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A B S T R A C T

Investigating tumor heterogeneity using single-cell sequencing technologies is imperative to understand how
tumors evolve since each cell subpopulation harbors a unique set of genomic features that yields a unique
phenotype, which is bound to have clinical relevance. Clustering of cells based on copy number data obtained
from single-cell DNA sequencing provides an opportunity to identify different tumor cell subpopulations.
Accordingly, computational methods have emerged for single-cell copy number profiling and clustering;
however, these two tasks have been handled sequentially by applying various ad-hoc pre- and post-processing
steps; hence, a procedure vulnerable to introducing clustering artifacts. We avoid the clustering artifact issues
in our method, CopyMix, a Variational Inference for a novel mixture model, by jointly inferring cell clusters and
their underlying copy number profile. Our probabilistic graphical model is an improved version of the mixture
of hidden Markov models, which is designed uniquely to infer single-cell copy number profiling and clustering.
For the evaluation, we used likelihood-ratio test, CH index, Silhouette, V-measure, total variation scores.
CopyMix performs well on both biological and simulated data. Our favorable results indicate a considerable
potential to obtain clinical impact by using CopyMix in studies of cancer tumor heterogeneity.

1. Introduction

A tumor typically consists of a collection of heterogeneous cell
populations, each having distinct genetic and phenotypic properties,
in particular, concerning the capacity to promote cancer progression,
metastasis, and therapy resistance (Eirew et al., 2015; Nowell, 1976).
Single-cell sequencing technologies (Gawad et al., 2016; Navin et al.,
2011; Shapiro et al., 2013; Zahn et al., 2017) provide an opportunity
to investigate the genomic profile of individual cells regarding both
single nucleotide variation (SNV) and copy number variation (CNV).
CNVs and SNVs are essential contributors to phenotypic variation
relating to health, and disease (Baslan et al., 2012; Lawson et al.,
2018). Although single-cell SNV profiling is hampered by experimental
imperfections such as drop-outs, copy number profiling, i.e., detecting
single-cell CNVs, is feasible, at least at coarser resolutions. Clustering
cells based on their copy number profiles improves understanding of
tumor subpopulations and tumor heterogeneity, issues bound to have
clinical relevance.

∗ Corresponding author.
E-mail address: negar.safinianaini@aalto.fi (N. Safinianaini).

Current single-cell datasets pose a wealth of computational chal-
lenges. As answers to some of those, methods have emerged for single-
cell copy number profiling and clustering; some methods infer cluster-
ing after copy number profiling, e.g., Garvin et al. (2015), Zahn et al.
(2017), Leung et al. (2017), Vitak et al. (2017), Zaccaria and Raphael
(2021), while a recent method, CONET (Markowska et al., 2022),
derives copy number profiles by post-processing in addition to a user-
defined sequence of breakpoints per cell. Unfortunately, these methods
perform single-cell copy number profiling and clustering sequentially
with various ad-hoc processes. The sequential approach is vulnerable to
artifacts since preprocessing decisions, typically irreversible, constrain
all later analyses. Even if each task performs optimally, the final
result may still fall short of the best possible performance (Blocker
and Meng, 2013). Another problem is when using HMMcopy (Shah
et al., 2006; Vitak et al., 2017; Zahn et al., 2017) for copy number
profiling–copy number profiles can naturally be modeled by a sequence
of latent variables forming Hidden Markov Models (HMMs)–that has
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Fig. 1. The overview of CopyMix for binary clustering: input 𝑦, cells’ reads; outputs 𝑞(𝑍) and 𝑞(𝐶), approximated posterior distributions resulting in clusters within 𝑦 with their
corresponding copy number profiles illustrated by heatmaps.

limitations such as requiring manual calibration of more than ten
parameters (Mallory et al., 2020). Moreover, as addressed recently
by CONET (Markowska et al., 2022), one should account for the fact
that copy number profiles are generated by a clonal process; however,
mixtures of Hidden Markov Models (MHMMs) (Smyth, 1997), a joint
inference alternative for performing the two biological tasks, consider
a different copy number profile per cell, thus lacking the clonal copy
number profiling.

By a joint inference solution, also motivated by future directions
of computational modeling in single-cell cancer genomics (Zhang and
Campbell, 2020), we propose a novel framework referred to as Copy-
Mix to alleviate three problems: (1) the sequential treatment of copy
number profiling and clustering; (2) the labor of HMMcopy parameter
tuning; (3) lack of clonal copy number profiling by MHMMs.

CopyMix performs the joint inference of copy number profiling and
clustering, and as to the best of our knowledge, no earlier work has
simultaneously performed these two tasks. Similarly, joint inference
has been considered for single-cell DNA methylation (Kapourani and
Sanguinetti, 2019; de Souza et al., 2020), single-cell SNV data (Roth
et al., 2016), and bulk chIP-seq data from several replicates (Zuo
et al., 2016). Due to the model-based treatment, CopyMix enjoys the
advantages of a fully probabilistic framework, such as transparency, un-
certainty measurements, and modeling flexibility. Copy number profiles
can naturally be modeled by a sequence of latent variables following a
Markov structure similar to the state-of-the-art methods using Hidden
Markov Models (HMMs) (Shah et al., 2006; Vitak et al., 2017; Zahn
et al., 2017). However, as addressed recently by CONET (Markowska
et al., 2022), one should account for the fact that copy number profiles
are generated by a clonal process; as mixtures of Hidden Markov
Models (MHMMs) (Smyth, 1997) consider a copy number profile per
cell, MHMMs lack the clonal copy number profiling. CopyMix, a biolog-
ically meaningful tangent of MHMMs, uses a novel mixture model with
components (expressing the clonal process as opposed to cell-specific
MHMMs) corresponding to clusters, each having a specific copy number
profile, revealing the copy number variation pattern behind each clus-
ter. We deploy a Bayesian treatment and infer all quantities of interest
using Variational Inference (VI) (Jordan et al., 1999), which typically
yields faster inference methods than methodologies like Markov chain
Monte Carlo sampling (Blei et al., 2017). Compared to Expectation-
Maximization (EM), VI has multiple advantages; e.g., it estimates the
posterior distributions rather than point estimates, protects against
over-fitting and allows for principled model selection, i.e., identifying
the optimal number of mixture components (Bishop, 2006). Finally, by

using graphs, our novel VI simplifies the normalization for the posterior
approximation of the HMM part, while earlier methods (McGrory and
Titterington, 2009) use complex solutions for the normalization part.

2. Material and methods

2.1. CopyMix

CopyMix1 is a probabilistic clustering method based on a mixture
model with components corresponding to clusters, each having a spe-
cific copy number profile modeled by a sequence of latent variables.
Similarly, as in Shah et al. (2006), Vitak et al. (2017), Zahn et al.
(2017), we assume that each latent copy number sequence is governed
by a discrete time-homogeneous Markov chain—this Markov chain
describes a sequence of possible copy numbers in which the probability
of each copy number, corresponding to a state, depends only on the
previous state in the sequence. Fig. 1 contains an overview of CopyMix;
the CopyMix inputs are sequences of read count ratios per genomic
bin, and the outputs are clusters of cells with their corresponding copy
number sequences (profiles).

Our input data, read count ratios (or read ratios), are assumed to be
GC-corrected—a necessary bias correction due to the dropping of read
coverage at the regions with extreme GC contents (Yoon et al., 2009).
The read counts are integers, and the GC-corrected read counts become
positive real numbers (read ratios) through the GC-correction process.
We consider read ratios over 𝑀 fixed, typically equal-sized, genomic
bins, as in Leung et al. (2017), Laks et al. (2019). We assume that the
read ratios follow a Gaussian distribution; for the details supporting
this choice, see Appendix F. Moreover, we presume that the read
ratios are emitted from a latent sequence of copy number states. The
probabilistic graphical model is illustrated in Fig. 2. The read ratios are
modeled as a Gaussian distribution with independent conjugate priors;
that is, the mean of the Gaussian follows a Gaussian distribution and
the precision of the Gaussian follows a Gamma distribution. 𝑌 denotes
the observable variables, read ratios per predefined bins, 𝐶 the latent
copy number states forming a Markov chain, and 𝑍 the latent cell-
specific cluster assignment variables. As shown in Fig. 2, each 𝑌 has
two levels of dependencies, which are reflections of the assumption that
the Gaussian distribution over the read ratios depends on a latent cell-
specific cluster assignment, 𝑍, and a corresponding latent copy number

1 For implementation, see https://github.com/negar7918/CopyMix/.
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Fig. 2. Probabilistic graphical model behind CopyMix is shown, where shaded nodes
are observed values, the unshaded ones are the latent variables, and the squares are
the hyperparameters; a posterior distribution over the values of the unshaded nodes
is approximated using Variational Inference. 𝑌𝑛𝑚 is an observed read count ratio from
cell 𝑛 and bin 𝑚; 𝐶𝑘𝑚, corresponds to a latent copy number state, where 𝐶𝑘 forms a
Markov chain; 𝜇𝑛, is a cell-specific rate; 𝑍𝑛 is a latent cell-specific cluster assignment
variable. Finally, 𝜋 and 𝐴𝑘, are the conjugate priors of 𝑍𝑛 and 𝐶𝑘𝑚 respectively, and
𝜌𝑘 is the initial probability.

state, 𝐶. Intuitively, a higher copy number should correspond to a
higher read ratio. We incorporate this belief in our model by defining
the mean of a Gaussian distribution as the product of copy number
state (𝐶𝑘𝑚) and cell-specific mean (𝜇𝑛). The use of the multiplicative
structure can be found in a recent work in which the mean is dependent
on copy number events by a multiplication operation (Malekpour et al.,
2018). This also implies that 𝜇𝑛 corresponds to the average sequencing
coverage for a haploid genome. Due to the multiplicative structure,
a copy number of zero produces the lowest mean, implying a copy
number deletion event. In what follows, our model is described in more
detail.

Let 𝑌𝑛𝑚 be the observed GC-corrected reads ratio of bin 𝑚 for cell 𝑛
for 𝑛 = 1,… , 𝑁 and 𝑚 = 1,… , 𝑀 , and 𝐘𝑛 = (𝑌𝑛1,… , 𝑌𝑛𝑀 ) be a vector of
observed data for cell 𝑛. The cluster membership of cell 𝑛 is indicated
by the hidden variable 𝑍𝑛 that takes values in [𝐾] = {1,… , 𝐾}. We
assume there are 𝐾 ≪ 𝑁 hidden copy number sequences, one for
each cluster. The variables 𝑍1,… , 𝑍𝑁 are independent following a
categorical distribution with 𝑃 (𝑍𝑛 = 𝑘) = 𝜋𝑘 and ∑𝐾

𝑘=1 𝜋𝑘 = 1. If
𝑍𝑛 = 𝑘 then the distribution of 𝐘𝐧 depends on the 𝑘th copy number
sequence, defined as 𝐶𝑘 = (𝐶𝑘1,… , 𝐶𝑘𝑀 ), with each 𝐶𝑘𝑚 taking values
in [𝐽 ] = {1,… , 𝐽}. We assume that 𝐶𝑘1,… , 𝐶𝑘𝑀 follows a discrete time-
homogeneous Markov chain with initial probabilities 𝜌𝑘𝑗 = 𝑃 (𝐶𝑘1 = 𝑗)
and transition probabilities 𝑎𝑘𝑖𝑗 = 𝑃 (𝐶𝑘𝑚 = 𝑗|𝐶𝑘𝑚−1 = 𝑖), 𝑖, 𝑗 ∈ [𝐽 ].
Consequently, given the cluster assignment and the corresponding copy
number sequence, 𝑌𝑛1,… , 𝑌𝑛𝑀 are independent with 𝑌𝑛𝑚 following a
distribution with parameters depending on the hidden true state at bin
𝑚 for cluster 𝑘, that is, 𝑌𝑛𝑚|𝑍𝑛 = 𝑘, 𝐶𝑘𝑚 = 𝑗. As assumed, the read ratios

follow Gaussian distribution, i.e., 𝐹𝑗 𝜇𝑛 ,𝜎2 (𝑌𝑛𝑚) =
1

𝜎
√

2𝜋
𝑒−

(𝑌𝑛𝑚−𝑗×𝜇𝑛 )2

2𝜎2 .
Note that one needs B-allele frequencies (BAF) to perform ploidy

estimation, and the methods not using BAF data apply restrictive
assumptions to select among many equally plausible solutions to esti-
mated ploidy (Zaccaria and Raphael, 2021); this may result in selecting
copy numbers that contradict the underlying allelic balance/imbalance.
In the Concluding remarks, we refer to allele-based CopyMix as a

Fig. 3. Probabilistic graphical model of the mixture of hidden Markov models.

future work. In the Results section, we account for chromosomal copy
numbers by assigning initial probabilities to the beginning of each
chromosome.

As aforementioned, MHMMs have another probabilistic graphical
model that is not suitable for our biological task here. That is, every cell
has a different copy number profile (sequence of 𝐶) assigned to it. The
MHMM model is illustrated in Fig. 3, and the most critical difference
to the probabilistic graphical model of CopyMix is that the sequence of
𝐶 is in the bottom plate 𝑁 while in CopyMix, the sequence of 𝐶 is in
the top plate 𝐾.

For the detailed derivation of our novel VI, see Appendix A, B, and
C.

2.2. Evaluation of clustering and copy number profile estimates

Here, we describe the metrics used in the Results section. We assess
the clustering performance of CopyMix using the well-accepted V-
measure (Rosenberg and Hirschberg, 2007), CH Index (Calinski and
Harabasz, 1974), Silhouette (Rousseeuw, 1987) and likelihood ratio
test. Total variation (Sirazdinov and Mamatov, 1962; Alison and Ed-
ward Su, 2002) is the metric that we use to evaluate CopyMix copy
number inference results.

