
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Vanhanen, Jari; Lehtinen, Timo O.A.; Lassenius, Casper
Software engineering problems and their relationship to perceived learning and customer
satisfaction on a software capstone project

Published in:
Journal of Systems and Software

DOI:
10.1016/j.jss.2017.11.021

Published: 01/03/2018

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Vanhanen, J., Lehtinen, T. O. A., & Lassenius, C. (2018). Software engineering problems and their relationship
to perceived learning and customer satisfaction on a software capstone project. Journal of Systems and
Software, 137, 50-66. https://doi.org/10.1016/j.jss.2017.11.021

https://doi.org/10.1016/j.jss.2017.11.021
https://doi.org/10.1016/j.jss.2017.11.021

The Journal of Systems and Software 137 (2018) 50–66

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Software engineering problems and their relationship to perceived

learning and customer satisfaction on a software capstone project

Jari Vanhanen

a , ∗, Timo O.A. Lehtinen

b , Casper Lassenius a

a Aalto University, Department of Computer Science, P.O. BOX 15400, FI-00076 AALTO, Finland
b Academy of Finland, P.O. BOX 131, FI-00531 Helsinki, Finland

a r t i c l e i n f o

Article history:

Received 20 June 2017

Accepted 5 November 2017

Available online 16 November 2017

Keywords:

Capstone project

Education

Learning

Customer satisfaction

Problems

Software engineering

a b s t r a c t

In educational projects, having students encounter problems is desirable, if it increases learning. However,

in capstone projects with industrial customers, negative effects problems can have on customer satisfac-

tion must be considered. We conducted a survey in a capstone project course in order to study problems,

learning and customer satisfaction related to eleven software engineering topics. On the average, students

working in the managerial roles learned quite a lot about each topic, and the developers learned moder-

ately, but the degree of learning varied a lot among the teams, and among the team members. The most

extensively encountered problems were related to testing, task management, effort estimation and tech-

nology skills. The developers contributed quite a lot to solving problems with technology skills, but only

moderately or less with other topics, whereas the managers contributed quite a lot with most of the top-

ics. Contributing to solving problems increased learning moderately for most of the topics. The increases

were highest with maintaining motivation and technology skills. Encountering problems with task man-

agement, customer expectations and customer communication affected customer satisfaction very nega-

tively. When considering both learning and customer satisfaction, the best topics to encounter problems

in were effort estimation, testing, and technology skills.

© 2017 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

In a capstone project, engineering students solve real-life prob-

lems in the context of a large, realistic project. As defined by

Fincher et al. (2001) the capstone project aims “to integrate and

consolidate acquired concepts and skills through use on project work ”.

Capstone projects are commonly recommended and used in engi-

neering education (ACM/IEEE CS, 2015; Pyster, 2009; Todd et al.,

1995).

We have organized a capstone project course in software devel-

opment at Aalto University for over two decades. On the course,

teams of 7–9 students carry out real projects for real customers

mostly from industry during a six-month time period. The learn-

ing process includes 1) conducting the necessary software engi-

neering tasks from understanding the customer’s problem to the

delivery of functional software, 2) getting feedback on the inter-

mediate and final results from the customer, and 3) reflecting on

the used work practices with the team’s mentor. The used software

∗ Corresponding author.

E-mail addresses: jari.vanhanen@aalto.fi (J. Vanhanen), casper.lassenius@aalto.fi

(C. Lassenius).

development process is iterative meaning that the working, feed-

back and reflection cycle is repeated several times. Real customers

increase the realism of the projects and the student motivation.

Unexpected challenges provide valuable learning opportunities that

can be discussed among the teams.

In recent years, we have started to think about the relationship

between learning and struggling with software engineering related

problems in the projects. For example, does learning about re-

quirements engineering challenges and practices suffer if the cus-

tomer can express her needs very clearly, or if a team’s men-

tor helps the team avoid all typical pitfalls in requirements engi-

neering. Industrial projects aim at maximizing customer satisfac-

tion, e.g., by avoiding problems as much as possible, whereas ed-

ucational projects should focus on maximizing learning. Capstone

projects with industrial customers need to focus on both learning

and customer satisfaction. In order to find dozens of real topic pro-

posals from industrial partners each year, the course must have a

good reputation among them. However, learning may be in con-

flict with customer satisfaction if problems increase learning but

decrease customer satisfaction. Thus, teachers of capstone project

courses could benefit from a better understanding of what kind

of problems students typically encounter in capstone projects, and

https://doi.org/10.1016/j.jss.2017.11.021

0164-1212/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2017.11.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.11.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jari.vanhanen@aalto.fi
mailto:casper.lassenius@aalto.fi
https://doi.org/10.1016/j.jss.2017.11.021
http://creativecommons.org/licenses/by/4.0/

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 51

how much the different problems affect students’ learning and

customer satisfaction.

In order to increase understanding of students’ learning and

customer satisfaction, and their relationship with software engi-

neering problems in the context of a capstone project, we con-

ducted a survey in our course. We focused on a select list of top-

ics based on a previous qualitative study, in which we gathered

hundreds of problems that our capstone project teams encoun-

tered during a previous run of the course (Vanhanen and Lehti-

nen, 2014). In this paper, we analyze how commonly the individual

students working in different roles and teams encounter certain

software engineering problems and how much they learn about

the studied topics. Furthermore, we analyze the effect of the prob-

lems on learning and on customer satisfaction. We conclude the

paper by analyzing the cost-benefit ratio of decreased customer

satisfaction and increased learning for the various topics in order

to identify for which topics struggling with the problems could be

recommended.

Section 2 summarizes previous research related to problems,

learning and customer satisfaction in capstone project courses, and

to measuring learning. Section 3 introduces the software capstone

project course at Aalto University. Section 4 presents the research

method. Section 5 presents and discusses the results of our study,

and the conclusions are drawn in Section 6 .

2. Related work

Below we discuss previous research about software engineering

problems, learning and customer satisfaction in capstone projects.

Furthermore, as measuring learning is in central role in our study,

we discuss the challenges related to it based on previous studies

on the topic.

2.1. Software engineering problems, learning and customer

satisfaction in capstone courses

The idea of learning through problems during a software de-

velopment project course is not new. Dawson (20 0 0) describes

a project course, where twenty dirty tricks were used to disrupt

the student’s progress. The tricks were realistic challenges related

to, e.g., requirements engineering, scheduling, work practices and

tools. Based on informal feedback the course has been very educa-

tional, but the paper does not compare the learning outcomes to a

setting where the desired problems are not encountered.

Previous empirical studies on encountered problems, students’

learning outcomes, or their mutual relationship in the context of

computer science capstone projects are rare, even though hundreds

of papers on capstone projects have been written. Dugan (2011) re-

viewed a sample of about 200 papers on capstone projects in com-

puting, but neither the learning outcomes nor the problems en-

countered by the project teams were among the common topics

that emerged from the reviewed papers. Some of the papers dis-

cussed the learning theory behind the course, but even they did

not evaluate the efficacy of the learning theory. Some customer

satisfaction related aspects (meeting the requirements, taking the

project into use, monetary savings from using the results) were

discussed related to the used course evaluation techniques.

In our own literature searches, we found a few studies on

capstone projects in computing that provide quantitative informa-

tion on the problems encountered, or on students’ learning (see

Table 1), but we were not able to identify any papers with data

about their relationship. Pournaghshband (1990) collected the five

most serious problems encountered by each of their project teams,

and lists the frequencies of the most common ones. All but one

of the most common serious problems were related to teamwork

and social issues, and the remaining one was related to testing.

Ahtee and Poranen (2009) list the frequencies of realized risks,

and Koolmanojwong and Boehm (2013) the frequencies of iden-

tified risks in their capstone projects. Risks can be considered as

problems for a project at least if they realize. In these papers, the

frequent risks included the lack of technology skills or lack of par-

ticipation by the students, and covered also quality assurance, re-

quirements engineering and scheduling.

Learning outcomes are seldom evaluated in detail in studies de-

scribing capstone courses in computing. Either the papers present

no data, or the data is on a general level, typically mention-

ing that the students considered the course very useful or edu-

cational. Mahnic (2012) asked the students to evaluate their im-

provement in eight different skills such as programming, project

planning and management, effort estimation, and team work on a

scale of 1–5, where five meant maximal improvement. The median

value of improvement was high (4) for practically all of the skills.

Bruegge et al. (2015) report on students’ improvement during the

course in ten skills such as programming, design and version con-

trol, and on the changes in improvement over a four-year time pe-

riod. During the latest run of the course, for each skill 70–84% of

students “agreed” or “strongly agreed” that their skills improved.

Broman et al. (2012) used an open question to survey the most

important things for professional life learned during their capstone

course. The most common answers mentioned by 6–10 of the 19

students were technical knowledge, time management, usefulness

of agile methods, team communication, and collaboration.

Previous studies about customer satisfaction seem to be even

rarer. Short remarks about the topic can be found in some capstone

project case studies. For example, Goold (2003) reports 80% suc-

cess rate over two years and 21 projects regarding schedule, scope

and quality. Lack of project monitoring and control is reported as

the main reason for the less successful projects. Clark (2005) re-

ports about a course where the clients evaluate the developed

software and the professionalism of the teams from several points

of view. The results indicate high customer satisfaction, but Clark

notes that the clients like to reward the students by giving full

marks when in most cases they are not warranted.

