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Isogeometric finite element analysis of mode I cracks within
strain gradient elasticity

Jarkko Niiranen1, Sergei Khakalo and Viacheslav Balobanov

Summary. A variational formulation within an H2 Sobolev space setting is formulated for
fourth-order plane strain/stress boundary value problems following a widely-used one parameter
variant of Mindlin’s strain gradient elasticity theory. A corresponding planar mode I crack
problem is solved by isogeometric Cp−1-continuous discretizations with NURBS basis functions
of order p ≥ 2. Stress field singularities of the classical elasticity are shown to be removed by
the strain gradient formulation.
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Introduction

Generalized continuum theories have been developed in order to include length scale
information lacking from the classical continuum theories by enriching classical strain
energy expressions essentially by either new independent variables of local nature (e.g.
micro-rotations in micro-polar theories) or by gradients of the classical variables of global
nature (e.g. strain gradients in strain gradient theories). In particular, length scale
parameters are introduced by both types of approaches.

Regarding fracture mechanics, unphysical singularities at crack tips realized in the
classical elasticity theory have been shown to be removed, or better regularized, within
the strain gradient elasticity theory (see, e.g., [1, 13, 6, 7, 4, 3, 12, 9]). Most of the
related results in literature have been, however, obtained by analytical or semi-analytical
methods and surprisingly few studies with numerical methods exist [4, 3, 12, 5].

In this contribution, isogeometric finite element methods, shown to be appropriate for
solving higher-order boundary value problems in the context of strain gradient theories
[10, 11], are applied for analyzing a plane mode I crack problem following a one parameter
variant of Mindlin’s strain gradient elasticity theory [8]. First, a variational formulation
for the adopted strain gradient model is recalled [10], and then some numerical results for
the crack problem are presented.
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Simplified strain gradient elasticity in plane

Let us first consider Mindlin’s strain gradient elasticity theory of Form II [8] giving the
virtual work expression over a body B ⊂ R3 in the form

δWint =

∫
B
σ : ε(δu) dB +

∫
B
τ

...γ(δu) dB, (1)

where : and
... denote scalar products for second- and third-order tensors, respectively.

The classical (second-order) Cauchy-like stress tensor σ : B → R3×3 is related to its
work conjugate, linear strain tensor ε : B → R3×3, defined as the symmetric (second-order)
tensor-valued gradient of the displacement field u : B → R3, through the generalized
Hooke’s law σ = 2µε + λtr εI, with Lame material parameters µ = µ(x, y, z) and λ =
λ(x, y, z), and I denoting an identity tensor. The (third-order) micro-deformation tensor
γ : B → R3×3×3 is defined by the strain gradient as γ = ∇ε, where operator ∇ denotes
the (third-order) tensor-valued gradient. The (third-rank) double stress tensor τ : B →
R3×3×3, in turn, is related to its work conjugate by a (sixth-order) constitutive tensor
involving, for centrosymmetric isotropic materials, a set of five material parameters g1 =
g1(x, y, z), ..., g5 = g5(x, y, z) giving the strain energy density in the form ((11.3) in [8])

W =
1

2
λεiiεjj + µεijεij + g1γiikγkjj + g2γijjγikk + g3γiikγjjk + g4γijkγijk + g5γijkγkji. (2)

A one-parameter simplified strain gradient elasticity theory, originally proposed by
Altan and Aifantis [2], reduces the strain energy density (2) to the form

W =
1

2
λεiiεjj + µεijεij + g2

(1

2
λεii,kεjj,k + µεij,kεij,k

)
, (3)

where the non-classical material parameter g describes the length scale of the micro-
structure of the material (g1 = 0, g2 = 0, g3 = g2λ/2, g4 = g2µ, g5 = 0). With constant
Lamé parameters, the double stress tensor then takes the form τ = g2∇σ. In general,
the gradient parameter can be assumed to be non-constant, i.e., g = g(x, y, z). In what
follows, however, g is assumed to be constant as usual.

For plane problems, with u = (ux(x, y), uy(x, y)) denoting now the in-plane displace-
ment vector, and ε and σ standing for the corresponding restrictions of the strain and
stress tensors, respectively, and ∇ now including partial derivatives with respect to x and
y only, the virtual work expression (1) takes the form

δWint =

∫
Ω

σ : ε(δu) dΩ +

∫
Ω

g2∇σ ...∇ε(δu) dΩ, (4)

where the constitutive relation σ = E ε is now defined by the symmetric and positive def-
inite (fourth-order) in-plane elasticity tensor E : Ω→ R2×2×2×2 following the generalized
Hooke’s law of the chosen plane elasticity model.

A variational formulation of the plane gradient elasticity problem corresponding to (4)
and the corresponding external energy reads as follows: for f ∈ [L2(Ω)]2, find u ∈ U ⊂
[H2(Ω)]2 such that

a(u,v) = l(v) ∀v ∈ V ⊂ [H2(Ω)]2, (5)
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where the bilinear form a : U × V → R, a(u,v) = ac(u,v) + a∇(u,v), and the load
functional l : V → R are, respectively, defined as

ac(u,v) =

∫
Ω

Eε(u) : ε(v) dΩ, (6)

a∇(u,v) =

∫
Ω

g2∇(Eε(u))
...∇ε(v) dΩ, (7)

l(v) =

∫
Ω

f · v dΩ. (8)

The trial function set U = {v ∈ [H2(Ω)]2 | v|ΓCs∪ΓCd
= u, (∇v)n|ΓCd

∪ΓFs
= w} consists

of functions satisfying the essential boundary conditions, with the given Dirichlet data
u and w, whereas the test function space V consists of [H2]2 functions satisfying the
corresponding homogeneous Dirichlet boundary conditions.

As proved in [10], the energy norm of the problem induced by the bilinear form is
equivalent to theH2-norm wheneverU = V , whereas symmetry, continuity and coercivity
of the bilinear form (for g > 0) guarantee the solvability of the problem. Furthermore,
for conforming Galerkin methods these results imply optimal error estimates [10].

Numerical results via isogeometric analysis

Let us analyze a mode I crack problem in plane with a NURBS discretization of order
p = 5 (see [10] for details) depicted in Fig. 1 (left). The stress distributions and crack
openings compared for the classical and strain gradient models demonstrate, in particular,
(1) the qualitative differences in the shapes of the openings and (2) the removal of the
stress singularity as illustrated in Figs. 1 and 2 (for two different parameter values). As a
conclusion, it should be noticed that the stress level in the strain gradient model is finally
determined by the value of the (experimentally validated) length scale parameter g.

Figure 1: (left) Problem setting and computational domain with a uniform mesh; (middle)
Shape of the crack opening; (right) Stress σyy along the crack line.

(a) g = 0 (b) g/a = 0.1 (c) g/a = 0.2

Figure 2: Stress σyy with the classical (a) and strain gradient (b,c) models.
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