One standard distance measure for comparing probabilities is total
variation that can be used to measure the distance between copy
number proportions (Zaccaria and Raphael, 2020). It is computed
by 𝑇 𝑉 (𝐶 , 𝐶 ′) = 1

2
∑

𝑚∈𝑀 |𝐶𝑚 − 𝐶 ′
𝑚| with two sequences 𝐶 , 𝐶 ′, where

𝐶𝑚 and 𝐶 ′
𝑚 are copy number probabilities at position 𝑚 obtained by

normalizing a sequence of copy numbers across the sequence. 𝑇 𝑉 is
zero when the similarity between sequence variations is highest.

3. Theory

In this section, we provide the novelty of our inference for the
HMMs. Instead of calculating the normalization term done previ-
ously (McGrory and Titterington, 2009) requiring complex calculations,
we treat the HMM as a graph with weights instead of probabilities.
Subsequently, the normalization is easily applied to the resulting graph
weights to convert them to probabilities.

We define graph 𝐺 = {𝑉 , 𝐸} where we have each vertex as 𝑉 =
{𝐶𝑚𝑗 ∶ 𝑚 ∈ 𝑀 , 𝑗 ∈ 𝐽} with weight 𝑤(𝐶𝑚𝑗 ) and each edge as 𝐸 =
{𝐶𝑚𝑗𝐶𝑚+1𝑗 ∶ 𝑚 ∈ 𝑀 , 𝑗 ∈ 𝐽} with weight 𝑤(𝐶𝑚𝑗𝐶𝑚+1𝑗 ). We define
quantities of forward, 𝜙𝑚𝑗 , and backward, 𝛽𝑚𝑗 , similar to HMM as below
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(the calculations are based on log 𝑞(𝐂𝑘)). Finally, we have the log of
Gaussian likelihood defined as

𝐷𝑛𝑚𝑗 = −1
2

[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

. (1)

𝑢𝑘(𝐂1∶𝑚−1, 𝐶𝑚 = 𝑗)

+
≈

𝑚−1
∏

𝑖=1

𝐽
∏

𝑠=1
exp

{

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

𝐸𝑞(𝜇𝑛),𝑞(
1
𝜎2

)(𝐷𝑛,𝑖,𝑠)
}I(𝐶𝑘𝑖=𝑠)

exp
{

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝜇𝑛),𝑞(
1
𝜎2

)(𝐷𝑛,𝑚,𝑗 )
}

𝐽
∏

𝑗=1
exp

{

E𝑞(𝝆𝑘)
(

log 𝜌𝑘𝑗
)

}I
(

𝐶𝑘1=𝑗
)

𝑚−1
∏

𝑡=2

𝐽
∏

𝑠=1

𝐽
∏

𝑖=1
exp

{

E𝑞(𝐚𝑘𝑖 )
(

log 𝑎𝑘𝑖𝑠
)

}I
(

𝐶𝑘𝑡−1=𝑖,𝐶𝑘𝑡=𝑠
)

𝐽
∏

𝑖=1
exp

{

E𝑞(𝐚𝑘𝑖 )
(

log 𝑎𝑘𝑖𝑗
)

}I
(

𝐶𝑘𝑚−1=𝑖,𝐶𝑘𝑚=𝑗
)

𝜙𝑚𝑗 =
∑𝐽

𝐶1=1
..
∑𝐽

𝐶𝑚−1=1
𝑢𝑘(𝐂1∶𝑚−1, 𝐶𝑚 = 𝑗) and 𝛽𝑚𝑗 =

∑𝐽
𝐶𝑚+1=1

..
∑𝐽

𝐶𝑀=1
𝑣𝑘(𝐂𝑚+1∶𝑀 , 𝐶𝑚 = 𝑗).

𝑣𝑘(𝐂𝑚+1∶𝑀 , 𝐶𝑚 = 𝑗)

+
≈

𝑀
∏

𝑖=𝑚+1

𝐽
∏

𝑠=1
exp

{

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝜇𝑛),𝑞(
1
𝜎2

)(𝐷𝑛,𝑖,𝑠)
}I(𝐶𝑘𝑖=𝑠)

𝑀
∏

𝑟=𝑚+1

𝐽
∏

𝑠=1

𝐽
∏

𝑖=1
exp

{

E𝑞(𝐚𝑘𝑖 )
(

log 𝑎𝑘𝑖𝑠
)

}I
(

𝐶𝑘𝑟=𝑖,𝐶𝑘𝑟+1=𝑠
)

𝐽
∏

𝑖=1
exp

{

E𝑞(𝐚𝑘𝑖 )
(

log 𝑎𝑘𝑗 𝑖
)

}I
(

𝐶𝑘𝑚=𝑗 ,𝐶𝑘𝑚+1=𝑖
)

Instead of using terminologies of transition and emission probabili-
ties, we formulate those as weights of the graph; 𝑤𝑘(𝐶𝑚𝑗𝐶𝑚+1𝑗 ) and
𝑤𝑘(𝐶𝑚𝑗 ) respectively. The initial transition probability can be defined as
𝑤𝑘(𝐶0𝐶1𝑗 ) assuming the source starts at 1. Notice that 𝑘 shows the clus-
ter to which the graph belongs. We can calculate forward and backward
using dynamic programming; having those values, we can compute
the two posterior probabilities of 𝑞𝑘(𝐶𝑚 = 𝑗) and 𝑞𝑘(𝐶𝑚−1 = 𝑖, 𝐶𝑚 =
𝑗), which are the expectations of the indicator functions; we then
normalized them by summing over all 𝑗 ∈ 𝐽 . The graph weights are:
𝑤𝑘(𝐶0𝐶1𝑗 ) = exp{E𝑞(𝝆𝑘)(log 𝜌𝑘𝑗 )

}

; 𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 ) = exp{E𝑞(𝐚𝑘𝑖 )
(log 𝑎𝑘𝑖𝑗 )

}

and 𝑤𝑘(𝐶𝑚𝑗 ) = exp{
𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝜇𝑛),𝑞(
1
𝜎2

)(𝐷𝑛,𝑖,𝑠)
}

. Note that

we skip writing 𝑖, 𝑗 , 𝑘 in the calculations to make them short and more
readable:

𝜙𝑚 =
𝐽
∑

𝐶1=1
..

𝐽
∑

𝐶𝑚−1=1
𝑢𝑘(𝐂1∶𝑚−1, 𝐶𝑚) =

𝐽
∑

𝐶1=1
..

𝐽
∑

𝐶𝑚−1=1
𝑢𝑘(𝐂1∶𝑚−2, 𝐶𝑚−1, 𝐶𝑚) =

𝐽
∑

𝐶1=1
..

𝐽
∑

𝐶𝑚−1=1
𝑢𝑘(𝐂1∶𝑚−2, 𝐶𝑚−1)𝑤(𝐶𝑚)𝑤(𝐶𝑚−1𝐶𝑚)

=𝑤(𝐶𝑚)
𝐽
∑

𝐶𝑚−1=1
𝜙𝑚−1𝑤(𝐶𝑚−1𝐶𝑚)

𝛽𝑚 =
𝐽
∑

𝐶𝑚+1=1
..

𝐽
∑

𝐶𝑀=1
𝑣𝑘(𝐂𝑚+1∶𝑀 , 𝐶𝑚)

=
𝐽
∑

𝐶𝑚+1=1
..

𝐽
∑

𝐶𝑀=1
𝑣𝑘(𝐂𝑚+2∶𝑀 , 𝐶𝑚+1, 𝐶𝑚) =

𝐽
∑

𝐶𝑚+1=1
..

𝐽
∑

𝐶𝑀=1
𝑣𝑘(𝐂𝑚+2∶𝑀 )𝑤(𝐶𝑚𝐶𝑚+1)𝑤(𝐶𝑚+1)

=
𝐽
∑

𝐶𝑚+1=1
𝛽𝑚+1𝑤(𝐶𝑚𝐶𝑚+1)𝑤(𝐶𝑚+1)

We now calculate the posteriors:

𝑞𝑘(𝐶𝑚 = 𝑗) =
𝐽
∑

𝐶1∶𝑚−1

𝐽
∑

𝐶𝑚+1∶𝑀

𝑞𝑘(𝐶1∶𝑚−1, 𝐶𝑚 = 𝑗 , 𝐶𝑚+1∶𝑀 )

=
𝐽
∑

𝐶1∶𝑚−1

𝑢𝑘(𝐂1∶𝑚−1, 𝐶𝑚 = 𝑗)
𝐽
∑

𝐶𝑚+1∶𝑀

𝑣𝑘(𝐂𝑚+1∶𝑀 , 𝐶𝑚 = 𝑗)

=𝜙𝑚𝑗𝛽𝑚,𝑗

𝑞𝑘(𝐶𝑚−1 = 𝑖, 𝐶𝑚 = 𝑗)

=
𝐽
∑

𝐶1∶𝑚−2

𝐽
∑

𝐶𝑚+1∶𝑀

𝑞𝑘(𝐶1∶𝑚−2, 𝐶𝑚−1 = 𝑖, 𝐶𝑚 = 𝑗 , 𝐶𝑚+1∶𝑀 ) =

𝐽
∑

𝐶1∶𝑚−2

𝑢𝑘(𝐂1∶𝑚−2, 𝐶𝑚−1 = 𝑖)𝑤(𝐶𝑚−1𝑖𝐶𝑚𝑗 )𝑤(𝐶𝑚𝑗 )

×
𝐽
∑

𝐶𝑚+1∶𝑀

𝑣𝑘(𝐂𝑚+1∶𝑀 , 𝐶𝑚 = 𝑗) =

𝑤(𝐶𝑚−1𝑖𝐶𝑚𝑗 )𝑤(𝐶𝑚𝑗 )𝜙𝑚−1𝑗𝛽𝑚,𝑗

𝑞(𝐶𝑘𝑚 = 𝑗) =
𝐽
∑

𝐶𝑘,1∶𝑚−1

𝐽
∑

𝐶𝑘,𝑚+1∶𝑀

𝑞(𝐶𝑘,1∶𝑚−1, 𝐶𝑘𝑚 = 𝑗 , 𝐶𝑘,𝑚+1∶𝑀 ) =

𝐽
∑

𝐶1∶𝑚−1

𝑢𝑘(𝐂1∶𝑚−1, 𝐶𝑚 = 𝑗)
𝐽
∑

𝐶𝑚+1∶𝑀

𝑣𝑘(𝐂𝑚+1∶𝑀 , 𝐶𝑚 = 𝑗) = 𝜙𝑘
𝑚𝑗𝛽

𝑘
𝑚𝑗 .

𝑞(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗) =
𝐽
∑

𝐶𝑘,1∶𝑚−2

𝐽
∑

𝐶𝑘,𝑚+1∶𝑀

𝑞(𝐶𝑘,1∶𝑚−2, 𝐶𝑘,𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗 , 𝐶𝑘,𝑚+1∶𝑀 ) =

𝐽
∑

𝐶1∶𝑚−2

𝑢𝑘(𝐂1∶𝑚−2, 𝐶𝑚−1 = 𝑖)𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 )𝑤𝑘(𝐶𝑚𝑗 )

𝐽
∑

𝐶𝑚+1∶𝑀

𝑣𝑘(𝐂𝑚+1∶𝑀 , 𝐶𝑚 = 𝑗) = 𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 )𝑤𝑘(𝐶𝑚𝑗 )𝜙𝑘
𝑚−1𝑖𝛽

𝑘
𝑚𝑗 .

𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 ) = exp{E𝑞(𝐚𝑘𝑖 )
(log 𝑎𝑘𝑖𝑗 )

}

(2)

𝑤𝑘(𝐶𝑚𝑗 ) = exp{
𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

𝐸𝑞(𝜇𝑛),𝑞(
1
𝜎2

)

(

𝐷𝑛,𝑚,𝑗
)}

(3)

𝑞(𝐶𝑘𝑚 = 𝑗) =
𝜙𝑘
𝑚𝑗𝛽

𝑘
𝑚𝑗

∑𝐽
𝑗=1 𝜙

𝑘
𝑚𝑗𝛽

𝑘
𝑚𝑗

(4)

𝑞(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗) =
𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 )𝑤𝑘(𝐶𝑚𝑗 )𝜙𝑘

𝑚−1𝑖𝛽
𝑘
𝑚𝑗

∑𝐽
𝑗=1 𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 )𝑤𝑘(𝐶𝑚𝑗 )𝜙𝑘

𝑚−1𝑖𝛽
𝑘
𝑚𝑗

(5)

It can be observed that the weights of the vertex and edge of the
graph are provided in Eqs. (2) and (3). Finally, the normalizations are
simply done in Eqs. (4) and (5) by merely dividing the graph weights
terms in the numerators to the summation of those.

4. Results

4.1. Experimental setup

4.1.1. Dataset
To adequately evaluate CopyMix, as opposed to earlier literature

lacking the evaluation against ground truth and hence subjective, we
conduct experiments on simulated data, where we have access to the
ground truth. We also evaluate CopyMix on two biological datasets:
ovarian cancer (DLP data obtained from https://zenodo.org/record/
3445364#.YegRmljMLzW) (Laks et al., 2019) and colorectal cancer
(CRC data) (Leung et al., 2017). The DLP data are ovarian cancer
single-cells generated using the DLP technology, a scalable single-cell
whole-genome sequencing platform. The DLP data are decomposed
into three cancer cell lines derived from the same patient, sourced
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Table 1
V-measure (clustering result %) and total variation (copy number inference result 0.0) for CONF 1 to CONF 18.
CONF 1 CONF 2 CONF 3 CONF 4 CONF 5 CONF 6
100% – 0.09 100% – 0.05 100% – 0.05 100% – 0.20 0% – 0.11 100% – 2.45

CONF 7 CONF 8 CONF 9 CONF 10 CONF 11 CONF 12
100% – 2.45 100% – 2.45 100% – 2.36 100% – 2.45 87% – 1.02 100% – .96

CONF 13 CONF 14 CONF 15 CONF 16 CONF 17 CONF 18
100% – 0.93 88% – 1.20 87% – 0.96 100% – 1.03 100% – 1.04 100% – 1

from one primary tumor, and two relapse specimens. Following the
original paper, Laks et al. (2019), we conduct experiments on the
891 cells that are GC-corrected, obtained by HMMcopy. The CRC data
contain single-cells belonging to primary and metastatic tumors, and
the copy number profiling has been performed by the original paper
by using Circular Binary Segmentation (CBS) change point detection
method—an alternative way to HMMs.