2.2. Measuring learning

Measuring students’ learning in a capstone course is compli-

cated. The scope of topics a student can potentially learn is huge

and can vary largely among the project teams, especially if each

team has a different project topic and the freedom to choose

their work practices, implementation technologies, and develop-

ment tools. Furthermore, for many topics the learning goal is to

achieve such a deep level of knowledge that a student is able to

apply the knowledge in her future projects. Measuring the achieve-

ment of such knowledge can be more difficult than, e.g., measuring

the knowledge of terminology.

Any standardized test of learning would have to contain very

high-level questions due to the differences among the projects, and

it would be difficult to come up with questions that would mea-

sure the deeper levels of knowledge. Furthermore, if a test is ar-

ranged only after the course or if the results of the project are

used as a measure of learning, it is not possible to differentiate

between what a student knew before the course and what she

learned during the course. Exams involving writing essays would

allow the assessment of deeper knowledge, but it would be labo-

rious to cover even the central areas of software engineering, and

difficult to evaluate the essays objectively.

A simple measure of learning that is commonly used in stud-

ies is to ask the students to evaluate their learning themselves.

Unfortunately, the reliability of that method is limited. In a meta-

synthesis of 22 meta-analyses the mean correlation between the

self-evaluation of ability and performance outcome was found to

52 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

Table 1

Previous studies on encountered problems and learning.

Study Sample Focus

Encountered problems by capstone teams

Pournaghshband (1990) 54 students, two courses The most common serious problems listed by the students were: poor communication

among the members (72% of students), poor leadership (61%), failure to compromise

(56%), procrastination problems (54%), integration testing problems (44%), lack of

cooperation (30%), lack of confidence (28%).

Ahtee and Poranen (2009) 76 projects, two instances of

the course

The most commonly realized risks were related to: tools and skills (61% of projects),

scheduling problems (61%), technology problems (53%), working and studying during

the project (45%), motivation level low (36%), illnesses and social problems (34%),

communication problems (32%), requirements (32%).

Koolmanojwong and

Boehm (2013)

86 teams, five instances of the

course

The most commonly identified risk categories were: 1. Architecture complexity, quality

tradeoffs, 2. Personnel shortfalls, 3. Budget and schedule constraints, 4. COTS and

other independently evolving systems, 5. Customer-developer-user team cohesion, 6.

Requirements volatility, 7. User interface mismatch, 8. Process quality assurance, 9.

Requirements mismatch, 10. Acquisition and contracting process mismatches.

Learning outcomes

Mahnic (2012) 52 students in 13 teams The median value of improvement in students’ skills was high (4) on scale 1–5 for

practically all of the skills that students evaluated: familiarity with agile approach,

programming, project planning and management, effort estimation, “big picture”

about software development process, team work, customer interaction, and

communication.

Bruegge et al. (2015) 178 students in 40 projects,

four instances of the course

After the latest instance of the course, 70–84% of students “agreed” or “strongly

agreed” for each of the studied skills (requirements engineering, system design,

modelling, programming, version control, release management, communication, team

work, presentation, demo management) that their skills improved.

Broman et al. (2012) 19 students The students listed technical knowledge, time management, usefulness of agile

methods, team communication, and collaboration as the most commonly learned

important things for professional life.

be 0.29 (Zell and Krizan, 2014). However, there is evidence that

students’ perceptions of learning might be more reliable when they

assess deeper, more practical learning, which is similar to the sce-

nario in capstone courses. In a study by Stehle et al. (2012), medi-

cal students’ perceptions of learning on a course did not correlate

(r = −0.10) with their results of a multiple-choice examination, but

correlated strongly (r = 0.50) with the results of a test where they

showed their practical skills with simulated patients or simulators.

3. The capstone project course

In the capstone project course at Aalto University, student

teams develop real software for real customers. When this study

was conducted, fifteen projects were carried out by teams of seven

to nine students. Below, we describe the various stakeholders and

roles involved, and the common software development process

used in all the projects.

3.1. Project stakeholders and roles

Each project team has four to six Bachelor-level students work-

ing as developers. The course is scheduled for the third (last) year

of their bachelor studies, and they have already studied many pro-

gramming and computer science courses, and an introductory soft-

ware engineering course.

Each project team has also three software engineering experts:

a project manager, a quality manager, and an architect. They are

typically Master-level software engineering students, who are par-

ticipating the course for the second time. They have already taken

the same capstone project course as developers, and thereafter

studied some advanced software engineering courses. However,

due to the limited number of the Master-level students some vol-

unteers among the Bachelor-level students also work in these roles.

The software engineering experts are responsible for project man-

agement, requirements engineering, quality assurance, and archi-

tectural design.

Each team may choose the three software engineering experts

and three developers themselves. The course staff assigns the re-

maining developers evenly to all the teams based on their skills

and interests. The course is a mandatory part of the studies for

practically all the participants. Their years of presence at the uni-

versity distributes quite evenly among three, four, five and more

than five years.

The teacher looks for the customer candidates before the course

begins. When the study was conducted, there were 26 topics avail-

able to be chosen by the fifteen teams. Most of the customers are

from the industry, but there are also some real topics available

from the university. During the projects, each customer actively

participates in the requirements definition work as well as moni-

tors the project progress. In the beginning of the project, the avail-

able effort is fixed to 125–200 h per student based on the cred-

its each student aims at. Therefore, the customer must prune the

scope of the project during the project according to the progress

of the team.

The course staff consists of the course teacher and several men-

tors, who are previous students of the course. Each mentor typi-

cally guides two teams in issues related to the software develop-

ment process. Before the projects begin, there are a few lectures

related to the course arrangements, topic presentations, and used

software development process. During the project the teacher ar-

ranges six experience exchange sessions, where individual students

from all of the teams can join to discuss on problems with a partic-

ular theme. The project evaluation is based on both the work prac-

tices used and the results achieved. All projects have three phases,

after which both the mentor and the customer gives their team

points and concrete feedback.

3.2. Software development process

All the teams must apply the same predefined software devel-

opment process framework. Some of the work practices have been

defined strictly due to their educational or critical nature, but for

many practices each team has a lot of freedom to customize them

into their particular project. Many teams work a lot in a collocated

manner having one to two weekly work sessions, but there are of-

ten some students who cannot attend all the sessions. A few teams

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 53

work mainly in a distributed manner, e.g., due to the incompatible

schedules of the team members.

All projects have three phases. Each phase ends in a project re-

view with all the stakeholders including the customer, the men-

tor and the course teacher. In the project reviews, the project re-

sults are demonstrated, used work practices are discussed, and

project status such as product quality and resource spending are

presented. Before the project reviews, the teams must conduct a

retrospective, where they analyze the used work practices.

The first phase lasts four weeks and focuses on setting up the

project. It typically includes getting to know the team, deciding

work practices, identifying the project goals, understanding why

the system is built and for whom, identifying the most important

requirements, identifying risks, drafting the architecture, choos-

ing the implementation technologies, and setting up the develop-

ment environment. During the first phase, the teams are required

to write a project plan and a requirements document. However,

documenting the individual requirements in detail is not required

before they are chosen for the implementation in the upcoming

phases.

The second and third phases last about six weeks and focus on

developing and delivering features. These phases must be split into

two or three sprints. Each sprint starts with sprint planning, where

the sprint goals, deliverables and tasks are planned together with

the customer. During each phase the teams aim at implementing,

testing and delivering software that fulfils the chosen requirements

to the customer.

Quality assurance is emphasized in the process framework.

Each team must identify the most important quality goals, and

choose and schedule the practices needed for achieving them.

There is much freedom in choosing the practices, but each team

must at least 1) prepare test cases for functional testing that cover

at least half of the implemented system requirements, 2) perform

a reasonable amount of unit level testing, 3) use a coding stan-

dard, 4) organize a code review for at least one critical component

of the system, and 5) arrange peer testing with one other team at

the end of the project using exploratory testing.

The process framework helps the teams define their devel-

opment process more quickly than from scratch. It also tries to

ensure that all teams get practical experience in using certain

software engineering practices that are aligned with the educa-

tional goals of the course. Some of the required practices or doc-

uments can be unnecessary for fulfilling the customer’s goals for

the project, but from the teacher’s point of view it is better to have

some overhead in the process, e.g. a risk management process, if it

provides valuable educational opportunities or decreases the rate

of totally failed projects.

4. Research method

4.1. Background

This study builds upon our previous study about the prob-

lems encountered on a previous run of the same capstone project

course (Vanhanen and Lehtinen, 2014). In that study, we conducted

2-hour-long retrospectives in eleven student teams twice during

their projects. As a result, we identified hundreds of concrete soft-

ware engineering problems encountered by the teams.

In this new study, we analyze problems, learning, and customer

satisfaction in the same course. We focus on eleven software en-

gineering topics (Table 2) with which problems were common ac-

cording to our previous study, as well as our experience over the

years. The selected topics cover most of the common software en-

gineering topics, leaving out mainly the pure programming work

where the problems are typically very project-specific due to the

different technologies used in the projects.

Table 2

The studied software engineering topics.

