and
runtime contexts. Here, we optimize the EEMLS by con-
sidering complex relations among multiple consumer-specific
objectives and service costs in diverse runtime contexts.

VII. CONCLUSION

Optimizing service quality for individual consumers is es-
sential for improving consumer satisfaction. However, this
raises significant challenges in evaluating and optimizing the
EEMLS, given the diversity of CDMs, ML models, and under-
lying computing resources within the edge-cloud continuum.
In this paper, we introduce a metrics specification and evalu-
ation engine to address these challenges. By this means, we
present an efficient algorithm for optimizing EEMLS, where
service costs are estimated based on consumer satisfaction
with the delivered service quality. That is a step towards
developing a comprehensive framework for EEMLS, ensuring
reliability in service quality for multiple consumers across
various domains while optimizing resource utilization for the
providers. This framework enhances the responsiveness of
EEMLS by enabling consumers to dynamically adjust/priori-
tize optimization objectives following varying contexts or serv-
ing conditions (e.g., in autonomous systems, manufacturing,
and other IoT domains). Since the current optimization still
depends on numerous configurations, assumptions about the
systems, and consumer requirements, that opens many poten-

tial research directions for our future studies in automation
optimization.
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