We simulate data under various clustering scenarios, varying the
number of clusters and copy number profiles. For details on the simu-
lated data, see Appendix D.

4.1.2. Experimental protocol
The VI framework allows for determining the number of clus-

ters (Bishop, 2006); we run VI with a maximum number of clusters,
and the framework results in zero probabilities for the extra clusters
not detected by VI. We run VI using 50 different random initializations,
as recommended by Blei et al. (2017). We choose the best VI run based
on the highest ELBO.

We compare the clustering results of CopyMix with the ground truth
using V-measure for simulated data. For biological data evaluation, V-
measure is used to compare our inferred clusters to the ones reported
in the original paper (Laks et al., 2019). In addition to merely com-
paring to the clustering result in the original paper, we examine if
the report in the original article reveals meaningful clusters; we obtain
this by calculating the CH Index (Calinski and Harabasz, 1974) and
Silhouette (Rousseeuw, 1987) metrics on the raw data. Next, we use the
likelihood ratio test to examine if null hypothesis (CopyMix) hypothesis
is rejected or not. Considering also SNV data, which are independent
from CNVs, we run the SNV-CopyMix on the DLP data. Finally, we run
Ginkgo (Garvin et al., 2015)–a state-of-art framework in copy number
based clustering of single-cells by using circular binary segmentation
method for copy number profiling–on the DLP data. For evaluating
copy number profiles, we calculate the distance between the inferred
and true copy number using total variation.

4.2. Experimental results

4.2.1. Simulated data
We evaluated the performance of CopyMix on 18 simulated dataset

configurations, see Fig. 4. In Table 1, we report V-measure for each
configuration. We can observe that CopyMix, except for CONF 5, has
a good clustering performance with V-measures ranging from 87% to
100%, Table 1. The exception, i.e., CONF 5, consists of two simulated
genomes where one is a whole-genome duplication (WGD) of the other,
a whole-genome duplication pair. Typically, when a genome undergoes
a whole-genome duplication, the copy numbers across the sequence
are scaled to a larger value, i.e., usually, diploid becomes tetraploid.
This issue of CopyMix in distinguishing the ploidy can be explained
partially by the notion of unidentifiability – inability to derive the true
labels in unsupervised learning – of the transition matrix in a Markov
chain (Murphy, 2012).

Another important observation from Table 1 is that Copymix is
robust w.r.t. increasing the number of clusters and the complexity of
copy number patterns. We, however, notice a possible limitation of
our purposeful modeling approach employed in CopyMix, i.e., each
bin for each cell has a mean equal to the product of the cell-specific

rate and the underlying latent copy number at that bin. Namely,
despite providing strength in differentiating clusters, the multiplicative
structure of copy number state and cell-specific rate can produce the
same means for different clusters, e.g., 2 × 4 = 1 × 8, where 2 and
1 are the copy numbers of two clusters, and 4 and 8 are two cell
rates corresponding to those two clusters, respectively; therefore, the
higher cell rates may not be assigned to the higher copy number states
because of this unidentifiability issue. The other source of clustering
error is when the clusters have too overlapping sequence patterns,
i.e., copy number profiles (CONF 14 and CONF 15 in Fig. 4). The
cluster-overlapping in CONF 16 to CONF 18 is less than in CONF 15,
hence perfect performance. As it may be hard to detect, we highlight
that CONF 17 and CONF 18 differ in CNV in the last third part of the
genome concerning clusters red and pink.

Regarding the run-time performance of CopyMix, we observed that
the run-time increases linearly by increasing the number of clusters.
For the 2, 3, 4, and 5 clusters, CopyMix run-time is 9, 11, 14, and 15 s,
given 32 CPU cores. The maximum increase is from 2 to 5 clusters,
which has a linear increase by a factor that is 1.6. The run-time is
constant for different numbers of cells as long as it is less than or equal
to the number of CPU cores (due to the parallelism of the Python code);
otherwise, if the number of cells is greater than the number of CPU
cores, then the run-time increases linearly by the proportion of the cells
and cores.

Finally, total variations between the true copy number and those
inferred by CopyMix are shown in Table 1. CopyMix reveals small
errors (distances to the ground truth copy numbers). However, we
observe that slightly larger errors begin to manifest by increasing the
number of clusters. Also, we notice that the error slightly increases
when there are many breakpoints in the copy number profiles (the blue-
colored genomes in CONF 6 to 10). This is because the possibility of
differing copy numbers increases as copy number breakpoints increase.

4.2.2. Biological data
We evaluated CopyMix on the DLP data (Laks et al., 2019), where

each genome is partitioned into 6206 bins (bin size of 500K). 2 The
clusters should agree with cell lines; no cluster contains cells from two
different cell lines. It turns out that CopyMix succeeds in clustering the
main clusters since the V-measure when comparing CopyMix clusters
with the cell lines is 98%. The V-measure of overall CopyMix clusters
based on those reported by the original clusters is 67%.

Using the LR test, the number of clusters, nine, reported by the
original paper is statistically nonsignificant, i.e., CopyMix as a null
hypothesis is favored over the method in the original paper. Assuming
that each cluster follows an empirical Gaussian distribution—the mean
and variance can be calculated by maximum likelihood estimate, nine
clusters result in a log-likelihood of −8980284.42, and CopyMix log-
likelihood is −9023905.94. The test results in 𝑝-value one, i.e., the
original likelihood, is negligibly higher than that obtained by CopyMix.

2 CopyMix performance improves when the sequence is longer (the smaller
the bin size, the longer the sequence) due to increasing the signal for the
Markov chain. However, the low coverage in the DLP data increases the noise
and missing data.
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Fig. 4. The datasets for CONF 1 to 18 are shown. CONF 1 to 5, CONF 6 to 10, CONF 11 to 13, and CONF 14 to 18 correspond to scenarios where 2, 3, 4, and 5 clusters are
color-coded, respectively.

Table 2 shows that CopyMix outperforms the original paper w.r.t.
clustering according to CH Index and Silhouette metrics. We also eval-
uated Silhouette for fewer clusters reported by the original paper; these
clusters are obtained according to the reported phylogenetic tree in the
original paper (Laks et al., 2019). Regarding Silhouette, even though
the CopyMix score, 0.49, is not the perfect score, it is far better than
those obtained by the method in the original paper. These metrics show

that the method in the original paper has detected overlapping clusters,
which is not sufficiently supported by the data. The SNV-CopyMix
did not detect more clusters due to shallow data; for the details, see
Appendix G. Despite the unchanging effect of the SNV inclusion for
the DLP data, there is generally motivation to combine the two signals;
new mutations and, subsequently, complex phenotypes can be caused
by combined CNV-SNV signals (Lobo, 2008; Freeman et al., 2006).
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Fig. 5. Copy number profiling comparison between the results from Navin (Leung et al., 2017) (LHS) and CopyMix (RHS) for both primary and metastatic clusters.

Table 2
CH Index and Silhouette for different numbers of clusters.

Method # of clusters CH index

Original Paper 9 462
Cell lines from Original Paper 3 623
CopyMix 4 𝟏𝟎𝟖𝟐

Method # of clusters Silhouette Description

Original Paper 9 0.06 Overlapping
clusters

Original Paper w/o 2 minor clones 7 0.21
Original Paper w/o 4 minor clones 5 0.25
CopyMix 4 𝟎.𝟒𝟗 Separated

clusters

It is important to emphasize that the clusters reported by the
original paper are not ground truth; hence, we cannot conclude that
any diverging result is poor.

Next, we compared CopyMix’s clustering results with those of
Ginkgo. See Appendix E for details on how CopyMix outperforms
Ginkgo.

To evaluate CopyMix on another biological dataset and against a
different method, a CBS-based method, we compared CopyMix to the
results of a pipeline (Leung et al., 2017): CBS-based copy number profil-
ing followed by a hierarchical clustering on CRC data. CopyMix clusters
the cells into primary and metastatic groups, perfectly matching the
corresponding primary and metastatic organs—V-measure is 1 w.r.t.
the cells found in the two organs (Leung et al., 2017). As shown in
Fig. 5, CopyMix detects the breakpoints (copy number changes) similar
to Navin, with an accuracy of 76%, using the breakpoint margin (of a
size corresponding to 5% of the sequence length).

Finally, to further justify our claim on the criticality of joint infer-
ence of copy numbers and clusters, we created a pipeline by running an
Expectation-Maximization algorithm for HMMs followed by performing
K-means clustering over the inferred copy numbers, resembling (Shah
et al., 2006; Vitak et al., 2017) but excluding their ad-hoc processes.
The result on the CRC data was poor in clustering (V-measure of 0.24),
while CopyMix gained a V-measure of 1. This result confirms that the
joint inference of copy number profiles and clustering is superior to the
sequential approach.

5. Concluding remarks

We introduced CopyMix, a novel mixture model to jointly perform
single-cell copy number profiling and clustering. CopyMix, while en-
joying the advantages of Bayesian inference, addresses the following
issues: (1) the sequential treatment of copy number profiling and single-
cell clustering, prone to introduce clustering artifacts; (2) the labor

of HMMcopy parameter tuning; (3) the lack of clonal copy number
profiling by MHMMs; (4) the complicated posterior approximation
when deriving VI for HMMs. We evaluated our approach on both
simulated and biological data, which indicated that CopyMix performs
well when estimating both single-cell clustering and the corresponding
copy number profiles.

CopyMix can be extended for phylogenetic inference, improving
clustering, and augmenting and refining the model. Designing an allele-
specific copy number based model can enrich the DLP results even
more, and, finally, modeling biallelic deletions and aneuploidy, in-
spired by the recently proposed CopyKat (Gao et al., 2021), is also a
biologically desirable task.
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Appendix A

In this Appendix, a short overview of VI for CopyMix is described.
As aforementioned, we let 𝜳 be the set containing all the unknown

model parameters, i.e., 𝜳 = {𝐀,𝝁, 𝜎2,𝝅}, where

• 𝐀 = {𝐀𝑘 for 𝑘 = 1,… , 𝐾} with 𝐀𝑘 = {𝑎𝑘𝑖𝑗 for 𝑖 = 1,… , 𝐽 and 𝑗 =
1,… , 𝐽};

• 𝝁 = {𝜇𝑛 for 𝑛 = 1,… , 𝑁};
• 𝜎2;
• 𝝅 = (𝜋1,… , 𝜋𝐾 ).
We, w.l.o.g., consider the initial probabilities, 𝜌𝑘𝑗 ’s, to be fixed and

known. We use the following prior distributions for the parameters in
𝜳 .

• 𝐚𝑘𝑖 = (𝑎𝑘𝑖1,… , 𝑎𝑘𝑖𝐽 ) ∼ Dirichlet(𝜦)
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• 𝜇𝑛 ∼ Normal(𝜃𝑛, 𝜏2𝑛 ). The conjugate prior concerning the mean of
a Gaussian distribution is Gaussian distribution.

• 1
𝜎2

∼ Gamma(𝛼 , 𝛽). The conjugate prior concerning the precision
of a Gaussian distribution is Gamma distribution.

• 𝝅 ∼ Dirichlet(𝜹)

In order to infer 𝜳 , the hidden states 𝐂 = {𝐂1,… ,𝐂𝐾}, and 𝐙 =
(𝑍1,… , 𝑍𝑛) we apply VI; that is, we derive an algorithm that, for
given data, approximates the posterior distribution of the parameters
by finding the Variational Distribution (VD), 𝑞(𝐙,𝐂,𝜳 ), with smallest
Kullback–Leibler divergence to the posterior distribution 𝑃 (𝐙,𝐂,𝜳 |𝐘),
which is equivalent to maximizing the evidence lower bound (ELBO)
given by

ELBO(𝑞) = E[log𝑃 (𝐘,𝐙,𝐂,𝜳 )
]

− E[log 𝑞(𝐙,𝐂,𝜳 )
]

. (A.1)

The main steps of our VI approach, for inferring 𝐙,𝐂, and 𝜳 , are
described below.

Step 1. VD factorization
We assume the following factorization of the VD:

𝑞(𝐙,𝐂,𝜳 ) =
[

𝑁
∏

𝑛=1
𝑞(𝑍𝑛)

][

𝐾
∏

𝑘=1
𝑞(𝐂𝑘)

][

𝐾
∏

𝑘=1

𝐽
∏

𝑖=1
𝑞(𝐚𝑘𝑖 )

][

𝑁
∏

𝑛=1
𝑞(𝜇𝑛)

]

𝑞( 1
𝜎2

)𝑞(𝝅).

(A.2)

Note that 𝑍 and 𝐶 are dependent in the model, which is meaningful
because the clustering is based on the copy number sequence C. In
the mean-field approximation, they are independent due to the mean-
field assumption for the factorization of the variational distribution.
However, the update equation for 𝑍𝑛 (explained later in the Appendix)
depends on the VD-based expected values of copy number states 𝐶𝑘 and
the update equation for 𝐶𝑘 depends on the VD-based expected values
of the clustering assignments.

Step 2. Joint distribution
The logarithm of the joint distribution satisfies log𝑃 (𝐘,𝐙,𝐂,𝜳 ) =

log𝑃 (𝐘|𝐙,𝐂,𝜳 ) + log𝑃 (𝐂|𝜳 ) + log𝑃 (𝐙|𝜳 ) + log𝑃 (𝜳 ). For details of the
calculations, see Appendix B.