Topic Abbreviation

1. Gaining an understanding of the features desired

by the customer

Features

2. Gaining an understanding of the quality

requirements desired by the customer

Quality requirements

3. Managing the customer’s expectations of the

project scope

Customer’s expectations

4. Planning and performing the testing Testing

5. Getting all the developers reasonably skilled

with the implementation technologies

Technology skills

6. Managing the versions of the source code Version control

7. Estimating the effort of the project’s tasks Effort estimation

8. Managing which tasks to do next and how Task management

9. Communicating within the team Team communication

10. Communicating with the customer Customer communication

11. Maintaining the motivation of the team

members

Maintaining motivation

We used a questionnaire-based survey to collect the data. The

topics were made comprehensible to the respondents by giving

them simple, informative labels and by accompanying each of

them with 2–5 representative, concrete problems (Table 3) selected

from the data of the previous study.

4.2. Research goal and research questions

Our research goal is to better understand how much the stu-

dents learn from a capstone project, and whether struggling with

problems during the project affects their learning or customer sat-

isfaction. As we are particularly interested in the role of problems,

we focused on studying topics (Table 2) related to which students

are likely to encounter problems.

We pose four research questions:

• RQ 1. How much do the students struggle with problems in

their projects?

◦ RQ 1a. To what extent do the students encounter problems

in their projects?

◦ RQ 1b. How much do the encountered problems affect the

students’ work?

◦ RQ 1c. How much do the students contribute to solving the

encountered problems?
• RQ 2. How much do the problems affect learning?
• RQ 3. How much do the students learn?
• RQ 4. How much do the problems affect customer satisfaction?

In RQ 1 and RQ 2 we study the individual students, but in RQ

3 we study the differences in learning both among the individual

students and among the teams. In RQ 4, the analysis is done on

the team-level only, as customer satisfaction is a team-level metric.

For all research questions, we analyze how the student’s role as

a manager (project manager or quality manager) or a developer

(architect or developer) affects the results.

In RQ 1a, we separately study each of the 39 concrete problems

grouped under the eleven topics. In RQ 1b, RQ 1c, RQ 2 and RQ 3

the unit of analysis is a topic as a whole, and in RQ 4 we study

both the concrete problems and the topics.

In RQ 1, we study struggling with problems from three points of

view: encountering them, own work being affected by them, and

contributing to solving them. In RQ 2 and RQ 3, we study learn-

ing about the purpose, challenges and work practices related to a

topic. In RQ 2 and RQ 4, the effects of the problems are studied by

calculating the correlation between struggling with the problems

and learning or customer satisfaction.

54 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

Table 3

The extent of encountering problems. N dev = 88, N man = 26.

Scale: “not at all” (1) – “very much” (7)

Statistical significance of the difference between the roles based on Mann–Whitney U Test: ∗p < .05, ∗∗p < .01

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 55

4.3. Data collection

The study was conducted as a mandatory questionnaire-based

online survey with closed questions in the end of the projects. The

survey contained several questions, which were repeated on a sep-

arate page for each of the eleven topics. All the questions had the

same 7-point scale where only the extreme ends were labeled as

“not at all” and “very much”. The respondent had to choose one

of the seven points within the extreme ends, and there was no “I

don’t know” option available.

The questions asked regarding each topic were:

1 To what extent did you personally encounter the following

problems related to [topic X]?

◦ 2–5 concrete problems and a generic “Other problems with

[topic X]” line followed this question

2 Please, consider ALL the problems that your team encountered

with [topic X]:

◦ How much did these problems affect your own work?

◦ How much did you personally contribute to solving these

problems?

3 Please, consider the purpose, challenges and work practices re-

garding [topic X]:

◦ How much did you learn about this topic?

◦ How much expertise did you have about this topic before

the project?

Furthermore, we collected demographic data, including the stu-

dent’s team number, the role in the team, and the amount of pre-

vious IT work experience as years. The time spent on answering

each page was automatically recorded.

Of the 127 students on the course, 124 answered the questions,

giving a response rate of 97.6%. However, we excluded the data of

ten respondents because they clearly had used too little time for

reading the questions to be able to answer them honestly, resulting

in a final response rate of 89.8%.

Customer satisfaction was evaluated by the customer on a 15-

point scale, where 13–15 points meant “exceeds expectations ”, 10–

12 points meant “meets expectations ”, 7–9 points meant “slightly

below expectations ” and so on. The evaluation was conducted in

the end of the project in a discussion with the teacher, who tried

to unify the expectation levels and evaluation criteria among the

different customers.

4.4. Data analysis

We coded the responses of the main questions between 1 (“not

at all”) and 7 (“very much”). We analyzed the data quantitatively

using the IBM SPSS Statistics 23 software (IBM Corp., 2015). As

the data was on ordinal scale, and in many cases the distributions

were skewed, we analyzed medians instead of means. The me-

dians characterize the average student on the course better than

the means. Due to the ordinal scale, we also used non-parametric

methods. The relationships between the variables were analyzed

using Spearman’s rank correlation (r s). The statistical significance

of the various differences between the manager and developer

roles were analyzed using the Mann–Whitney U-test.

4.5. Limitations

We analyze the threats to the validity of our study using the

four aspects of the validity discussed by Runeson and Höst (2009) :

construct validity, internal validity, external validity, and reliability.

4.5.1. Construct validity

The limitations with the self-evaluation of learning were dis-

cussed in Section 2.2 . In our case, learning is mainly related to

the achievement of practical skills, which is a context where self-

evaluation can be more reliable than in general cases as found by

Stehle et al. (2012) .

Answering the questionnaire was a mandatory part of the

course, but the students were allowed to fill it online and unsu-

pervised. We expected that not all the students would take it seri-

ously, and therefore logged the time taken to fill the survey in or-

der to filter out responses that were most likely to be given with-

out reading the questions.

4.5.2. External validity

Our study focused on a pre-selected set of software engineering

topics. There are certainly also other relevant topics about which

the students learned, or with which the problems affected cus-

tomer satisfaction. Based on our study, it is not possible to say

anything about topics that we did not study.

The specific arrangements and contexts of capstone courses are

likely to affect how much the students encounter problems and

learn, and how much the various problems affect customer satis-

faction. Generalizing the results related to these variables should

be limited to courses that are similar enough to our course. We

believe that the most impactful similarities are related to the de-

velopment process used in the projects, and having real customers

for the projects. On the other hand, there is no clear reason why

the effect of struggling with problems on learning would be spe-

cific to our course, and thus those results could be generalizable to

many other capstone courses.

4.5.3. Internal validity

In our study, we examine the causal relationships of struggling

with problems to learning and customer satisfaction. While corre-

lation does not imply causation, it is not far-fetched to assume that

struggling with problems can facilitate learning or that encounter-

ing problems in a project can cause decreased customer satisfac-

tion. However, we acknowledge that there can be linking variables,

such as the amount of effort spent working with a certain activity,

which can affect both the amount of struggling with problems and

learning.

4.5.4. Reliability

In our study, the data analysis is not dependent on the re-

searcher as we had only quantitative data that was analyzed us-

ing statistical methods. However, there are concerns related to the

questionnaire.

In our questionnaire, all the main concepts (topic, problem, and

learning) were somewhat abstract, and we asked the respondents

to evaluate rather vague aspects related to them (the amount of

struggling with the problems in various ways, the amount of learn-

ing). When using a questionnaire, there is a risk that the respon-

dents do not understand the questions in the same way as the re-

searcher expects or that they do not possess all the information

necessary to answer the questions (Foddy, 1993). We tried to miti-

gate these risks by piloting and iteratively improving the question-

naire. We also tried to communicate the topics clearly by providing

clear labels and concrete sample problems for each topic.

Furthermore, in our questionnaire, the higher end of the re-

sponse scale used in all the main questions was not tied to any-

thing concrete, and the respondents could have interpreted “very

much” in different ways. With regard to learning we consid-

ered also an alternative formulation (“much more than on any

other course”). However, it may have been too modest a level for

the capstone course, and it would have also depended on which

courses each student had taken previously.

56 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

5. Results and discussion

5.1. Problems encountered

In RQ 1a we studied the extent to which the students en-

countered problems in their project. In the survey, each student

evaluated the extent she encountered each of the 39 problems

listed on the survey. The box plots of the responses are shown in

Table 3 grouped by the eleven topics. The most common problems

are bolded. The scale is “not at all” (1) – ”very much” (7). All the

“Other problems with [Topic X] ” items had low values (Mdn ≤ 3.0),

and have been excluded from the table.

The managers encountered 16 problems to a larger extent than

the developers whereas the developers encountered only five prob-

lems to a larger extent than the managers, when considering the

median values. This difference between the roles may reflect the

managers’ broader sense of responsibility of and participation to

the project especially when considering activities that are not di-

rectly related to programming. However, the distributions of the

responses for each problem are large, and the differences between

the roles are statistically significant only for two problems: 1) Con-

verting quality requirements into concrete tasks was difficult, and

2) Paid work overrode the course project.

The majority of the problems were not common (Mdn ≤ 3.0)

even though they were selected to the study because we knew

based on previous data (Vanhanen and Lehtinen, 2014) that they

had taken place at least in some teams. However, each problem

was encountered extensively by at least some individuals. The dif-

ferent project contexts and different areas of responsibilities within

the teams could explain the differences in encountering problems

among individuals.

Thirteen of the 39 problems were encountered more commonly

(Mdn ≥ 3.5 for the developers and/or managers). These problems

are spread among six of the eleven studied topics (see the bolded

lines in Table 3). Next, we list the most common problems grouped

by the topic, and discuss potential reasons for their commonness.

The reasons mentioned are speculative in the sense that we do not

have qualitative data to back them up. However, they are based on

our long-time experience in running the course.