Step 3. VD computation
We now derive a coordinate ascent algorithm for the VD; we derive

an update equation for each term in the factorization, Eq. (A.2), by cal-
culating the expectation of log𝑃 (𝐘,𝐙,𝐂,𝜳 ) over the VD of all random
variables except the one currently being updated (Bishop, 2006). See
Appendix B for the update equation of each term in Eq. (A.2).

Step 4. Summary of updates
We update the parameters of each variational distribution presented

in Step 3; for the details of the update equations and the CopyMix algo-
rithm, see Appendix B. A shorter version of the CopyMix algorithm is
shown in Alg. 1. As shown in lines 8 and 9 of Alg. 1, we emphasize that
the main output of CopyMix is the approximated posterior distributions
of cluster assignments and copy number states. Note that the update
equations in line 5 of Alg. 1 are performed sequentially motivated by
coordinate ascent (Tseng, 2001).

Appendix B

In this Appendix, the detailed VI derivations for CopyMix are pro-
vided. The logarithm of the joint distribution of 𝐘, 𝐙, 𝐂 and 𝜳 satisfies

log𝑃 (𝐘,𝐙,𝐂,𝜳 ) = log𝑃 (𝐘|𝐙,𝐂,𝜳 ) + log𝑃 (𝐂|𝜳 ) + log𝑃 (𝐙|𝜳 ) + log𝑃 (𝜳 ),

(B.3)

where

log𝑃 (𝐘|𝐙,𝐂,𝜳 ) =
𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝑍𝑛 = 𝑘)I(𝐶𝑘𝑚 = 𝑗) log𝐹𝜇𝑛𝑗 ,𝜎2 (𝑟𝑛𝑚)

Algorithm 1 CopyMix: a Variational Inference Algorithm
1: procedure estimate-posteriors(Y): ⊳ Y input is N sequences of length M
2: Assign priors hyperparameters
3: Initialise variational distributions parameters
4: repeat
5: Update variational parameters (using Step 4. Summary of updates)
6: until convergence of the ELBO in equation (A.1)
7: Output all posterior distributions including:
8: 𝑞(𝑍𝑛 = 𝑘) ∀𝑛, 𝑘; ⊳ cluster assignment probabilities
9: 𝑞(𝐶𝑘𝑚 = 𝑗) ∀𝑘, 𝑚, 𝑗; ⊳ copy number probabilities

10: return posterior distribution

=
∑

𝑛,𝑚,𝑘,𝑗
I(𝑍𝑛 = 𝑘)I(𝐶𝑘𝑚 = 𝑗)(−1

2
)

×
[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

, (B.4)

log𝑃 (𝐂|𝜳 ) =
𝐾
∑

𝑘=1

[ 𝐽
∑

𝑗=1
I(𝐶𝑘1 = 𝑗) log 𝜌𝑘𝑗

+
𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗) log 𝑎𝑘𝑖𝑗

]

, (B.5)

and

log𝑃 (𝐙|𝜳 ) =
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘) log𝜋𝑘 (B.6)

Moreover,

log𝑃 (𝜳 ) = log𝑃 (𝐀) + log𝑃 (𝝁) + log𝑃 ( 1
𝜎2

) + log𝑃 (𝝅),

where, if B is the multivariate Beta function, i.e.,

𝐵(𝒙) =
∏𝐾

𝑘=1 𝛤 (𝑥𝑘)

𝛤 (
∑𝐾

𝑘=1 𝑥𝑘)
,

log𝑃 (𝝁) =
𝑁
∑

𝑛=1

[

(−1
2
)
[

log(2𝜋 𝜏2) + (𝜇𝑛 − 𝜃)2

𝜏2
]]

, (B.7)

log𝑃 ( 1
𝜎2

) = [

−
𝛽
𝜎2

+ (𝛼 − 1) log( 1
𝜎2

)
]

+ 𝐶 , (B.8)

log𝑃 (𝐀) =
𝐾
∑

𝑘=1

𝐽
∑

𝑖=1

[

𝐽
∑

𝑗=1
(𝛬𝑗 − 1) log 𝑎𝑘𝑖𝑗 − log𝐵(𝜦)

]

, (B.9)

and

log𝑃 (𝝅) =
𝐾
∑

𝑘=1
(𝛿𝑘 − 1) log𝜋𝑘 − log𝐵(𝜹). (B.10)

Update equation for 𝜋: Since (B.6) and (B.10) are the only terms in
(B.3) that depend on 𝝅, the update equation 𝑞(𝝅) can be derived as
follows.

log 𝑞(𝝅)

= E−𝝅
(

log𝑃 (𝐘,𝐙,𝐂,𝜳 )
)

+
≈ E−𝝅

(

log𝑃 (𝐙|𝜳 )
)

+ E−𝝅
(

log𝑃 (𝝅)
)

=
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

log𝜋𝑘 + log𝑃 (𝝅)

=
𝐾
∑

𝑘=1
log𝜋𝑘

[

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

]

+
𝐾
∑

𝑘=1
log𝜋𝑘(𝛿0𝑘 − 1)

=
𝐾
∑

𝑘=1
log𝜋𝑘

[(

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

+ 𝛿0𝑘
)

− 1
]

.

Therefore, 𝑞(𝝅) is a Dirichlet distribution with parameters 𝛿 = (𝛿1,… ,
𝛿𝐾 ), where

𝛿𝑘 = 𝛿0𝑘 +
𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

. (B.11)

Computational Biology and Chemistry 113 (2024) 108257 

8 



N. Safinianaini et al.

Update equation for 𝑍𝑛: Since (B.4) and (B.6) are the only terms in
(B.3) that depend on 𝑍𝑛, 𝑞(𝑍𝑛) can be obtained as follows.

log 𝑞(𝑍𝑛)

= E−𝑍𝑛

(

log𝑃 (𝐘,𝐙,𝐂,𝜳 )
)

+
≈ E−𝑍𝑛

(

log𝑃 (𝐘|𝐙,𝐂,𝜳 )
)

+ E−𝑍𝑛

(

log𝑃 (𝐙|𝜳 )
)

Note that log𝑃 (𝐘|𝐙,𝐂,𝜳 ) and log𝑃 (𝐙|𝜳 ) can be written as the sum
of two terms, one that depends on 𝑍𝑛 and one that does not, i.e.,

log𝑃 (𝐘|𝐙,𝐂,𝜳 ) =
𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝑍𝑛 = 𝑘)I(𝐶𝑘𝑚 = 𝑗)(−1

2
)

×
[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

(B.12)

+
∑

𝑙≠𝑛

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝑍𝑙 = 𝑘)I(𝐶𝑘𝑚 = 𝑗)(−1

2
)
[

log(2𝜋 𝜎2) + (𝑟𝑙 𝑚 − 𝑗 𝜇𝑙)2
𝜎2

]

and

log𝑃 (𝐙|𝜳 ) =
𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘) log𝜋𝑘 +

∑

𝑙≠𝑛

𝐾
∑

𝑘=1
I(𝑍𝑙 = 𝑘) log𝜋𝑘.

Consequently,

log 𝑞(𝑍𝑛)
+
≈

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘)

{

E𝑞(𝝅)(log𝜋𝑘)

+
𝑀
∑

𝑚=1

𝐽
∑

𝑗=1
E𝑞(𝐂𝑘 )

(

I(𝐶𝑘𝑚 = 𝑗)
)

E𝑞(𝜎)𝑞(𝜇)[𝐷𝑛𝑚𝑗 ]
}

.

We conclude that 𝑞(𝑍𝑛) ∼ Categorical(𝒑𝑛) with parameters 𝒑𝑛 = (𝑝𝑛1,
… , 𝑝𝑛𝐾 ) where

𝑝̃𝑛𝑘 = E𝑞(𝝅)(log𝜋𝑘) +
𝑀
∑

𝑚=1

𝐽
∑

𝑗=1
E𝑞(𝐂𝑘)

(

I(𝐶𝑘𝑚 = 𝑗)
)

E𝑞( 1
𝜎2

)𝑞(𝜇)[𝐷𝑛𝑚𝑗 ].

and

𝑝𝑛𝑘 =
exp(𝑝̃𝑛𝑘)

∑𝐾
𝑘′=1 exp(𝑝̃𝑛𝑘′ )

. (B.13)

Update equation for 𝜇: Since (B.4) and (B.7) are the only terms in
(B.3) that depend on 𝜇𝑛, 𝑞(𝜇𝑛) can be obtained as follows.

log 𝑞(𝜇𝑛)

= E−𝜇𝑛

(

log𝑃 (𝐘,𝐙,𝐂,𝜳 )
+
≈ E−𝜇𝑛

(

log𝑃 (𝐘|𝐙,𝐂,𝜳 )
)

+ E−𝜇𝑛

(

log𝑃 (𝝁)
)

We can write log𝑃 (𝐘|𝐙,𝐂,𝜳 ) as in Eq. (B.4), and E−𝜇𝑛

(

log𝑃 (𝝁)
)

=
log𝑃 (𝝁), which is:

log𝑃 (𝝁) = (−1
2
)
[

log(2𝜋 𝜏02) + (𝜇𝑛 − 𝜃0)2

𝜏02
]

+
∑

𝑙≠𝑛
(−1

2
)
[

log(2𝜋 𝜏02) + (𝜇𝑙 − 𝜃0)2

𝜏02
]

Therefore,

log 𝑞(𝜇𝑛)

+
≈ −1

2

(

(𝜇2
𝑛 − 2𝜃0𝜇𝑛

𝜏02
)

+
𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

× E𝑞( 1
𝜎2

)[
𝑗2𝜇2

𝑛 − 2𝑗 𝜇𝑛𝑟𝑛𝑚
𝜎2

]

)

+
≈ −1

2

(

(𝜇2
𝑛 − 2𝜃0𝜇𝑛

𝜏02
)

+
𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

× 𝛼
𝛽
(𝑗2𝜇2

𝑛 − 2𝑗 𝜇𝑛𝑟𝑛𝑚)
)

+
≈ −1

2

(

𝜇2
𝑛

[

1
𝜏02

+ 𝛼
𝛽

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

𝑗2
]

− 2𝜇𝑛
[

𝜃0

𝜏02
+ 𝛼

𝛽

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

𝑗 𝑟𝑛𝑚
])

Thus, 𝑞(𝜇𝑛) is a Normal distribution with parameters:

𝜃𝑛 =
𝜃0

𝜏02
+
∑𝑀

𝑚=1
∑𝐾

𝑘=1
∑𝐽

𝑗=1 E𝑞(𝑍𝑛)
(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

𝑗 𝑟𝑛𝑚 𝛼
𝛽

1
𝜏02

+
∑𝑀

𝑚=1
∑𝐾

𝑘=1
∑𝐽

𝑗=1 E𝑞(𝑍𝑛)
(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
) 𝛼
𝛽 𝑗

2

(B.14)

𝜏2𝑛 = 1
1
𝜏02

+
∑𝑀

𝑚=1
∑𝐾

𝑘=1
∑𝐽

𝑗=1 E𝑞(𝑍𝑛)
(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
) 𝛼
𝛽 𝑗

2

(B.15)

Update equation for 1
𝜎2
: Similar to the previous calculations, we do

as follows.

log 𝑞( 1
𝜎2

)

= E− 1
𝜎2

(

log𝑃 (𝐘,𝐙,𝐂,𝜳 )

+
≈ E− 1

𝜎2

(

log𝑃 (𝐘|𝐙,𝐂,𝜳 )
)

+ E− 1
𝜎2

(

log𝑃 ( 1
𝜎2

)
)

We can write log𝑃 (𝐘|𝐙,𝐂,𝜳 ) and log𝑃 ( 1
𝜎2
) as they are in Eqs. (B.4)

and (B.8). Putting them together, we achieve the following.

log 𝑞( 1
𝜎2

)

+
≈
[

−
𝛽0

𝜎2
+ (𝛼0 − 1) log( 1

𝜎2
)
]

+
𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

× E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

E𝑞(𝜇𝑛)[𝐷𝑛𝑚𝑗 ]
+
≈ − 𝛽0

𝜎2
+ (𝛼0 − 1) log( 1

𝜎2
)

− 1
2

∑

𝑛,𝑚,𝑘,𝑗
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
) [

− log( 1
𝜎2

)

+
𝑟2𝑛𝑚 − 2𝑗 𝑟𝑛𝑚𝜃𝑛 + 𝑗2(𝜏2𝑛 + 𝜃2𝑛 )

𝜎2
]

= log( 1
𝜎2

)
{

𝛼 − 1
}

− 1
𝜎2

{

𝛽
}

Therefore, 𝑞( 1
𝜎2
) is a Gamma distribution with parameters:

𝛼 = 𝛼0 + 1
2

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

= 𝛼0 + 𝑁 𝑀
2

(B.16)

𝛽 = 𝛽0 + 1
2

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

× E𝑞(𝐂𝑘)
(

I(𝐶𝑘𝑚 = 𝑗)
)

(

𝑟2𝑛𝑚 − 2𝑗 𝑟𝑛𝑚𝜃𝑛 + 𝑗2(𝜏2𝑛 + 𝜃2𝑛 )
)

(B.17)

Update equation for 𝐚𝑘𝑖 : Because (B.5) and (B.9) are the only terms in
(B.3) that depend on 𝐚𝑘𝑖 , we calculate 𝑞(𝐚𝑘𝑖 ) as follows.

log 𝑞(𝐚𝑘𝑖 )

= E−𝐚𝑘𝑖

(

log𝑃 (𝐘,𝐙,𝐂,𝜳 )
)

+
≈ E−𝐚𝑘𝑖

(

log𝑃 (𝐂|𝜳 )
)

+ E−𝐚𝑘𝑖

(

log𝑃 (𝐀)
)

Disregarding the terms that do not depend on 𝐚𝑘𝑖 in log𝑃 (𝐂|𝜳 ) and
log𝑃 (𝐀), we obtain:

log 𝑞(𝐚𝑘𝑖 )
+
≈

𝐽
∑

𝑗=1

𝑀
∑

𝑚=2
E𝑞(𝐂𝑘)

(

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
)

log 𝑎𝑘𝑖𝑗
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+
𝐽
∑

𝑗=1
(𝛬0

𝑗 − 1) log 𝑎𝑘𝑖𝑗

=
𝐽
∑

𝑗=1
log 𝑎𝑖𝑗

{[

𝛬0
𝑗 +

𝑀
∑

𝑚=2
E𝑞(𝐂𝑘)

(

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
)

]

− 1
}

.

Therefore, 𝑞(𝐚𝑘𝑖 ) is Dirichlet with parameters 𝜦𝑘
𝑖 = (𝛬𝑘

𝑖1,… , 𝛬𝑘
𝑖𝐽 ) where

𝛬𝑘
𝑖𝑗 = 𝛬0

𝑗 +
𝑀
∑

𝑚=2
E𝑞(𝐂𝑘)

(

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
)

(B.18)

Update equation for 𝐂𝑘: Since only (B.4) and (B.5) depend on 𝐂𝑘,
log 𝑞(𝐂𝑘) can be calculated as follows.

log 𝑞(𝐂𝑘)

= E−𝐂𝑘

(

log𝑃 (𝐘,𝐙,𝐂,𝜳 )
)

+
≈ E−𝐂𝑘

(

log𝑃 (𝐘|𝐙,𝐂,𝜳 )
)

+ E−𝐂𝑘

(

log𝑃 (𝐂|𝜳 )
)

.

Similarly we can write log𝑃 (𝐂|𝜳 ) as

log𝑃 (𝐂|𝜳 ) =
𝐽
∑

𝑗=1
I(𝐶𝑘1 = 𝑗) log 𝜌𝑘𝑗

+
𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗) log 𝑎𝑘𝑖𝑗 ,

+
∑

𝑘′≠𝑘

[

𝐽
∑

𝑗=1
I(𝐶𝑘′1 = 𝑗) log 𝜌𝑘′𝑗 +

𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
I(𝐶𝑘′𝑚−1 = 𝑖, 𝐶𝑘′𝑚 = 𝑗) log 𝑎𝑘′𝑖𝑗

]

.

Thus, disregarding the terms that do not depend on 𝐂𝑘 we obtain:

log 𝑞(𝐂𝑘)

+
≈

𝑀
∑

𝑚=1

𝐽
∑

𝑗=1
I(𝐶𝑘𝑚 = 𝑗)

{

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

E𝑞(𝜇𝑛),𝑞(
1
𝜎2

)(𝐷𝑛,𝑚,𝑗 )
}

+
𝐽
∑

𝑗=1
I
(

𝐶𝑘1 = 𝑗
)

E𝑞(𝝆𝑘)
(

log 𝜌𝑘𝑗
)

+
𝑀
∑

𝑚=2

𝐽
∑

𝑗=1

𝐽
∑

𝑖=1
I
(

𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗
)

E𝑞(𝐚𝑘𝑖 )
(

log 𝑎𝑘𝑖𝑗
)

.

Calculations regarding directed graph: The details of this section
are in the main manuscript.

Algorithm 2 CopyMix: a Variational Inference Algorithm
1: procedure estimate-posteriors(Y): ⊳ Y input is N sequences of length M
2: Initialization and assigning priors
3: repeat
4: Update 𝛿(𝑐)𝑘 using 𝑝(𝑐−1)𝑛𝑘 and 𝛿0𝑘 in equation (B.11)
5: Update 𝑞(𝐶𝑘𝑚 = 𝑗)(𝑐) and 𝑞(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)(𝑐) using
6: 𝑤𝑘(𝐶0𝐶1𝑗 )(𝑐−1), 𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 )(𝑐−1) and
7: 𝑤𝑘(𝐶𝑚𝑗 )(𝑐−1) ( equation (2) to (5))
8: Update 𝛬𝑘(𝑐)

𝑖𝑗 using 𝛬𝑘0
𝑖𝑗 , 𝑞(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)(𝑐) in equation (B.18)

9: Update 𝛼(𝑐) using 𝛼0 and y in equation (B.16)
10: Update 𝛽(𝑐) using 𝛽0, 𝑝(𝑐)𝑘𝑛 , 𝑞(𝐶𝑘𝑚 = 𝑗)(𝑐), 𝜃𝑛, 𝜏𝑛, and y in equation

(B.17)
11: Update 𝑝(𝑐)𝑛𝑘 using 𝛿(𝑐)𝑘 , 𝜃𝑛, 𝜏 (𝑐)𝑛 , 𝛼(𝑐), 𝛽(𝑐), 𝑞(𝐶𝑘𝑚 = 𝑗)(𝑐) and y in

equation (B.13)
12: Update 𝑤𝑘(𝐶𝑚𝑗 )(𝑐) using 𝛬𝑘(𝑐)

𝑖𝑗 , 𝑝(𝑐)𝑘𝑛 , 𝜃𝑛, 𝜏 (𝑐)𝑛 , 𝛼(𝑐), 𝛽(𝑐), y in equation
(3)

13: Update 𝑤𝑘(𝐶𝑚−1𝑖𝐶𝑚𝑗 )(𝑐) using 𝛬𝑘(𝑐)
𝑖𝑗 and 𝑝(𝑐)𝑛𝑘 , in equation (2)

14:
15: 𝑐 ← 𝑐 + 1
16: until convergence of the ELBO
17: Output all posterior distributions including:
18: 𝑞(𝑍𝑛 = 𝑘) ∀𝑛, 𝑘; ⊳ cluster assignment probabilities
19: 𝑞(𝐶𝑘𝑚 = 𝑗) ∀𝑘, 𝑚, 𝑗; ⊳ copy number probabilities
20: return posterior distribution

Calculating expectations and ELBO for CopyMix
Let 𝜳 be the digamma function defined as

𝜳 (𝑥) = 𝑑
𝑑 𝑥 log𝛤 (𝑥), (B.19)

which can be easily calculated via numerical approximation. The values
of the expectations above taken with respect to the approximated
distributions are given as follows.

E𝑞(𝑍𝑛)(I(𝑍𝑛 = 𝑘)) = 𝑝𝑛𝑘

E𝑞(𝜇𝑛)(𝜇𝑛) = 𝜃𝑛

𝐸𝑞( 1
𝜎2

)(log
1
𝜎2

) = 𝜳 (𝛼) − log 𝛽

E𝑞(𝜇𝑛)(𝜇
2
𝑛) = 𝜃2𝑛 + 𝜏2𝑛

E𝑞( 1
𝜎2

)(
1
𝜎2

) = 𝛼
𝛽

E𝑞( 1
𝜎2

)(𝐷𝑛𝑚𝑗 ) = −1
2

[

E
[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

]

=

− 1
2

[

log(2𝜋) − E[log( 1
𝜎2

)] + E[ 𝑟
2
𝑛𝑚

𝜎2
] − 2𝑗 𝑟𝑛𝑚E[

𝜇𝑛
𝜎2

] + E[ 𝑗
2𝜇2

𝑛

𝜎2
]

]

=

− 1
2

[

log(2𝜋) − E𝑞(𝜎)(log
1
𝜎2

) + 𝑟2𝑛𝑚E𝑞(𝜎)(
1
𝜎2

)

− 2𝑗 𝑟𝑛𝑚(𝜇𝑛)E𝑞(𝜎)(
1
𝜎2

) + (𝑗2𝜇2
𝑛)E𝑞(𝜎)(

1
𝜎2

)

]

E𝑞(𝜇𝑛)(𝐷𝑛𝑚𝑗 ) = −1
2

[

E
[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

]

=

− 1
2

[

log(2𝜋) − log( 1
𝜎2

) + 𝑟2𝑛𝑚
𝜎2

− 2𝑗 𝑟𝑛𝑚E[
𝜇𝑛
𝜎2

] + E[ 𝑗
2𝜇2

𝑛

𝜎2
]

]

=

− 1
2

[

log(2𝜋) − log 1
𝜎2

+
𝑟2𝑛𝑚
𝜎2

−
2𝑗 𝑟𝑛𝑚
𝜎2

E𝑞(𝜇𝑛)(𝜇𝑛) +
𝑗2

𝜎2
E𝑞(𝜇𝑛)(𝜇

2
𝑛)

]

E𝑞( 1
𝜎2

),𝑞(𝜇𝑛)
(𝐷𝑛𝑚𝑗 ) = −1

2

[

E
[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

]

=

− 1
2

[

log(2𝜋) − E[log( 1
𝜎2

)] + E[ 𝑟
2
𝑛𝑚

𝜎2
] − 2𝑗 𝑟𝑛𝑚E[

𝜇𝑛
𝜎2

] + E[ 𝑗
2𝜇2

𝑛

𝜎2
]

]

=

− 1
2

[

log(2𝜋) − E𝑞( 1
𝜎2

)(log
1
𝜎2

) + 𝑟2𝑛𝑚E𝑞( 1
𝜎2

)(
1
𝜎2

)

− 2𝑗 𝑟𝑛𝑚E𝑞(𝜇𝑛)(𝜇𝑛)E𝑞( 1
𝜎2

)(
1
𝜎2

) + 𝑗2E𝑞(𝜇𝑛)(𝜇
2
𝑛)E𝑞( 1

𝜎2
)(

1
𝜎2

)

]

E𝑞(𝝅)(log𝝅) = 𝜳 (𝛿𝑘) − 𝜳
(

𝐾
∑

𝑘=1
𝛿𝑘
)

∀𝑘 ∈ 𝐾

E𝑞(𝐚𝑘𝑖 )
(log 𝐚𝑘𝑖 ) = 𝜳 (𝛬𝑘

𝑖𝑗 ) − 𝜳
(

𝐽
∑

𝑗=1
𝛬𝑘
𝑖𝑗

)

∀𝑗 ∈ 𝐽

Using the results above regarding the expectations, we update the pa-
rameters of the approximated distributions iteratively. We then conduct
many iterations until the convergence of the ELBO in Eq. (A.1) which
is calculated as below. An assumption in the ELBO calculation is that

Computational Biology and Chemistry 113 (2024) 108257 

10 



N. Safinianaini et al.

we ignore all the constants contributing in the ELBO value.

𝐸 𝐿𝐵 𝑂(𝑞) = E [

log𝑃 (𝐘|𝐙,𝐂,𝜳 ) + log𝑃 (𝐙|𝜳 ) + log𝑃 (𝐂|𝜳 )

+ log𝑃 (𝑨) + log𝑃 (𝝁) + log𝑃 ( 1
𝜎2

)

+ log𝑃 (𝝅) ] −E [

log 𝑞(𝐙) + log 𝑞(𝐂) + log 𝑞(𝑨)

+ log 𝑞(𝝁) + log 𝑞( 1
𝜎2

) + log 𝑞(𝝅) ]=

E
[

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝑍𝑛 = 𝑘)I(𝐶𝑘𝑚 = 𝑗)𝐷𝑛𝑚𝑗 +

𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘) log𝜋𝑘

+
𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝐶𝑘1 = 𝑗) log 𝜌𝑘𝑗 +

𝐾
∑

𝑘=1

𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗) log 𝑎𝑘𝑖𝑗

+
𝐾
∑

𝑘=1

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
(𝛬𝑗 − 1) log 𝑎𝑘𝑖𝑗 +

𝑁
∑

𝑛=1
(−1
2
)
(

log(2𝜋 𝜏2) + 𝜇2
𝑛 − 2𝜃 𝜇𝑛 + 𝜃2

𝜏2

)

+ (−𝛽
𝜎2

) + (𝛼 − 1) log 1
𝜎2

+ log𝑃 (𝝅)
]

− E
[

𝑁
∑

𝑛=1
log 𝑞(𝑍𝑛) +

𝐾
∑

𝑘=1
log 𝑞(𝐂𝑘) +

𝐾
∑

𝑘=1

𝐽
∑

𝑖=1
log 𝑞(𝐚𝑘𝑖 )

+
𝑁
∑

𝑛=1
log 𝑞(𝜇𝑛) + log 𝑞( 1

𝜎2
) + log 𝑞(𝝅)

]

(B.20)

We calculate the E[log 𝑞(𝐂𝑘)] by decomposing it into initial and transi-
tion components. Note that the initial probabilities, 𝜌𝑘𝑗s, are fixed and,
therefore, the term corresponding to that cancels out the corresponding
term in E[log𝑃 (𝐂|𝜳 )]. The remaining term, the transition component, is
calculated by the following using 𝑞(𝐶𝑘𝑚 = 𝑗|𝐶𝑘𝑚−1 = 𝑖) = 𝑞(𝐶𝑘𝑚=𝑗 ,𝐶𝑘𝑚−1=𝑖)

𝑞(𝐶𝑘𝑚−1=𝑖)
,

as below:

E𝑞(𝐂𝑘)[log 𝑞(𝐂𝑘)]

= E𝑞(𝐂𝑘)[log
𝑀
∏

𝑚=2

𝐽
∏

𝑖=1

𝐽
∏

𝑗=1
𝑞(𝐶𝑘𝑚 = 𝑗|𝐶𝑘𝑚−1 = 𝑖)I(𝐶𝑘𝑚−1=𝑖,𝐶𝑘𝑚=𝑗)] =

𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
E𝑞(𝐶𝑘𝑚−1 ,𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
]

log 𝑞(𝐶𝑘𝑚 = 𝑗|𝐶𝑘𝑚−1 = 𝑖)

𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
E𝑞(𝐶𝑘𝑚−1 ,𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
]

× log
E𝑞(𝐶𝑘𝑚−1 ,𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
]

E𝑞(𝐶𝑘𝑚−1)

[

I(𝐶𝑘𝑚−1 = 𝑖)
]

(B.21)

We calculate the E[log 𝑝(𝑍𝑛|𝛹 )] as below:

E(𝑞(𝑍𝑛),𝑞(𝝅))

[

log 𝑝(𝑍𝑛|𝛹 )
]

=E(𝑞(𝑍𝑛),𝑞(𝝅))

[

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘) log𝜋𝑘

]

=
𝐾
∑

𝑘=1
E𝑞(𝑍𝑛)

[

I(𝑍𝑛 = 𝑘)
]

E𝑞(𝝅)

[

log𝜋𝑘
]

(B.22)

We calculate the E[log 𝑞(𝑍𝑛)] as below. Note that the expectation of
𝑞(𝑍𝑛) w.r.t. 𝑞(𝑍𝑛) is equal to 𝑞(𝑍𝑛). Also, we know that E𝑞(𝑍𝑛)

[

I(𝑍𝑛 =

𝑘)
]

= 𝑞(𝑍𝑛 = 𝑘).