Technology skills (topic 5) involves the most common problem

for both roles: the team members were inexperienced with the im-

plementation technologies. Its commonness is not surprising, be-

cause the projects often require the students to use technologies

(programming languages, web frameworks etc.) that have not been

taught in their previous courses, and only some of the students

have used them in their work or hobby projects. Furthermore,

in order to balance the competences among the teams, the team

forming process aims at assigning the least experienced students

evenly into all of the teams.

Testing (topic 4) involves five of the thirteen most common

problems. Problems in the attitude to testing and the amount of

testing as well as in selecting testing tools and practices were com-

monly encountered in both roles. The low amount of testing is

a likely consequence of the negative attitude to testing comple-

mented with the other problems that complicate performing test-

ing. The system being too unfinished for testing was a common

problem for the managers but less so for the developers. It can

be that the developers understand better that some forms of test-

ing, such as unit testing, can be done before the system or a fea-

ture is completely finished. Too general requirements for support-

ing testing was a common problem for the developers only. It can

be that the managers understood the requirements better as they

had more contacts with the customer. On the other hand, it may

be that the managers did not understand how concrete the re-

quirements need to be to support testing. Converting quality re-

quirements into concrete tasks under quality requirements (topic 2)

is also closely related to testing, and was a common problem for

both roles.

Effort estimation (topic 7) involves three of the most common

problems. These include poor estimates for tasks that have strict

quality requirements or that involve learning activities. Further-

more, estimation was considered an unhelpful activity. It may be

that in a fixed budget and fixed schedule project (or iteration)

where mainly critical features are implemented in the priority or-

der, the delivered software will be the same regardless of any at-

tempts to estimate the task efforts. Furthermore, in the course

projects it is quite common that a new team uses new technolo-

gies to develop a system to an unfamiliar domain using a new

development process making estimates very inaccurate. Therefore,

the developers may not see any benefits in trying to estimate the

tasks.

Task management (topic 8) involves two of the most common

problems. Started tasks remained uncompleted, and tasks were

planned on too general a level. The factors that complicate task

effort estimation can also complicate planning concrete tasks, and

if tasks are not concrete, they are also more difficult to complete.

Tasks remaining open may also indicate the lack of regular effort

invested in the project. We have often seen that some students or

even some teams increase their weekly effort to the project only

closer to the end of the phases or the end of the project, if ever.

Maintaining motivation (topic 11) involves one of the most com-

mon problems: paid work overrode the course project. It was very

common for the managers, but clearly less common for the devel-

opers (Mdn = 5.0 vs. Mdn = 3.0, p = .024). The reason for the large

difference can be that the managers were generally older students,

who had slightly more IT work experience in the end of the course

(Mdn: 2.0 vs. 1.0 years, averages: 2.4 vs. 2.0 years, t -test two-tailed:

p = .479).

None of the most common problems is related to the remaining

topics: features, customer’s expectations, version control, team com-

munication, and customer communication . It is surprising that the

problems related to the customer are rare. The most common cus-

tomer related problem is that the features were specified on too

general a level (Mdn = 3.0 for both roles). We expected that prob-

lems related to customer’s expectations and customer communica-

tion would be more common, but it may be that our actions in

recent years have somewhat decreased them. We have been able

to gather much more project topic proposals than there are teams,

which has meant that only the most committed customers have

found a team.

As a summary, only a few problems were encountered exten-

sively by a majority of the students. The most extensively encoun-

tered problems are mainly related to testing, task management and

effort estimation . Furthermore, inexperience with the implementa-

tion technologies under technology skills and paid work overriding

the course project under maintaining motivation were also among

the most extensively encountered problems. Similar problems were

reported also in previous studies (Pournaghshband, 1990; Ahtee

and Poranen, 2009; Koolmanojwong and Boehm, 2013) but any de-

tailed comparison among the studies is impossible due to the dif-

ferent problem classifications used in the studies.

5.2. Effect of the problems on own work and contribution to solving

them

Next, we look at the effect the problems had on the students’

own work, and the students’ contribution to solving the prob-

lems. In the survey, each student evaluated both of these aspects

for each topic considering all the problems encountered related to

the topic as a whole. The medians of the responses are shown in

Table 4 and the distributions in Fig. 1 . The problems affected the

managers’ work slightly more than that of the developers for al-

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 57

Table 4

Previous expertise, the effect of the problems on own work, problem solving contribution, learning, and correlation between problem solving contribution and learning.

N dev = 88, N man = 26.

Topic Previous expertise

Effect of the problems on

own work

Problem solving

contribution Learning

Correlation between problem solving

contribution and learning

Dev. Man. Dev. Man. Dev. Man. Dev. Man. Dev. Man.

Median Median Median Median Median Median Median Median r s p r s p

1. Features 3.0 ∗ 4.0 ∗ 3.0 ∗ 4.0 ∗ 4.0 ∗ 5.5 ∗ 5.0 ∗ 5.0 ∗ .36 .001 -0.04 .860

2. Quality requirements 3.0 4.0 2.0 ∗∗ 4.0 ∗∗ 4.0 ∗ 5.0 ∗ 4.0 ∗∗ 5.0 ∗∗ .46 .0 0 0 .08 .715

3. Customer’s expectations 3.0 ∗ 4.0 ∗ 2.0 ∗∗ 4.0 ∗∗ 4.0 ∗∗ 5.0 ∗∗ 4.0 ∗∗ 5.0 ∗∗ .36 .001 .46 .017

4. Testing 3.0 3.0 3.0 ∗∗ 4.5 ∗∗ 3.0 ∗∗ 5.0 ∗∗ 4.0 ∗ 5.0 ∗ .45 .0 0 0 .33 .097

5. Technology skills 3.0 3.0 4.0 3.0 5.0 ∗∗ 3.0 ∗∗ 5.0 ∗ 4.0 ∗ .55 .0 0 0 .38 .059

6. Version control 4.0 4.5 2.0 2.0 3.0 3.0 4.0 4.0 .29 .007 -0.02 .921

7. Effort estimation 3.0 3.0 3.0 ∗∗ 4.0 ∗∗ 3.0 ∗∗ 4.0 ∗∗ 4.0 5.0 .43 .0 0 0 .46 .019

8. Task management 3.0 4.0 3.0 3.0 4.0 ∗∗ 5.0 ∗∗ 4.0 5.0 .24 .026 .43 .029

9. Team communication 4.0 4.0 2.0 ∗ 3.5 ∗ 4.0 ∗ 5.0 ∗ 4.0 5.0 .17 .116 .40 .043

10. Customer communication 3.0 ∗ 4.0 ∗ 2.0 ∗∗ 3.0 ∗∗ 2.0 ∗∗ 5.0 ∗∗ 4.0 ∗∗ 5.0 ∗∗ .45 .0 0 0 .45 .022

11. Maintaining motivation 3.0 4.0 2.0 ∗ 3.0 ∗ 3.0 ∗∗ 4.5 ∗∗ 4.0 ∗∗ 5.0 ∗∗ .31 .003 .58 .002

All topics 3.0 ∗∗ 4.0 ∗∗ 2.0 ∗∗ 3.0 ∗∗ 4.0 ∗∗ 5.0 ∗∗ 4.0 ∗∗ 5.0 ∗∗ .39 .0 0 0 .35 .0 0 0

Scale: “not at all” (1) – “very much” (7)

Statistical significance of the difference between the roles based on Mann–Whitney U Test: ∗p < .05, ∗∗p < .01

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

kro
w n

wo no tceffE

Developers

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

Managers

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

gnivlos ot noitubirtnoC

Topic

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11
Topic

% of students: 50% 30% 10%

1. Features
2. Quality requirements
3. Customer’s expecta�ons

4. Tes�ng
5. Technology skil ls
6. Version control

7. Effort es�ma�on
8. Task management
9. Team communica�on

10. Customer communica�on
11. Maintaining mo�va�on

Fig. 1. The distributions of the effect of the problems on own work and contribution to solving them. N dev = 88, N man = 26. Scale: “not at all” (1) – “very much” (7).

most all topics. However, the effects were rather small for both

roles, with the medians being 3.0 vs. 2.0. The managers also con-

tributed more than the developers to solving the problems (me-

dian 5.0 vs. 4.0). The differences between the roles are statisti-

cally significant for almost all topics with both aspects (Table 4).

The differences between the roles support our conception that the

managers have a more wide-ranging sense of responsibility of and

participation in the project, in particular related to non-technical

topics.

5.2.1. Effect of the problems on students’ own work

The developers’ work was affected the most by problems re-

lated to technology skills (Mdn = 4.0), but for the other topics their

work was not affected much (2.0 ≤ Mdn ≤ 3.0). The distributions

58 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

(see Fig. 1) show that technology skills clearly differs from the other

topics by having the highest number of developers whose work

was affected a lot by the problems, and the lowest number of

developers whose work was not affected at all. The distribution

is also the most even one among all topics and ranges over the

whole scale. It means that the differences among the developers

were largest with this topic. As mentioned in Section 5.1 , inexpe-

rience with the implementation technologies and various testing

related problems were the most common problems encountered

by the developers. If a developer is not capable of performing pro-

gramming tasks adequately, it naturally has a major effect on the

work. Fortunately, the skills generally did not remain insufficient

throughout the projects (see Table 2).