E𝑞(𝑍𝑛)

[

log 𝑞(𝑍𝑛)
]

= E𝑞(𝑍𝑛)

[

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘) log 𝑞(𝑍𝑛 = 𝑘)

]

=
𝐾
∑

𝑘=1
E𝑞(𝑍𝑛)

[

I(𝑍𝑛 = 𝑘)
]

log 𝑞(𝑍𝑛 = 𝑘) (B.23)

We calculate the E[log𝑃 (𝜇𝑛)] as below:

E𝑞(𝜇𝑛)[log 𝑝(𝜇𝑛)] = (−1
2
)
(

log(2𝜋 𝜏2) +
E𝑞(𝜇𝑛)

[

𝜇2
𝑛

]

− 2𝜃E𝑞(𝜇𝑛)

[

𝜇𝑛
]

+ 𝜃2

𝜏2

)

(B.24)

We calculate the E[log 𝑞(𝜇𝑛)] as below:

E𝑞(𝜇𝑛)[log 𝑞(𝜇𝑛)] = (−1
2
)
(

log(2𝜋 𝜏∗2𝑛 ) +
E𝑞(𝜇𝑛)

[

𝜇2
𝑛

]

− 2𝜃∗𝑛E𝑞(𝜇𝑛)

[

𝜇𝑛
]

+ 𝜃∗2𝑛
𝜏∗2𝑛

)

= (−1
2
)
(

log(2𝜋 𝜏∗2𝑛 ) + 1
)

(B.25)

We calculate the E[log𝑃 (𝝅)] as below:
E𝑞(𝝅)(log𝑃 (𝝅))

=
𝐾
∑

𝑘=1
(𝛿𝑘 − 1)E𝑞(𝝅)(log𝝅) − log𝐵(𝜹)

=
𝐾
∑

𝑘=1
(𝛿𝑘 − 1)

[

𝜳 (𝛿𝑘) − 𝜳
(

𝐾
∑

𝑘=1
𝛿𝑘
)

]

− log𝐵(𝜹)

=
(

𝐾
∑

𝑘=1
𝛿𝑘 −𝐾

)

𝜳
(

𝐾
∑

𝑘=1
𝛿𝑘
)

−
𝐾
∑

𝑘=1
𝜳 (𝛿𝑘)(𝛿𝑘 − 1) − log𝐵(𝜹)

(B.26)

We calculate the E(log 𝑞(𝝅)) as below:

E𝑞(𝝅)(log 𝑞(𝝅)) =
(

𝐾
∑

𝑘=1
𝛿𝑘−𝐾

)

𝜳
(

𝐾
∑

𝑘=1
𝛿𝑘
)

−
𝐾
∑

𝑘=1
𝜳 (𝛿𝑘)(𝛿𝑘− 1) − log𝐵(𝜹) (B.27)

𝐸 𝐿𝐵 𝑂(𝑞) =
𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝑍𝑛)

[

I(𝑍𝑛 = 𝑘)
]

E𝑞(𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚 = 𝑗)
]

× E𝑞(𝜇𝑛)𝑞(
1
𝜎2

)

[

𝐷𝑛𝑚𝑗

]

(B.28)

+
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
E𝑞(𝑍𝑛)

[

I(𝑍𝑛 = 𝑘)
]

E𝑞(𝝅)

[

log𝜋𝑘
]

+
������������𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝐶𝑘1)

[

I(𝐶𝑘1 = 𝑗)
]

log 𝜌𝑘𝑗 (B.29)

+
𝐾
∑

𝑘=1

𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
E𝑞(𝐶𝑘𝑚−1 ,𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
]

E𝑞(𝐚𝑘𝑖 )

[

log 𝑎𝑘𝑖𝑗
]

(B.30)

+
𝐾
∑

𝑘=1

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
(𝛬𝑗 − 1)E𝑞(𝐚𝑘𝑖 )

[

log 𝑎𝑘𝑖𝑗
]

+
𝑁
∑

𝑛=1
(−1
2
)
(

log(2𝜋 𝜏2) +
E𝑞(𝜇𝑛)

[

𝜇2
𝑛

]

− 2𝜃E𝑞(𝜇𝑛)

[

𝜇𝑛
]

+ 𝜃2

𝜏2

)

(B.31)

+ (−𝛽)E𝑞( 1
𝜎2

)

[ 1
𝜎2

]

+ (𝛼 − 1)E𝑞( 1
𝜎2

)

[

log 1
𝜎2

]

+ E𝑞(𝝅)

[

log𝑃 (𝝅)
]

(B.32)

−
𝑁
∑

𝑛=1

[

𝐾
∑

𝑘=1
𝑝𝑛𝑘 log 𝑝𝑛𝑘

]

−
𝐾
∑

𝑘=1

𝑀
∑

𝑚=1

𝐽
∑

𝑗=1
E𝑞(𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚 = 𝑗)
]

E𝑞(𝜇𝑛)𝑞(
1
𝜎2

)

[

𝐷𝑛𝑚𝑗

]

(B.33)

−
������������𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
E𝑞(𝐶𝑘1)

[

I(𝐶𝑘1 = 𝑗)
]

log 𝜌𝑘𝑗 (B.34)

−
𝐾
∑

𝑘=1

𝑀
∑

𝑚=2

𝐽
∑

𝑗=1

𝐽
∑

𝑖=1
E𝑞(𝐶𝑘𝑚−1 ,𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
]

× log
E𝑞(𝐶𝑘𝑚−1 ,𝐶𝑘𝑚)

[

I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗)
]

E𝑞(𝐶𝑘𝑚−1)

[

I(𝐶𝑘𝑚−1 = 𝑖)
] (B.35)
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Fig. 6. The graphical model with SNV process included.

−
𝐾
∑

𝑘=1

𝐽
∑

𝑖=1

[

𝐽
∑

𝑗=1
E𝑞(𝐚𝑘𝑖 )

[

log 𝑎𝑘𝑖𝑗
]{

𝛬𝑗 − 1
}]

(B.36)

−
𝑁
∑

𝑛=1
(−1
2
)
(

log(2𝜋 𝜏2𝑛 ) + 1
)

(B.37)

−
(

𝛼 − ln 𝛽 + ln𝛤 (𝛼) + (1 − 𝛼)𝜳 (𝛼)
)

(B.38)

− E𝑞(𝝅)

[

log 𝑞(𝝅)
]

(B.39)

We now approximate the term,
(

𝛼 − ln 𝛽 + ln𝛤 (𝛼) + (1 − 𝛼)𝜳 (𝛼)
)

in the
above, by using approximations:

1. Stirling’s: ln𝛤 (𝛼) = (𝛼 − 1) ln(𝛼 − 1) − 𝛼∗ + 1
2. digamma-approximation: 𝜳 (𝛼) = ln(𝛼) − 1

2𝛼
3. Also: ln𝛤 (𝛼) = ln( 𝛤 (𝛼+1)

𝛼 ) = (𝛼 ln(𝛼) − 𝛼) − ln(𝛼)
Putting 3 and 2 in the original formula, we obtain:

𝛼 − ln 𝛽 + 𝛼 ln(𝛼) − 𝛼 − ln(𝛼) + (ln(𝛼) − 1
2𝛼

) − 𝛼 ln(𝛼) + 1
2

= 1
2
(1 − 1

𝛼
) − ln 𝛽

Appendix C

SNV-CopyMix
This section incorporates SNV data into the model (see Fig. 6).

We augment CopyMix graphical model by a copy-number-independent
SNV process; we refer to this version of CopyMix as SNV-CopyMix. In
Fig. 6, the new components are colored in magenta. 𝑋𝑛𝑙 denotes the
observable variable, corresponding to a nucleotide in the genome, that
we assume to be dependent on cluster-specific latent point mutation
𝑆𝑘𝑙. Naturally, each 𝑆𝑘𝑙 is distributed as Bernoulli, where mutation
corresponds to the value of zero, and non-mutation corresponds to the
value of one. The prior distribution of 𝑆𝑘𝑙 is 𝜉, a Beta distribution. Note
that the SNV data contains 𝐿 sites such that 𝐿 ≫ 𝑀 . In the following
subsection, the calculation of the probability of 𝑋𝑛𝑙 is described; for
more detail, see the work by Koptagel et al. (2018). The VI update
equations are calculated analogously to those in CopyMix; see the
derivations in the rest of this Appendix A.

The likelihood model for SNVs
Here, we briefly describe the computations related to the likelihood

model for the SNVs, i.e., the probability of each 𝑋𝑛𝑙 is calculated. For
more details, see the earlier work (Koptagel et al., 2018). The genotype
of a site 𝑙 is denoted by 𝐺𝑙 = (𝑔1𝑙 , 𝑔2𝑙 ) where 𝑔𝑖𝑙 is the nucleotide of allele
𝑖. The site genotype consists of two copies of the reference nucleotide
in the case of no mutation. It consists of one reference (denoted as
𝑟𝑒𝑓 ) and one alternate (denoted as 𝑎𝑙 𝑡) nucleotide in the case of a
heterozygous SNV, and two alternates in the case of homozygous SNV.
Note that the sites are assumed to be diploid. Let 𝑡 be an arbitrary
nucleotide in the read. Also, assume that 𝑟 is an enumeration of the
number of reads; e.g., if a cell has five reads at a site, then 𝑟 = 1,… , 5.
Moreover, we define 𝜖 to be a the error probability. It is computed
by processing the Phred scores in data—Phred score (Ewing et al.,
1998) is a measure of the quality of the identification of the nucleotides
generated by DNA sequencing. The calculation of genotype likelihood
is similar to Monovar (Zafar et al., 2014), but it is a generalized version
of Monovar, where we explicitly distinguish allele info for 𝑟𝑒𝑓 𝑟𝑒𝑓 and
𝑎𝑙 𝑡𝑎𝑙 𝑡 cases. To this end, the likelihood of a single read of cell 𝑛 at site
𝑙 (𝑋𝑟

𝑛𝑙) with the corresponding error probability (𝐸𝑟
𝑛𝑙) is

𝑝(𝑋𝑟
𝑛𝑙 = 𝑡|𝐸𝑟

𝑛𝑙 = 𝜖 , 𝐺𝑙 = (𝑔1𝑙 , 𝑔2𝑙 )) =
2
∑

𝑖=1

1
2
× (1 − 𝜖)𝐼[𝑡=𝑔

𝑖
𝑙 ] × ( 𝜖

3
)𝐼[𝑡≠𝑔

𝑖
𝑙 ].

The reads are assumed to be i.i.d., so the likelihood of the reads of cell
𝑛 at site 𝑙 is

𝑝(𝑋1∶|𝑋𝑛𝑙 |
𝑛𝑙 |𝐸1∶|𝑋𝑛𝑙 |

𝑛𝑙 , 𝐺𝑙) =
|𝑋𝑛𝑙 |
∏

𝑟=1
𝑝(𝑋𝑟

𝑛𝑙|𝐸
𝑟
𝑛𝑙 , 𝐺𝑙).

The likelihood for a non-mutation case is 𝑝(𝑋1∶|𝑋𝑛𝑙 |
𝑛𝑙 |𝐸1∶|𝑋𝑛𝑙 |

𝑛𝑙 , 𝐺𝑙 =
(𝑟𝑒𝑓 , 𝑟𝑒𝑓 )). The likelihood for a heterozygous mutation case is
𝑝(𝑋1∶|𝑋𝑛𝑙 |

𝑛𝑙 |𝐸1∶|𝑋𝑛𝑙 |
𝑛𝑙 , 𝐺𝑙 = (𝑟𝑒𝑓 , 𝑎𝑙 𝑡)), and a homozygous mutation case

is 𝑝(𝑋1∶|𝑋𝑛𝑙 |
𝑛𝑙 |𝐸1∶|𝑋𝑛𝑙 |

𝑛𝑙 , 𝐺𝑙 = (𝑎𝑙 𝑡, 𝑎𝑙 𝑡)). Note we allow for two versions
of SNV-CopyMix, that is, (1) likelihood conditioned on non-mutation
versus homozygous mutation, and (2) likelihood conditioned on non-
mutation versus heterozygous mutation. In the experiment section, we
test both of these versions when referring to SNV-CopyMix.

The details of SNV-CopyMix
Let 𝑋𝑛𝑙 be an observation that is dependent on genotype. In this case

we deal with two genotypes, i.e., 0 for non mutation and 1 for mutation.
We assume to have access to these probabilities from another graphical
model (Koptagel et al., 2018) which deals with SNVs. In the following
section, we provide details on SNV probabilities.

Dataset Details There are 891 cells, from three cell lines. There is
no bulk data from healthy tissue.

1. Create a txt file which includes all bam filenames.
2. Extract SNV sites information from the CSV file provided by the

authors
3. Extract reads from BAM files.
4. Process reads of each cell

• Remove first/last tokens from nucleotides, discard N.
• Convert Phred quality scores to error probabilities using

the formula 𝜖 = 10−0.1×𝑞

5. Compute loglikelihood tensor for various scenarios

• heterozygous SNV
• homozygous SNV
• samtoools mpileup -B

For 𝑐 ∈ [𝐶] cells for 𝑠 ∈ 𝑆 sites, the goal is to report a tensor of
shape 𝐿 = (𝐶 ×𝑆 × 2) where 𝐿𝑐 𝑠𝑚 is the log-likelihood of observing the
reads of cell 𝑐 at site 𝑠 if the cell is mutated 𝑚 = 1 or not 𝑚 = 0.
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More formally, if the cell has 𝑅1∶|𝑅|
𝑐 𝑠 reads and corresponding error

probabilities 𝐸1∶|𝑅|
𝑐 𝑠 , we have:

𝐿𝑐 𝑠𝑚 = log 𝑝(𝑅1∶|𝑅|
𝑐 𝑠 ∣ 𝐸1∶|𝑅|

𝑐 𝑠 , 𝑀 = 𝑚)

=
|𝑅|
∑

𝑟=1
log 𝑝(𝑅𝑟

𝑐 𝑠 ∣ 𝐸𝑟
𝑐 𝑠, 𝑀 = 𝑚)

(C.40)

Moreover, due to our pipeline, we will know what the mutated and
healthy true genotype 𝐺 is. So, essentially we will compute

𝑝(𝑅𝑟
𝑐 𝑠 ∣ 𝐸𝑟

𝑐 𝑠, 𝐺𝑠) (C.41)

where 𝐺𝑠 is the healthy reference if 𝑚 = 0 and SNV if 𝑚 = 1.
A Toy example: Assume the reference genotype at site 𝑠 is 𝐺𝑠 =

{𝐴, 𝐴} and mutated genotype is 𝐺𝑠 = {𝐴, 𝐶}. Assume the cell 𝑐 has
three reads 𝑅1∶3

𝑐 𝑠 = {𝐴, 𝐴, 𝐺} and the corresponding error probabilities
𝐸1∶3
𝑐 𝑠 = {0.9, 0.8, 0.5}.

𝐿𝑐 𝑠0 = log 𝑝(𝑅1∶3
𝑐 𝑠 ∣ 𝐸1∶3

𝑐 𝑠 , 𝐺𝑠 = {𝐴, 𝐴})

=
3
∑

𝑟=1
log 𝑝(𝑅𝑟

𝑐 𝑠 ∣ 𝐸𝑟
𝑐 𝑠, 𝐺𝑠 = {𝐴, 𝐴})

(C.42)

VI for SNV-CopyMix
Let 𝜳 be the set containing all the model parameters, i.e., 𝜳 =

{𝐀,𝝁, 𝜎 ,𝝅, 𝜉}, where

• 𝐀 = {𝐀𝑘 for 𝑘 = 1,… , 𝐾} with 𝐀𝑘 = {𝑎𝑘𝑖𝑗 for 𝑖 = 1,… , 𝐽 and 𝑗 =
1,… , 𝐽};

• 𝝁 = {𝜇𝑛 for 𝑛 = 1,… , 𝑁};
• 𝜎;
• 𝝅 = (𝜋1,… , 𝜋𝐾 );
• 𝜉.

In order to infer 𝜳 and the hidden states 𝐙 = (𝑍1,… , 𝑍𝑛), 𝐂 =
{𝐂1,… ,𝐂𝐾}, and 𝐒 = {𝑆1,… , 𝑆𝐾} we apply the Variational Inference
(VI) methodology; that is, we derive an algorithm that, for given
data, approximates the posterior distribution by finding the Variational
Distribution (VD),

𝑞(𝐙,𝐂,𝐒,𝜳 ) (C.43)

with smallest Kullback–Leibler divergence to the posterior distribution

𝑃 (𝐙,𝐂,𝐒,𝜳 |𝐘,𝐗),

which is equivalent to maximizing the evidence lower bound (ELBO)
given by

ELBO(𝑞) = E[log𝑃 (𝐘,𝐗,𝐙,𝐂,𝐒,𝜳 )
]

− E[log 𝑞(𝐙,𝐂,𝐒,𝜳 )
]

. (C.44)

We consider the following prior distributions for the parameters in 𝜳 .

• 𝐀𝑘
𝑖 = (𝐴𝑘

𝑖1,… , 𝐴𝑘
𝑖𝐽 ) ∼ Dirichlet(𝜦)

• 𝜇𝑛 ∼ Normal(𝜃𝑛, 𝜏2𝑛 ). The conjugate prior concerning the mean of
Normal distribution is Normal distribution.

• 1
𝜎2

∼ Gamma(𝛼 , 𝛽). The conjugate prior concerning the precision
of Normal distribution is Gamma distribution.

• 𝝅 ∼ Dirichlet(𝜹).
• 𝜉𝑘 ∼ Beta(𝛾𝑘, 𝜂𝑘).
In what follows we describe the main steps of the VI algorithm for

inferring 𝐙,𝐂,𝐒 and 𝜳 .

Step 1. VD factorization
We assume the following factorization of the VD:

𝑞(𝐙,𝐂,𝐒,𝜳 ) =
[

𝑁
∏

𝑛=1
𝑞(𝑍𝑛)

][

𝐾
∏

𝑘=1
𝑞(𝐂𝑘)

][

𝐾
∏

𝑘=1

𝐽
∏

𝑖=1
𝑞(𝐀𝑘

𝑖 )
][

𝑁
∏

𝑛=1
𝑞(𝜇𝑛)

]

[

𝐾
∏

𝑘=1
𝑞(𝑺𝑘)

][

𝐾
∏

𝑘=1
𝑞(𝜉𝑘)

]

𝑞( 1
𝜎2

)𝑞(𝝅).

(C.45)

Step 2. Joint distribution of observed data, hidden variables, and
parameters

The logarithm of the joint distribution of 𝐘, 𝐙, 𝐂 and 𝜳 satisfies
log𝑃 (𝐘,𝐗,𝐙,𝐂,𝐒,𝜳 ) =
log𝑃 (𝐘|𝐙,𝐂,𝜳 ) + log𝑃 (𝐗|𝐙,𝐒,𝜳 ) + log𝑃 (𝐂|𝜳 )

+ log𝑃 (𝐙|𝜳 ) + log𝑃 (𝐒|𝜳 ) + log𝑃 (𝜳 ),

(C.46)

where

log𝑃 (𝐗|𝐙,𝐒,𝜳 ) =
𝑁
∑

𝑛=1

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1

1
∑

𝑠=0
I(𝑍𝑛 = 𝑘)I(𝑆𝑘𝑙 = 𝑠)𝑙 𝑜𝑔 𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠)

(C.47)

We assume we have these probabilities given the genotype g being
either mutation or non mutation.

log𝑃 (𝐘|𝐙,𝐂,𝜳 ) =
𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝑍𝑛 = 𝑘)I(𝐶𝑘𝑚 = 𝑗) log𝐹𝜇𝑛𝑗 ,𝜎2 (𝑟𝑛𝑚)

=
𝑁
∑

𝑛=1

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝑍𝑛 = 𝑘)I(𝐶𝑘𝑚 = 𝑗)(−1

2
)

×
[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

, (C.48)

log𝑃 (𝐂|𝜳 ) =
𝐾
∑

𝑘=1

[ 𝐽
∑

𝑗=1
I(𝐶𝑘1 = 𝑗) log 𝜌𝑘𝑗

+
𝑀
∑

𝑚=2

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
I(𝐶𝑘𝑚−1 = 𝑖, 𝐶𝑘𝑚 = 𝑗) log𝐴𝑘

𝑖𝑗

]

, (C.49)

Note that 𝜌𝑘𝑗 is the initial probability in the MC which
we fix.

log𝑃 (𝐙|𝜳 ) =
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘) log𝜋𝑘, (C.50)

and

log𝑃 (𝐒|𝜳 ) =
𝐿
∑

𝑙=1

𝐾
∑

𝑘=1
I(𝑆𝑘𝑙 = 0) log 𝜉𝑘 + I(𝑆𝑘𝑙 = 1) log(1 − 𝜉𝑘), (C.51)

Moreover,

log𝑃 (𝜳 ) = log𝑃 (𝐀) + log𝑃 (𝝁) + log𝑃 ( 1
𝜎2

) + log𝑃 (𝝅) + log𝑃 (𝝃),

Defining,  the multivariate Beta function, i.e., (𝒙) =
∏𝐾

𝑘=1 𝛤 (𝑥𝑘)

𝛤 (
∑𝐾

𝑘=1 𝑥𝑘)
,

and  (𝑣, 𝑢) = 𝛤 (𝑣)𝛤 (𝑢)
𝛤 (𝑣,𝑢) , we have:

log𝑃 (𝝁) =
𝑁
∑

𝑛=1

[

(−1
2
)
[

log(2𝜋 𝜏2) + (𝜇𝑛 − 𝜃)2

𝜏2
]

]

, (C.52)

log𝑃 ( 1
𝜎2

) = [

−
𝛽
𝜎2

+ (𝛼 − 1) log( 1
𝜎2

)
]

+ 𝐶 , (C.53)

log𝑃 (𝐀) =
𝐾
∑

𝑘=1

𝐽
∑

𝑖=1

[

𝐽
∑

𝑗=1
(𝛬𝑗 − 1) log𝐴𝑘

𝑖𝑗 − log(𝜦)
]

, (C.54)

log𝑃 (𝝃) =
𝐾
∑

𝑘=1
(𝜂𝑘 − 1) log 𝜉𝑘 + (𝛾𝑘 − 1) log(1 − 𝜉𝑘) − (𝜂𝑘, 𝛾𝑘), (C.55)

and

log𝑃 (𝝅) =
𝐾
∑

𝑘=1
(𝛿𝑘 − 1) log𝜋𝑘 − log(𝜹). (C.56)

Step 3. VD computation by coordinate ascent We now derive a
coordinate ascent algorithm for the VD. That is, we derive an update
equation for each term in the factorization (in step 1) by calculating the
expectation of log𝑃 (𝐘,𝐗,𝐙,𝐂,𝐒,𝜳 ) over the VD of all random variables
except the one of interest. Below, the update equation is derived for
each random variable. For convenience, we use

+
≈ to denote equality

up to a constant additive factor.
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Note that 𝐗 can have missing values at certain sites. Therefore,
including this into the model, results in splitting 𝐗 into 𝐗𝐦𝐢𝐬𝐬 and
𝐗𝐨𝐛𝐬. Moreover, we would need a Bernoulli variable, 𝜔, which shows
which of the two group is the case in the joint distribution. The joint
distribution then takes the following form.

𝑃 (𝐘,𝐗𝐨𝐛𝐬,𝐗𝐦𝐢𝐬𝐬, 𝜔,𝐒,𝐙,𝐂,𝜳 ) =
𝑃 (𝐘|𝐙,𝐂,𝜳 )𝑃 (𝐗𝐨𝐛𝐬|𝐒,𝐙,𝜳 )𝑃 (𝐗𝐦𝐢𝐬𝐬|𝐒,𝐙,𝜳 )𝑃 (𝐂|𝜳 )𝑃 (𝐙|𝜳 )𝑃 (𝐒|𝜳 )𝑃 (𝜳 )

�����������⁓𝑀 𝐶 𝐴𝑅
𝑃 (𝜔|𝐘,𝐗𝐨𝐛𝐬,𝐗𝐦𝐢𝐬𝐬,𝐒,𝐙,𝐂,𝜳 )

In the above, MCAR is referring to missing completely at random
which is our assumption here, hence its probability is independent from
all variational parameters. This means that this probability is a constant
w.r.t. the variational parameters. We assume that 𝑃 (𝐗𝐦𝐢𝐬𝐬|𝜔,𝐒,𝐙,𝜳 )
is constant and, therefore, consider 𝑋 = 𝑋𝑜𝑏𝑠 in our applications.
However, for the ease of notation, in our derivations we assume 𝑋 is
complete. Namely, we can, for the sake of readability, simplify the joint
distribution as 𝑃 (𝐘,𝐗,𝐒,𝐙,𝐂,𝜳 ), where 𝐗 refers to 𝐗𝐨𝐛𝐬.
Update equation for 𝜋: The update equation 𝑞(𝝅) can be derived as
follows.

log 𝑞(𝝅)

= E−𝝅
(

log𝑃 (𝐘,𝐗,𝐙,𝐂,𝐒,𝜳 )
)

+
≈ E−𝝅

(

log𝑃 (𝐙|𝜳 )
)

+ E−𝝅
(

log𝑃 (𝝅)
)

=
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

log𝜋𝑘 + log𝑃 (𝝅)

=
𝐾
∑

𝑘=1
log𝜋𝑘

[

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

]

+
𝐾
∑

𝑘=1
log𝜋𝑘(𝛿0𝑘 − 1)

=
𝐾
∑

𝑘=1
log𝜋𝑘

[(

𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

+ 𝛿0𝑘
)

− 1
]

.