The managers’ work was affected most by problems re-

lated to testing (Mdn = 4.5), but all other topics followed closely

(3.0 ≤ Mdn ≤ 4.0) except version control (Mdn = 2.0). As mentioned

in Section 5.1 , testing involved the highest number of the most

commonly encountered problems. The strong effect of the test-

ing related problems is probably related to both the large number

of the encountered problems and the fact that poor quality really

gets the project manager and quality manager embarrassed when

demonstrating the software to the customer at the end of a sprint.

It is interesting to note that even though both the developers

and managers encountered problems related to testing to a large

extent (see Section 5.1), the developers considered being affected

by them clearly less than the managers. Combined with the find-

ing that the developers clearly took the testing tasks less seriously

than the coding tasks (see Table 2), it seems that the developers

did not care about software quality as much as the managers.

5.2.2. Contribution to solving the problems

The effect of the encountered problems to a student’s own work

and her contribution to solving them correlate moderately. When

considering all the topics as a whole, the Spearman correlation

for the developers is 0.44 (p < .001) and for the managers 0.56

(p < .001). These correlations indicate that the students contribute

more to solving problems that affect their own work than other

problems.

The developers contributed most (Mdn = 5.0) to solving the

problems with technology skills . It is the only topic where the de-

velopers’ contribution was higher than that of the managers. The

developers contributed least (Mdn = 2.0) to solving problems re-

lated to customer communication , which is typically a topic that the

managers are mainly responsible of in these projects.

The managers contributed quite a lot to solving problems en-

countered with most of the topics, medians being 4.5–5.5. Their

contribution was low (Mdn = 3.0) only for two topics: technology

skills, and version control . The reason for the low contribution can

be that the problems encountered with these two topics did not

affect much the managers’ work, and they are the most technical

topics among the studied topics.

Both the managers and developers encountered estimation re-

lated problems to a high degree, and their work was affected by

them, but neither the managers nor developers contributed much

solving these problems. It may be that the students did not ex-

pect that such problems would affect the project results, and did

not consider estimation an important activity. The activity was still

done and problems were encountered, because the course’s pro-

cess framework enforced the students to estimate task efforts due

to educational purposes.

5.3. Learning

In RQ 2, we studied the effect of problems on learning. In RQ 3,

we studied how much the students learned related to each topic.

In the survey, we defined learning as covering the purpose, chal-

lenges and work practices related to a topic. We asked the students

about their perceived learning related to each topic on the scale

“not at all” (1) – “very much” (7).

5.3.1. Effect of the problems on learning

There is a moderate, statistically significant Spearman correla-

tion (0.29 ≤ r s ≤ 0.58) between learning and problem solving con-

tribution for most of the topics and both roles as shown in Table 4 .

These correlations are stronger than the ones between learning

and being affected by the problems (r s = 0.39 vs. r s = 0.13 for the

developers, and r s = 0.35 vs. r s = 0.26 for the managers, when con-

sidering all the topics as a whole). They are also stronger than be-

tween learning and encountering problems, both when considering

individual problems and aggregated problems of a topic. Thus, it

seems that the students learned more if they contributed to solv-

ing problems and were not only affected by them. However, as

the correlations between learning and problem solving contribu-

tion are only moderate or smaller for each topic, some other fac-

tors than struggling with problems also affected learning. For ex-

ample, just working on a topic, even without encountering explicit

problems, could have caused learning. Unfortunately, we did not

collect data on this factor, and cannot analyze its relationship with

learning.

Problem solving contribution increased learning most with

maintaining motivation (r s = 0.58, p = .002 for managers) and tech-

nology skills (r s = 0.55, p < .001 for developers). On the other hand,

for three topics the correlation is close to zero for the managers.

These topics are features, quality requirements , and version control .

For the developers, the weakest correlation is 0.17 (p = .116) related

to team communication .

Based on the quantitative data it is impossible to say why con-

tributing to solving problems increased learning more for any par-

ticular topic than for others. Features and quality requirements may

be topics, which require lots of attention from the managers in ev-

ery project, and therefore the managers may learn a lot of them

whether or not they encounter explicit problems related to these

topics. On the other hand, motivation and technology skills may not

get much attention in an inherently highly motivated and tech-

nically competent team, and learning about these topics may be

higher in projects where they involve explicit problems.

5.3.2. Amount of learning

Generally, the managers learned quite a lot about each topic

median per topic being typically 5.0, and the developers learned

moderately median being typically 4.0. Similar high levels of learn-

ing in capstone courses were reported in other studies (Mahnic,

2012; Bruegge et al., 2015). The developers learned more only

about technology skills , and both roles learned the same amount

about features and version control . Many of the differences in learn-

ing between the roles are statistically significant (Table 4).

It is interesting that the managers learned more than the devel-

opers about the studied topics, even though they had already done

the capstone project once as developers. It must be noted that the

studied topics are biased toward areas where the managers were

more involved than the developers. The developers worked mainly

with programming related activities that were not covered much

in this study, and they may have learned a lot about them.

The amount of learning varied only minimally among the top-

ics for both roles. For the managers, the only topics with a slightly

lower amount of learning (median of 4.0 instead of 5.0) are the

most technical topics: technology skills , and version control . This

is in line with the managers’ lower problem solving contribu-

tion with these topics. For the developers, the only topics with

a slightly higher amount of learning (median of 5.0 instead of

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 59

% of students: 50% 30% 10%

1. Features
2. Quality requirements
3. Customer’s expecta�ons

4. Tes�ng
5. Technology skil ls
6. Version control

7. Effort es�ma�on
8. Task management
9. Team communica�on

10. Customer communica�on
11. Maintaining mo�va�on

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

gninrael fo tnuo
mA

Topic

Developers

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11
Topic

Managers

Fig. 2. The distributions of learning. N dev = 88, N man = 26. Scale: “not at all” (1) – “very much” (7).

Fig. 3. The distributions of the teams’ learning. N teams = 15. Scale: “not at all” (1) – “very much” (7).

4.0) are features and technology skills . Minimal variation in learn-

ing among the topics is surprising as the effect of the problems on

learning varied among the topics. This means that for some reason

other factors affected learning less when the effect of the problems

on learning was higher.

5.3.3. Differences in learning among the students and among the

teams

The equal median values for learning about most of the top-

ics does not mean that an individual student learned the same

amount of all topics. Most of the students (84%) actually learned

a lot (≥ 6) at least about some topic. For each topic, the amount

of learning varied a lot among the students as can be seen in Fig.

2 . For both roles and most of the topics, the interquartile range is

2.0–3.0 units and the responses distribute to the whole scale from

“not at all” to “very much”. The only topics with a smaller distribu-

tion are the managers’ learning of features and quality requirements .

For these topics, the majority of the managers learned quite a lot

(≥ 5), and the proportion of responses under 4 was particularly low

compared to the other topics. It can be that understanding what

is to be done in a project is something that almost every project

manager and quality manager must be deeply involved in when

software is made for an external customer. The other customer re-

lated topics (customer’s expectations, customer communication) have

some lower responses for learning, which may be because a couple

of customers participated less actively to the project than the other

customers.

The amount of learning varied a lot also among the teams. A

team’s amount of learning is defined here as the median of the

team members’ amount of learning, and thus emphasizes more

the learning of the developers (about six per team) than that

of the managers (two per team). For many topics there was a

team or teams where the majority of the students learned a lot

(6.0 ≤ Mdn ≤ 7.0), but also totally opposite teams (2.0 ≤ Mdn ≤ 3.0)

as can be seen in Fig. 3 .

Each team has a unique profile w.r.t. learning of the topics. The

profiles of three example teams are shown in Fig. 4 to character-

ize the differences. We can see that Team 2 learned about most

of the topics less than the other two teams. We can also see that

the topics about which each team learned most, are different for

each team. For example, Team 4 learned very much about features

and version control . On the other hand, Team 14 learned a lot about

technology skills , but only little about testing and customer commu-

nication .

The large differences in learning among the teams are likely to

be due to the unique nature of each project (e.g. customer, do-

main, technologies, team members), which means that different

activities were emphasized in each project. For example, in some

projects it may have been difficult to understand what features

the system should have whereas in other projects the technical

60 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

Fig. 4. The learning profiles of three example teams. Scale: “not at all” (1) – “very much” (7).

% of students: 50% 30% 10%

1. Features
2. Quality requirements
3. Customer’s expecta�ons

4. Tes�ng
5. Technology skil ls
6. Version control

7. Effort es�ma�on
8. Task management
9. Team communica�on

10. Customer communica�on
11. Maintaining mo�va�on

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

esitrepxe
suoiverP

Topic

Developers

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11
Topic

Managers

Fig. 5. The distributions of the students’ previous expertise. N dev = 88, N man = 26. Scale: “not at all” (1) – “very much” (7).

implementation work may have been the most difficult part. Fur-

thermore, with the customer related topics or with testing, only a

couple of students may have taken the main responsibility, and the

median of the team members’ learning was low.

The amount of learning varied also even among the develop-

ers of the same team. The detailed responsibilities and interests

of each student within a team may cause these differences. For

example, backend and front-end developers may have had differ-

ent amounts of customer communication needs during the project,

which may have affected learning of that topic.