Therefore, 𝑞(𝝅) is a Dirichlet distribution with parameters 𝛿 = (𝛿1,… ,
𝛿𝐾 ), where

𝛿𝑘 = 𝛿0𝑘 +
𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)

(

I(𝑍𝑛 = 𝑘)
)

. (C.57)

Update equation for 𝑍𝑛: The update equation 𝑞(𝑍𝑛) can be obtained
as follows.

log 𝑞(𝑍𝑛)

= E−𝑍𝑛

(

log𝑃 (𝐘,𝐗,𝐒,𝐙,𝐂,𝜳 )
)

+
≈ E−𝑍𝑛

(

log𝑃 (𝐘|𝐙,𝐂,𝜳 )
)

+ E−𝑍𝑛

(

log𝑃 (𝐗|𝐙,𝐒,𝜳 )
)

+ E−𝑍𝑛

(

log𝑃 (𝐙|𝜳 )
)

Note that, each of the logarithms above can be written as the sum
of two terms, one that depends on 𝑍𝑛 and one that does not; since
we want to form a function of 𝑍𝑛, we discard all other terms w.r.t.
𝑍𝑐 ∶ 𝑐 ∈ [𝑁] ⧵ 𝑛.

log𝑃 (𝐘|𝐙,𝐂,𝜳 ) ⟹

𝑀
∑

𝑚=1

𝐾
∑

𝑘=1

𝐽
∑

𝑗=1
I(𝑍𝑛 = 𝑘)I(𝐶𝑘𝑚 = 𝑗)(−1

2
)

×
[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

log𝑃 (𝐗|𝐙,𝐒,𝜳 ) ⟹

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1

1
∑

𝑠=0
I(𝑍𝑛 = 𝑘)I(𝑆𝑘𝑙 = 𝑠) log𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠)

(C.58)

Taking the expectation, we have:

E−𝑍𝑛
(log𝑃 (𝐗|𝐙,𝐒,𝜳 )) =

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘)

×
( 1
∑

𝑠=0
E
{

I(𝑆𝑘𝑙 = 𝑠)
}

log𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠)
}

)

(C.59)

log𝑃 (𝐙|𝜳 ) ⟹

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘) log𝜋𝑘

Combining the above parts from log𝑃 (𝐘|𝐙,𝐂,𝜳 ) and log𝑃 (𝐙|𝜳 ), we
obtain:

𝑄𝑌 =
𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘)

{

E𝑞(𝝅)(log𝜋𝑘)

+
𝑀
∑

𝑚=1

𝐽
∑

𝑗=1
E𝑞(𝐂𝑘)

(

I(𝐶𝑘𝑚 = 𝑗)
)

E𝑞( 1
𝜎2

)𝑞(𝜇𝑛)
[𝐷𝑛𝑚𝑗 ]

}

(C.60)

Where:

𝐷𝑛𝑚𝑗 = −1
2

[

log(2𝜋 𝜎2) + (𝑟𝑛𝑚 − 𝑗 𝜇𝑛)2
𝜎2

]

. (C.61)

log 𝑞(𝑍𝑛)
+
≈ 𝑄𝑌 +

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘)

( 1
∑

𝑠=0
E
{

I(𝑆𝑘𝑙 = 𝑠)
}

log𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠)
)

(C.62)

Reformulating log 𝑞(𝑍𝑛), we achieve the below. Note that when pro-
cessing the input data, for the missing values we merely calculate
𝑄𝑌 .

log 𝑞(𝑍𝑛)
+
≈

𝐾
∑

𝑘=1
I(𝑍𝑛 = 𝑘)

𝐿
∑

𝑙=1

[ 1
∑

𝑠=0
E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 𝑠)) log𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠)

+E𝑞(𝝅)(log𝜋𝑘) +
𝑀
∑

𝑚=1

𝐽
∑

𝑗=1
E𝑞(𝐂𝑘)

(

I(𝐶𝑘𝑚 = 𝑗)
)

E𝑞( 1
𝜎2

)𝑞(𝜇)[𝐷𝑛𝑚𝑗 ]

]

We conclude that 𝑞(𝑍𝑛) ∼ Categorical(𝒑𝑛) with parameters 𝒑𝑛 = (𝑝𝑛1,… ,
𝑝𝑛𝐾 ), where

𝑝̃𝑛𝑘 =
𝐿
∑

𝑙=1

1
∑

𝑠=0
E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 𝑠)) log𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠)+

E𝑞(𝝅)(log𝜋𝑘) +
𝑀
∑

𝑚=1

𝐽
∑

𝑗=1
E𝑞(𝐂𝑘)

(

I(𝐶𝑘𝑚 = 𝑗)
)

E𝑞( 1
𝜎2

)𝑞(𝜇𝑛)
[𝐷𝑛𝑚𝑗 ]

and

𝑝𝑛𝑘 =
exp(𝑝̃𝑛𝑘)

∑𝐾
𝑘′=1 exp(𝑝̃𝑛𝑘′ )

. (C.63)

Update equation for 𝜉𝑘: We calculate 𝑞(𝜉𝑘) as follows.

log 𝑞(𝜉𝑘)

= E−𝜉𝑘

(

log𝑃 (𝐘,𝐗,𝐒,𝐙,𝐂,𝜳 )
)

+
≈ E−𝜉𝑘

(

log𝑃 (𝐒|𝜳 )
)

+ E−𝜉𝑘

(

log𝑃 (𝝃)
)

Disregarding the terms that do not depend on 𝜉𝑘 in log𝑃 (𝐒|𝜳 ) and
log𝑃 (𝝃), we obtain:

log 𝑞(𝜉𝑘)
+
≈ (𝜂0 − 1) log 𝜉𝑘 + (𝛾0 − 1) log(1 − 𝜉𝑘)

+
𝐿
∑

𝑙=1
E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 0)) log 𝜉𝑘+ (C.64)

E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 1)) log(1 − 𝜉𝑘)

= log 𝜉𝑘
{

𝜂0 − 1 +
𝐿
∑

𝑙=1
E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 0))} + log(1 − 𝜉𝑘)

{

𝛾0 − 1

+
𝐿
∑

𝑙=1
E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 1)) }

Therefore, 𝑞(𝜉𝑘) is distributed by Beta with parameters:

𝜂𝑘 = 𝜂0 − 1 +
𝐿
∑

𝑙=1
E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 0)) (C.65)
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Fig. 7. The heat map and the dendrogram show three major clusters detected by Ginkgo. The copy number is color-coded by a scale from green (small) to magenta (large).

𝛾𝑘 = 𝛾0 − 1 +
𝐿
∑

𝑙=1
E𝑞(𝑆𝑘)(I(𝑆𝑘𝑙 = 1)) (C.66)

Update equation for 𝑆𝑘𝑙: We calculate 𝑞(𝑆𝑘𝑙) as follows.

log 𝑞(𝑆𝑘𝑙)

= E−𝑆𝑘𝑙

(

log𝑃 (𝐘,𝐗,𝐒,𝐙,𝐂,𝜳 )
)

+
≈ E−𝑆𝑘𝑙

(

log𝑃 (𝐗|𝐙,𝐒,𝜳 )
)

+ E−𝑆𝑘𝑙

(

log𝑃 (𝐒|𝜳 )
)

Disregarding the terms that do not depend on 𝑆𝑘𝑙 in the above, we
obtain:

log 𝑞(𝑆𝑘𝑙)
+
≈ I(𝑆𝑘𝑙 = 0)E𝑞(𝜉𝑘)(log 𝜉𝑘) + I(𝑆𝑘𝑙 = 1)E𝑞(𝜉𝑘)(log(1 − 𝜉𝑘))+ (C.67)

𝑁
∑

𝑛=1

1
∑

𝑠=0
E𝑞(𝑍𝑛)(I(𝑍𝑛 = 𝑘))I(𝑆𝑘𝑙 = 𝑠) log𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠)

+
≈  +

𝑁
∑

𝑛=1


where  = I(𝑆𝑘𝑙 = 0)E𝑞(𝜉𝑘)(log 𝜉𝑘) + I(𝑆𝑘𝑙 = 1)E𝑞(𝜉𝑘)(log(1 − 𝜉𝑘)), and
 =

∑1
𝑠=0 E𝑞(𝑍𝑛)(I(𝑍𝑛 = 𝑘))I(𝑆𝑘𝑙 = 𝑠) log𝑃 (𝑋𝑛𝑙|𝑔 = 𝑠).

Therefore, 𝑞(𝑆𝑘𝑙) is distributed by Bernoulli up to an additive con-
stant. The Bernoulli parameter, corresponding to 𝑆𝑘𝑙 = 1 is as the
following.

𝛴𝑘𝑙 = E𝑞(𝜉𝑘)(log(1 − 𝜉𝑘)) +
𝑁
∑

𝑛=1
E𝑞(𝑍𝑛)(I(𝑍𝑛 = 𝑘)) log𝑃 (𝑋𝑛𝑙|𝑔 = 1) (C.68)

𝛴𝑘𝑙 =
exp (𝛴𝑘𝑙)

∑𝐾
𝑘=1 exp (𝛴𝑘𝑙)

(C.69)

The rest of the update equations are the same as those in CopyMix.
The new expectations that are used in the above update equations

are the following.

E𝑞(𝜉𝑘)(log 𝜉𝑘) = 𝜳 (𝜂𝑘) − 𝜳 (𝜂𝑘 + 𝛾𝑘) (C.70)

E𝑞(𝜉𝑘)(log(1 − 𝜉𝑘)) = 𝜳 (𝛾𝑘) − 𝜳 (𝛾𝑘 + 𝜂) (C.71)

Appendix D
Here, we provide the details of the simulations. Because there is

no simulation framework available, we generated data using the most
reasonable way; that is, we assume a diploid cell (normal cell) can
be affected by various copy number events (comprising duplications

Fig. 8. DLP data histogram plot.

and deletions). We use an HMM, a generative model with latent copy
number states, to generate the observed read ratios. HMM is a well-
known model for copy numbers; see HMMCopy (Shah et al., 2006) for
more details.

The generated configurations (CONF 1 to 18) are shown in the main
paper, see Fig. 3. We modulate the read ratios by introducing subtle
noise. Regarding the number of clusters, each of CONF 1 to CONF 5
contains two clusters, CONF 6 to CONF 10 three clusters, CONF 11 to
CONF 13 four clusters, and CONF 14 to CONF 18 five clusters. The copy
number transition patterns are formed using the following copy number
state patterns, which are inspired by the CNV, along with single-cells
that are obtained using the DLP technology (Laks et al., 2019).

• single state: a copy number is inclined to remain at one certain
state (CONF 1, CONF 2, CONF 3, CONF 4, CONF 5, CONF 12, and
CONF 13 include this pattern);

• inertial state: a copy number is inclined to remain unchanged
(The blue cluster in CONF 6 to CONF 10 includes this pattern);
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Fig. 9. SNV counts are illustrated as colors in the heatmap for 891 cells (Y axis) across the genomic positions (X axis).

Fig. 10. Correlation between CNVs and SNVs on the DLP data.

• oscillating state: a copy number fluctuates between two states
(The green cluster in CONF 6 and CONF 9 include this pattern);

• altered state: a sudden deletion- or duplication-like event of copy
number occurs (all configurations include this pattern);

• scaled state: for specific ranges of positions in the copy number
sequence, copy numbers are increased or decreased by a mul-
tiplicative or additive constant (all configurations include this
pattern except CONF 3, CONF 4, CONF 6, CONF 11, and CONF
13);

• whole-genome duplication: all copy numbers across the genome
are scaled (CONF 5 includes this pattern).

For each simulation, the following steps are performed.

1. Set the random seed.
2. Generate cells belonging to clusters by sampling from a multi-

nomial distribution given a vector of cluster-assignment proba-
bilities.

3. Generate rates for all cells. Rates are sampled from a Gaussian
distribution with a mean of 10 and a standard deviation of 1.

4. Distribute the rates among the cells for different clusters; this is
done based on step 2.

5. Set values to the number of HMM’s hidden states, transition
matrix of each cluster, and sequence length.

6. Generate a Gaussian HMM for each cluster using cell rates of
that cluster, number of hidden states, transition matrix of the
cluster, and sequence length; this results in one copy number
hidden sequence and different cell ratios emitted from that copy
number sequence (the copy number is multiplied by the rate,
representing the emission’s mean).

7. Accumulate the cells from the previous step and insert them
into a dataset. Similarly, their cluster labels and the hidden copy
number sequences are stored into datasets.

Appendix E

In this section, we report the results obtained by Ginkgo.
Ginkgo’s hierarchical clustering, after deleting 80% of the cells,

detects three main clusters; firstly, the question is how the clustering
would be if they did not exclude so many cells. Secondly, we cannot
state that hierarchical clustering detects more than those three clusters.
That is because the branch lengths of the smaller clusters, in the hierar-
chical clustering, are negligible in size compared to the branch length of
the main three clusters. To include these branches and, consequently,
the smaller clusters, one must choose a very shallow threshold when
cutting the dendrogram produced by the hierarchical clustering. If we,
based on shared events in dark green in Fig. 7, assign a threshold
such that we include the two subgroups depicted in the bottom and
green part of Fig. 7, then Ginkgo detects four clusters. Regarding the
four clusters, CopyMix outperforms Ginkgo with V-measure 67% com-
pared to V-measure 55%. The remaining Ginkgo subgroups containing
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magenta-colored copy numbers require a lower threshold than those
for the four clusters. Finally, it is essential to mention that Ginkgo’s
web application, one advantage of using Ginkgo (Mallory et al., 2020),
could not handle the large DLP data. To run Ginkgo, we developed a
bash tool that assembled the back-end parts of the Ginkgo into a new
script.

Appendix F

This section discusses why Gaussian is chosen as a distribution for
the read ratios. Following the principle of maximum entropy, we choose
Gaussian because it has maximum entropy for a specified mean and
variance (Jaynes, 1957). Also, the histogram plot of DLP data (Fig. 8)
confirms a skew-normal distribution. Finally, it is common that the data
is assumed to follow Gaussian distribution; see HMMcopy and another
HMM-based approach (Shah et al., 2006; Guha et al., 2008).

Appendix G

In this section, we illustrate the SNV data, confirming too shallow
data signals for further cluster detection. As shown in Fig. 9, one
can observe that the cells, which are on the Y axis, can be clustered
into three main groups. Note that the three plots show in total 15000
sites where SNVs are detected. Performing K-means and hierarchical
clustering resulted in three clusters; hence, it is reasonable that this
data has been too shallow to reveal more clusters.

Finally, Fig. 10 that is taken from the analysis of the DLP data (Laks
et al., 2019) shows a fairly equal contribution of CNVs (breakpoints)
and SNVs supported by the high correlation between them.
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