5.3.4. Previous expertise and learning

We expected that the amount of previous expertise with a topic

may affect the amount of learning, see Fig. 5 . However, for most of

the topics for both roles the correlations between the amount of

learning and previous expertise of a topic are small (r s < |0.3|) and

not statistically significant. Thus, in general the differences in pre-

vious expertise do not explain the differences in learning. It can

be that it is always possible to learn more about software engi-

neering topics, or that the generally low expertise of the students

(Mdn = 3.0) did not yet limit the potential for learning more.

However, there are three exceptions where the correlation be-

tween learning and previous expertise is moderate and statistically

significant (p < .01): version control for both roles (r s = −0.37 for

developers, r s = −0.50 for managers), and testing (r s = 0.30 for de-

velopers). All the students, but especially the managers, learned

either quite a lot or only a little about version control (Fig. 2). It

is a topic where the use of a tool is in a central role. A possible

explanation for the negative correlations could be that those who

were already familiar with the used Git tool perhaps did not learn

much and vice versa. Testing ends up quite often being the respon-

sibility of only one or two students at least what comes to setting

up advanced testing tools, or performing other levels and types of

testing besides unit testing. A possible explanation to the positive

correlation between learning and previous expertise about testing

could be that students who already knew more about testing vol-

unteered to take the responsibility of testing, and thereby learned

more about it than the other team members.

5.4. Effect of the problems on customer satisfaction

In RQ 4, we studied the relationship between the problems and

customer satisfaction. Each customer gave a satisfaction score on

a 15-point scale at the end of the project. The distribution of the

given points was very even — between 12 and 15 points — except

for a team, whose client was rather disappointed, which received

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 61

only 9 points. Below, we analyze the relationship between encoun-

tering problems and customer satisfaction, both at the level of in-

dividual problems and topics.

5.4.1. Correlations between the problems and customer satisfaction

We analyzed the relationship between the problems and cus-

tomer satisfaction at the team level, since customer satisfaction

was a team-level metric. We defined the extent to which a team

encountered a problem as the median value among the team

members’ encounter with the problem.

There are twenty problems for which the correlation between

a team’s encounter with the problem and customer satisfaction is

statistically significant (p < .10) at least for the managers or de-

velopers (bolded in Table 5). All of these correlations are at least

moderate (|r s | > 0.40), and almost all are negative meaning that en-

countering problems decreases customer satisfaction. The only ex-

ception is the problem that effort estimation was considered as an

unhelpful activity. It has a positive correlation (r s = 0.54, p = .039)

with customer satisfaction. In this context, estimation may really

be an unhelpful activity, and it may be that the more enlight-

ened students understand this, whereas the other students only

follow course instructions without questioning their benefits for

the project.

5.4.2. Correlations between the problems related to each topic and

customer satisfaction

As learning was studied per topic, we analyze also the effect

of the problems on customer satisfaction per topic. Above we de-

fined the extent a team encountered a problem as the median of

the team members’ encounter with the problem. Here we use the

median among a team’s encounter with each of the problems re-

lated to the topic. The extent that the teams encountered prob-

lems with each topic and their correlation with customer satisfac-

tion are shown in Table 6 . For many topics, the correlations are

weak meaning that the problems with those topics did not have

much effect on customer satisfaction. However, for three topics,

the correlations are stronger than |0.5| and statistically significant

(p < .05) for either or both roles (bolded in Table 6). These topics

are task management, customer communication , and customer’s ex-

pectations . Below we discuss these three topics in more detail.

Problems related to task management decreased customer sat-

isfaction if the developers (r s = −0.84, p < .001) or the managers

(r s = −0.66, p < .008) encountered them. All the concrete problems

related to task management have a strong negative correlation with

customer satisfaction (Table 5). The strongest correlations are re-

lated to inadequate project management tool and tasks remaining

uncompleted. For both roles these two problems have the strongest

correlation (|r s | > 0.70) among all the problems of all the topics.

Tasks remaining uncompleted may mean that a team defines too

large or unclear tasks that are difficult to close. However, it may

also be an indicator of a more critical problem where a lazy team

uses only a proportion of the allocated effort to progress the tasks,

which would be a more likely explanation for the strong negative

effect on customer satisfaction. The strong effect of poor project

management tool is surprising and we do not have any explana-

tion for it. The teams chose the tools they used themselves and

there were many different tools used.

Problems related to customer communication decreased cus-

tomer satisfaction if the developers encountered them (r s = −0.68,

p = .005). All the concrete problems related to customer communi-

cation have a strong negative correlation with customer satisfac-

tion, if the developers encountered them (Table 5). The correlation

is strongest for delaying communicating negative issues to the cus-

tomer (r s = −0.64, p = .011). Such a behavior may decrease possibil-

ities for making corrective actions or for lowering the customer’s

expectation level during the project, and thus decrease customer

satisfaction in the end of the project.

Problems related to customer’s expectations decreased customer

satisfaction if the developers (r s = −0.47, p = .075) or the managers

(r s = −0.52, p = .046) encountered them. Someone from the team

promising too much for the customer and Other problems with

the topic both have a moderate correlation with customer satis-

faction for both roles (Table 5). Furthermore, customer satisfaction

suffered if the developers encountered the problem that the cus-

tomer expected too low effort for the features, but not if the man-

agers encountered it. It may be that the managers did not under-

stand so well the required effort either, and did not identify this

problem so reliably. All these problems show that customer sat-

isfaction is not only about what you deliver but how that relates

to the customer’s expectations. A team can either increase or de-

crease these expectations during the project.

5.5. Cost-benefit ratio of the problems

5.5.1. Overview

From the teacher’s point of view decreased customer satisfac-

tion is the main cost of problems in capstone projects whereas

increased learning is the only benefit of problems. We define the

costs of problems as the correlation between the extent a team

encountered problems with a topic and customer satisfaction. The

benefits are defined as the correlation between a student’s con-

tribution to solving problems related to a topic and the student’s

learning of the topic. The cost-benefit ratio of struggling with the

problems is shown in Fig. 6 separately for each topic and role. Top-

ics close to the upper-right corner have a strong positive effect

for learning but only a weak negative effect for customer satisfac-

tion whereas the lower-left corner represents the opposite situa-

tion. Below, we list the best and most harmful topics for struggling

with problems, and discuss how common they are in our course.

5.5.2. Good problems

The best topics to struggle with problems are effort estimation,

testing , and technology skills which are educational for both roles,

and do not decrease customer satisfaction more than a little at

most. Furthermore, problems related to quality requirements are ed-

ucational to the developers and do not decrease customer satisfac-

tion when either of the roles encounters them. Problems related

to customer communication are educational to both roles, but only

the managers should struggle with them, or otherwise customer

satisfaction decreases a lot. Below we analyze how much the stu-

dents struggled with these good problems, and give some ideas

on how the course arrangements may support encountering these

problems.

Contribution to solving effort estimation related problems was

moderate for both the developers (Mdn = 3.0) and the managers

(Mdn = 4.0). In our course, we require that each team estimates the

effort of all planned tasks in the beginning of each sprint. Gener-

ally the students comment that they don’t see much benefits from

estimation, and the situation is made worse as the estimates are

generally poor especially in the early phases of the projects. The

fact that the estimation problems do not affect customer satisfac-

tion at all supports also its perceived uselessness. However, it is an

important skill to learn for real projects, and struggling with es-

timation problems seems to increase learning about it, which jus-

tifies enforcing it on the course. If estimation was not enforced,

many teams might not do it at all.

The developers contributed somewhat (Mdn = 3.0) to solving

problems related to testing whereas the managers contributed

rather lot (Mdn = 5.0). Furthermore, for the managers the distri-

bution is bi-polar because in some teams only either the project

manager or the quality manager contributed a lot and the other

62 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

Table 5

The correlations between each team’s encounter with each problem and customer satisfaction. N teams = 15.

Topic Problem

Correlation between problem

encounter and customer satisfaction

Developers Managers

r s p r s p

1. Features The customer had poor understanding on the features that he or the users

needed

−0.33 .228 −0.44 .105

The customer had contradictory ideas −0.27 .323 −0.23 .410

The features were specified on too general a level −0.36 .192 −0.09 .739

Other problems −0.17 .548 −0.23 .417

2. Quality

requirements

First the customer wanted only features, but later started to require also

quality

−0.26 .353 .07 .813

The customer’s feedback of the realized software quality came late in the

project

−0.19 .486 −0.09 .751

Converting quality requirements into concrete tasks was difficult −0.05 .854 −0.02 .953

Other problems −0.26 .355 −0.04 .893

3. Customer’s

expectations

The customer expected too low effort for the features −0.17 .548 −0.48 .068

Someone from the team promised too much to the customer −0.54 .038 −0.40 .142

The customer had difficulties in prioritizing the requirements −0.26 .349 −0.16 .558

Other problems −0.46 .086 −0.59 .021

4. Testing Selecting the testing tools and practices was difficult −0.02 .958 .10 .736

The developers took the testing tasks less seriously than coding tasks −0.54 .039 −0.34 .209

The requirements were specified on too general a level for supporting testing −0.33 .234 .16 .562

For a long time, the system was too unfinished for testing −0.20 .483 −0.24 .385

The amount of testing was lower than planned −0.21 .4 4 4 −0.47 .080

Other problems −0.37 .179 −0.20 .482

5. Technology skills The team members were inexperienced with the implementation technologies .17 .554 .14 .628

The team members’ impl. technology skills remained insufficient throughout

the project

−0.20 .484 −0.31 .263

There was insufficient support within the team for learning the impl.

technologies

−0.47 .074 −0.03 .922

Other problems −0.14 .606 −0.27 .334

6. Version control Changes to the source code were overwritten by other team members −0.28 .315 .20 .483

Merging conflicting changes in the source code was laborious .25 .371 .15 .594

The practices for using the version control tool were inadequate −0.47 .079 −0.08 .769

Other problems −0.45 .096 −0.14 .610

7. Effort estimation Estimates for tasks that required learning activities were poor −0.28 .305 −0.13 .651

Implementing tasks with desired quality level required more effort than

estimated

−0.43 .107 −0.38 .160

Effort estimation was considered as an unhelpful activity .54 .039 .46 .084

Other problems −0.06 .821 −0.28 .306

8. Task

management

The backlogs were out-of-date −0.55 .033 −0.41 .124

The developers were unaware of their tasks −0.56 .031 −0.38 .157

The project management tool had inadequate support for the project −0.84 .0 0 0 −0.71 .003

The tasks were planned on too general a level −0.56 .032 .03 .909

Started tasks remained uncompleted −0.72 .002 −0.77 .001

Other problems −0.57 .028 −0.31 .260

9. Team

communication

There was lack of communication within the student team −0.37 .181 −0.19 .494

There was no comm. channel that would have been followed by all team

members

−0.47 .079 −0.27 .326

The use of a foreign language caused difficulties for communication −0.22 .438 −0.04 .899

The meetings were inefficient −0.27 .327 −0.35 .206

Other problems −0.33 .237 −0.25 .369

10. Customer

communication

The customer was slow in responding to team’s questions −0.49 .066 −0.63 .012

The team delayed communicating negative issues to the customer −0.64 .011 −0.09 .753

Other problems −0.59 .020 −0.31 .257

11. Maintaining

motivation

The team members ignored the agreed work practices −0.41 .127 −0.43 .108

The team members avoided taking responsibility −0.28 .316 −0.36 .188

Paid work overrode the course project −0.18 .519 −0.04 .897

Team building activities were insufficient −0.58 .022 −0.49 .066

The team members lacked motivation −0.32 .246 −0.48 .070

Other problems −0.38 .161 −0.36 .185

one only little. In our course, we require that each team plans and

executes various testing activities on different testing levels (see

Section 3.2). We believe that the low contribution by the devel-

opers is due to their generally low participation to testing related

activities especially what comes to planning the testing and per-

forming other than unit testing. Such activities may end up being

the responsibility of either or both of the managers and only some

developer.

The developers contributed to solving problems related to tech-

nology skills rather lot (Mdn = 5.0) and it was more than they

did for any other problems (Table 5). Our course design where

most of the developers must use technologies that are unfamiliar

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 63

Table 6

The teams’ encounter with problems related to a topic, and correlation between problem encounter and customer satisfaction. N teams = 15.

Topic

Problem encounter

at the team level

Correlation between problem encounter

and customer satisfaction

Developers Managers Developers Managers

Median Median r s p r s p

1. Gaining an understanding of the features desired by the customer 2.25 2.25 −0.34 .213 −0.27 .334

2. Gaining an understanding of the QRs desired by the customer 2.25 2.50 −0.22 .441 .06 .832

3. Managing the customer’s expectations of the project scope 2.00 3.25 −0.47 .075 −0.52 .046

4. Planning and performing the testing 3.50 4.00 −0.27 .323 −0.20 .485

5. Getting all the developers reasonably skilled with impl. technologies 2.50 2.50 −0.29 .293 −0.25 .378

6. Managing the versions of the source code 2.25 2.00 −0.44 .100 .06 .829

7. Estimating the effort of the project’s tasks 3.50 4.00 −0.14 .614 −0.06 .822

8. Managing which tasks to do next and how 2.75 3.25 −0.84 .0 0 0 −0.66 .008

9. Communicating within the team 2.00 2.50 −0.32 .246 −0.39 .151

10. Communicating with the customer 2.00 2.00 −0.68 .005 −0.24 .388

11. Maintaining the motivation of the team members 2.00 ∗ 3.00 ∗ −0.38 .164 −0.46 .084

Scale: “not at all” (1) – “very much” (7)

Statistical significance of the difference between the roles based on Mann–Whitney U Test: ∗p < .05, ∗∗p < .01

Fig. 6. The cost-benefit ratio of struggling with problems related to the different topics.

to them forces encountering these problems. On the other hand,

the managers’ contribution to solving these problems was lower

(Mdn = 3.0) and it was the lowest of all the topics for them. For the

managers the distribution is bi-polar (Fig. 1) meaning that some

did contribute a lot but many contributed very little. Based on our

experience, we know that only some of the managers are tech-

nically competent or interested in the technology aspects in the

projects, and the differences in contribution may reflect this.

The developers contribute moderately (Mdn = 4.0) to solving

problems related to quality requirements . In our course, each team

is required to explicitly identify the main quality attributes of the

developed system early in the project. Thus, the teams pay at least

some attention to them during the project, and see challenges re-

lated to prioritizing them with the client and to ensuring their

achievement.

The managers contributed a lot (Mdn = 5.0) to solving problems

related to customer communication . In our course, real customers

with real problems are closely engaged in the projects through

the iterative development process. More detailed specification of

the features is done an increment at the time ensuring continuous

communication need with the customer.

5.5.3. Harmful problems

The worst situation is when the developers encounter problems

with task management (topic 8). Such problems decrease customer

satisfaction very much and don’t have much educational value. In

64 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

our course, the developers do not encounter them much, medi-

ans being ≤ 3.0 for all the problems (Table 3). When such prob-

lems take place, e.g., the developers don’t know clearly what they

should do next, the developers may end up doing less important

tasks, or nothing at all.

Encountering problems with customer expectations (topic 3) is

debatable because they are educational, but decrease customer sat-

isfaction quite a lot for both roles. The same applies for the man-

agers with task management (topic 8) and maintaining motivation

(topic 11), and for the developers with customer communication

(topic 10) .

5.6. Practical implications

Our results help the teachers of capstone project courses make

informed decisions on whether they should try to increase or de-

crease problems with a particular topic in their course. Preventing

all problems is impossible, but through well-designed course ar-

rangements and support to the students, something can be done.

Increasing problems artificially is easier to achieve.

We recommend that the decision on artificially increasing or

actively decreasing problems should be made per topic and it

should be based on 1) the main learning goals of the course, and

2) the cost-benefit ratio of struggling with the problems related to

the topic. If a topic is among the main learning goals of the course,

it may be justified to ensure that the students struggle with prob-

lems even if they had somewhat negative effect to customer sat-

isfaction as long as they are educational. On the other hand, if a

topic is not among the main learning goals and/or struggling with

problems has low educational value, the teacher should make all

she can do to prevent the problems.

However, one should be careful when using problems as a

learning mechanism. With most of the topics, solving problems

correlated only moderately with learning meaning that much of

learning is explained by other factors, such as just working around

a topic, and learning will take place even if no problems were en-

countered. We have seen how a single, difficult problem in some

area, such as motivation, may endanger the whole project. In such

a situation, a team must invest lots of effort and attention to a sin-

gle problematic topic, which means learning related to other topics

suffers. Problems that involve such a risk should be avoided in all

cases. Furthermore, even when the teacher tries to prevent some

problems, some teams will usually still encounter them. Sharing

the experiences of these unfortunate teams to the other teams can

increase and harmonize learning across the teams without sacri-

ficing customer satisfaction in all the teams. We have successfully

used experience exchange workshops on particular topics for in-

creasing learning.

Our results regarding learning show also that an idea of having

common learning goals for all students is unrealistic in a setting

with heterogeneous projects, and individual roles and responsibil-

ity areas. Rather, each student will have a unique learning experi-

ence whose match with her own learning goals depends on how

careful she is when choosing a project, and her own role and re-

sponsibilities in the team. This emphasizes the importance of hav-

ing each student pay attention to the desired learning goals in the

beginning of the course, and consider them when choosing the

team, role and responsibility areas in the project.

6. Conclusions and future work

This study aimed at increasing understanding of how much the

students learn and struggle with software engineering problems

in their capstone projects, and whether struggling with problems

affects their learning or customer satisfaction. These viewpoints

are important because capstone projects with industrial customers

need to focus on both learning and customer satisfaction. However,

if problems increase learning but decrease customer satisfaction,

they are conflicting goals.

The study was conducted as an online survey to all the 127 stu-

dents in our capstone project course, and the response rate was

89.8%. The questionnaire covered eleven software engineering top-

ics, and 39 concrete problems categorized under the topics. All

the questions related to learning and struggling with the problems

used the same response scale: “not at all” (1) – “very much” (7).

In RQ 1, we studied how much the students struggled with

problems in their projects. The majority of the studied problems

were not encountered commonly. For only 13 of the 39 problems

the median value for the encounter was ≥ 3.5 for the managers

and/or developers. These problems were mainly related to the

following topics: planning and performing testing, managing which

tasks to do next and how, and estimating the effort of the project’s

tasks . Furthermore, inexperience with the implementation tech-

nologies and paid work overriding the course project were also

among the most common problems. The managers struggled with

the studied problems slightly more than the developers. It can be

that the managers have a more wide-ranging sense of responsi-

bility of and participation in the project, in particular related to

non-technical topics.

The effect of the problems on the students own work were

rather low for both the managers (Mdn = 3.0) and developers

(Mdn = 2.0) when considering all the topics as a whole. The de-

velopers’ work was most affected by problems related to get-

ting the developers skilled with the implementation technologies

(Mdn = 4.0), but with the other topics their work was not af-

fected much by the problems (2.0 ≤ Mdn ≤ 3.0). The managers’

work was most affected by problems related to planning and per-

forming the testing (Mdn = 4.5), but all the other topics followed

close (3.0 ≤ Mdn ≤ 4.0) except managing the versions of the source

code (Mdn = 2.0).

Contribution to solving problems was moderate both for the

managers (Mdn = 5.0) and developers (Mdn = 4.0) when consider-

ing all the topics as a whole. The developers contributed most

(Mdn = 5.0) to solving the problems with getting the developers

skilled with the implementation technologies and least (Mdn = 2.0) to

communicating with the customer. The managers contributed quite

a lot to solving problems encountered with most of the topics me-

dians being 4.5–5.5. Their contribution was rather low (Mdn = 3.0)

only for two topics: getting the developers skilled with the implemen-

tation technologies, and managing the versions of the source code .

In RQ 2, we studied the effect of the problems on learning.

There was a moderate positive correlation (0.29 ≤ r s ≤ 0.58) be-

tween the amount of learning and problem solving contribution

for most of the topics and both roles. Thus, with most of the top-

ics the problems had a positive effect on learning. The correlations

were strongest for maintaining the motivation of the team members

(r s = 0.58, p = .002 for managers) and getting developers skilled with

the implementation technologies (r s = 0.55, p < .001 for developers).

On the other hand, for three topics there was practically no cor-

relation for the managers. These topics were gaining understanding

of the features and quality requirements , and managing the versions

of the source code . For the developers, the weakest correlation was

0.17 (p = .116) related to communicating within the team . The cor-

relations between learning and contributing to solving problems

were stronger than those between learning and being affected by

the problems meaning that the students learn more if they con-

tribute to solving problems instead of just being affected by them.

In RQ 3, we studied how much the students learned of each

topic. A vast majority of the students (84%) learned a lot (Mdn ≥ 6)

about at least some of the studied topics. When considering

all the topics as a whole, learning was moderate for both the

managers (Mdn = 5.0) and developers (Mdn = 4.0). The difference

J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66 65

between the roles is statistically significant (p < .01). Despite of the

varying effect of the problems on learning among the topics, the

median amount of learning varied only minimally among the top-

ics for each role. The managers learned slightly more than the de-

velopers from almost all the studied topics. The developers learned

more only about getting developers skilled with the implementation

technologies , and both roles learned the same amount about man-

aging the versions of the source code .

The amount of learning varied a lot among the students for

each topic. For both roles, the interquartile range is 2.0–3.0 units

for most of the topics. The amount of learning varied a lot

also among the teams. For many topics there was a team or

teams where the majority of the team members learned a lot

(6.0 ≤ Mdn ≤ 7.0), but also teams where the majority of the team

members learned only little (2.0 ≤ Mdn ≤ 3.0). Finally, the amount

of learning varied also among the team members even among

the students in the same role. The students’ previous expertise

with each topic was rather low (Mdn = 3.0) and did not affect the

amount of learning for most of the topics.

In RQ 4, we studied the effect of problems on customer sat-

isfaction based on the correlations between encountering prob-

lems and customer satisfaction. Customer satisfaction suffered

most when problems were encountered related to managing which

tasks to do next and how (developers: r s = −0.84, p < .001; man-

agers: r s = −0.66, p = .008). Problems related to communicating

with the customer decreased customer satisfaction also a lot,

but only when the developers encountered them (r s = −0.68,

p = .005). Problems related to managing customer’s expectations de-

creased customer satisfaction moderately both when the develop-

ers (r s = −0.47, p = .075) and the managers (r s = −0.52, p = .046)

encountered them. For most of the other topics, the correlations

are weak meaning that the problems with those topics did not

have a large negative effect on customer satisfaction.

Our results help the teachers of similar capstone project courses

make informed decisions on whether to increase or decrease prob-

lems with a particular topic. From the cost-benefit point of view,

the best topics to struggle with problems are effort estimation, test-

ing , and technology skills. They are educational for both roles and

do not decrease customer satisfaction more than a little at most.

Furthermore, problems related to quality requirements are educa-

tional to the developers and do not decrease customer satisfaction.

Problems related to customer communication are educational to

both roles, but if the managers struggle with them, customer satis-

faction decreases a lot. The worst case from the cost-benefit point

of view is when the developers encounter problems with task man-

agement , because then customer satisfaction decreases very much

and the problems are not even educational.

Further studies are needed to identify factors that cause the dif-

ferences in learning on the individual and team level. Then those

factors could be taken into account in course designs in order to

maximize learning for all the students. Relevant factors could in-

clude, e.g., 1) various project characteristics (customer, problem

domain), 2) the detailed responsibilities and interests of the stu-

dents that define the activities they focus on, and 3) the amount

and type of mentoring during the project. Further studies could

also try to understand why the effect of problems on learning

varies among the topics. For example, can it be that some top-

ics, such as understanding requirements, require careful attention

in most of the projects even if no explicit problems were encoun-

tered with the topic, but some other topics, such as maintaining

team’s motivation, can be ignored without negative consequences

in some teams.

References

ACM/IEEE CS Joint Task Force on Computing Curricula, 2015. Software Engineering

2014—Curriculum Guidelines For Undergraduate Degree Programs in Software
Engineering. IEEE-CS & ACM 2015 .

Ahtee, T. , Poranen, T. , 2009. Risks in students’ software projects. In: 22nd Confer-

ence on Software Engineering Education and Training, pp. 154–157 .
Broman, D. , Sandahl, K. , Abu Baker, M. , 2012. The company approach to software

engineering project courses. IEEE Trans. Educ. 55 (4), 445–452 .
Bruegge, B. , Krusche, S. , Alperowitz, L. , 2015. Software engineering project courses

with industrial clients. ACM Trans. Comput. Educ. 15 (4), 17 .
Clark, N. , 2005. Evaluating student teams developing unique industry projects. In:

7th Australasian Conference on Computing Education, pp. 21–30 .

Dawson, R. , 20 0 0. Twenty dirty tricks to train software engineers. In: 22nd Interna-
tional Conference on Software Engineering, pp. 209–218 .

Dugan, R.F. , 2011. A survey of computer science capstone course literature. Comput.
Sci. Educ. 21 (3), 201–267 .

Fincher, S. , Petre, M. , Clark, M. , 2001. Computer Science Project Work Principles and
Pragmatics. Springer-Verlag .

Foddy, W. , 1993. Constructing Questions for Interviews and Questionnaires: Theory

and Practice in Social Research. Cambridge University Press, Cambridge, UK .
Goold, A. , 2003. Providing process for projects in capstone courses. In: 8th An-

nual Conference on Innovation and Technology in Computer Science Education,
pp. 26–29 .

IBM Corp., 2015. IBM SPSS Statistics for Windows, Version 23.0. IBM Corp., Armonk,
NY .

Koolmanojwong, S. , Boehm, B. , 2013. A look at software engineering risks in a

team project course. In: 26th Conference on Software Engineering Education
and Training, pp. 21–30 .

Mahnic, V. , 2012. A capstone course on agile software development using scrum.
IEEE Trans. Educ. 55 (1), 99–106 .

Pournaghshband, H. , 1990. The students’ problems in courses with team projects.
SIGCSE Bull. 22 (1), 44–47 .

Pyster, A. , 2009. Graduate Software Engineering 2009 (GSwE2009): curriculum

guidelines for graduate degree programs in software engineering. Integrated

Software & Systems Engineering Curriculum Project. Stevens Institute of Tech-

nology .
Runeson, P , Höst, M. , 2009. Guidelines for conducting and reporting case study re-

search in software engineering. Empir. Softw. Eng. 14 (2), 131–164 .
Stehle, S. , Spinath, B. , Kadmon, M. , 2012. Measuring teaching effectiveness: corre-

spondence between students’ evaluations of teaching and different measures of
student learning. Res. High. Educ. 53 (8), 888–904 .

Todd, R.H. , Magleby, S.P. , Sorensen, C.D. , Swan, B.R. , Anthony, D.K. , 1995. A survey of

capstone engineering courses in North America. J. Eng. Educ. 84 (2), 165–174 .
Vanhanen, J. , Lehtinen, T.O.A. , 2014. Software engineering problems encountered by

capstone project teams. Int. J. Eng. Educ. 30 (6A), 1461–1475 .
Zell, E. , Krizan, Z. , 2014. Do people have insight into their abilities? A metasynthesis.

Persp. Psychol. Sci. 9 (2), 111–125 .

http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0011
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0019
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30271-6/sbref0020

66 J. Vanhanen et al. / The Journal of Systems and Software 137 (2018) 50–66

Dr. Jari Vanhanen is a university lecturer in software engineering with Aalto University, and has been the responsible teacher for the capstone software development project
course at Aalto University since 2001. He has a D.Sc. degree from Aalto University.

Dr. Timo O. A. Lehtinen is a science adviser at the Academy of Finland. He is a former postdoctoral researcher at Aalto University and his research work has focused on

software project retrospective methodologies and outcome. He has a D.Sc. degree from Aalto University.

Dr. Casper Lassenius is an associate professor at Aalto University. His current research interests include agile and lean software development, global software engineering,

and software quality assurance. He has a D.Sc. degree from Aalto University.

