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Abstract
Epidemics, apart from affecting the health of populations, can have large impacts on 
their social and economic behavior and subsequently feed back to and influence the 
spreading of the disease. This calls for systematic investigation which factors affect 
significantly and either beneficially or adversely the disease spreading and regional 
socio-economics. Based on our recently developed hybrid agent-based socio-econ-
omy and epidemic spreading model we perform extensive exploration of its six-
dimensional parameter space of the socio-economic part of the model, namely, the 
attitudes towards the spread of the pandemic, health and the economic situation for 
both, the population and government agents who impose regulations. We search 
for significant patterns from the resulting simulated data using basic classification 
tools, such as self-organizing maps and principal component analysis, and we moni-
tor different quantities of the model output, such as infection rates, the propagation 
speed of the epidemic, economic activity, government regulations, and the compli-
ance of population on government restrictions. Out of these, the ones describing 
the epidemic spreading were resulting in the most distinctive clustering of the data, 
and they were selected as the basis of the remaining analysis. We relate the found 
clusters to three distinct types of disease spreading: wave-like, chaotic, and transi-
tional spreading patterns. The most important value parameter contributing to phase 
changes and the speed of the epidemic was found to be the compliance of the popu-
lation agents towards the government regulations. We conclude that in compliant 
populations, the infection rates are significantly lower and the infection spreading is 
slower, while the population agents’ health and economical attitudes show a weaker 
effect.
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Introduction

When facing an epidemic, human societies react in different ways trying mitigate its 
effects However, the measures the local governmental bodies take measures aiming 
to limit the spreading of an infectious disease can have undesirable societal con-
sequences, such as social isolation and diminished economic activities. As these 
socio-economic concerns shape the epidemic response, the result is a feedback loop 
in which the societal reactions affect the epidemic spreading and vice versa.

The responses of human societies to large-scale crises are strongly guided by their 
prevailing societal values. For example, the responses may be influenced by how 
much social responsibility toward others and economic activity are valued. Recently, 
we have presented a proof of concept model combining socio-economic simulations 
with epidemic spreading, called the BTH-SEIRS model [1]. The epidemic part of 
this hybrid model is based on a SEIRS system[2–4] and it takes into account sepa-
rately the properties of the disease, namely its virulence and lethality with stochastic 
mechanisms for the geographical spread by the population mobility[5–8], while the 
socio-economic part is based on an agent–based implementation of the better–than 
hypothesis (BTH), introduced in [9, 10] that governs how different agents and their 
values influence the spreading speed of the epidemic. The main motivation of the 
model was to create a rudimentary bridge between epidemic modeling and simulat-
ing the behaviour of human societies with a simple psychological model.

The BTH–SEIRS model contains two different types of agents, the population 
and government agents, characterised by a total of six parameters, each having an 
effect on the epidemic spreading [1], such that the populations value their own 
efforts to mitigate the epidemic, their health status and their compliance with 
the restrictions put in place by governments, while the governments value the 
health and economic situations in their districts. Of these parameters the compli-
ance of the population turned out to have most impact on the spreading of the 
epidemic, with low or negative compliance leading to the epidemic spreading 
very fast in wavelike patterns, while high compliance resulted in the epidemic 
spreading slowly and chaotically. However, as these findings were based on rela-
tively few simulations, they raised more questions, such as to what regions of the 
parameter space these different types of behaviour exist, how wide are the transi-
tional regions between them, what is the possible transitional behaviour like, and 
whether completely new kinds of behaviour can be found in the six dimensional 
parameter space. In this study we set out to answer these questions.

In here, we write the equations in a different form to enable us to reduce the 
dimensionality of the parameter space from six to four. and with this scheme we per-
formed a total of 105 simulations in order to to adequately map the parameter space. 
These simulations produced a vast amount of data, and the analysis had to be auto-
mated.The analysis of the most prominent patterns in the data was carried out by 
principal component analysis (PCA [11–13]), self-organising maps (SOM [14]) and 
silhouette numbers [15]. Our aim is to determine whether the feature vectors formed 
from the simulation data exhibit clusters, whether they are significant, and which 
cluster has the most desirable property of slow infection spreading.
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To our knowledge, the BTH–SEIRS-model is currently the only agent–based 
epidemic model, where the societal values of agents play a role in how they deal 
with the epidemic in a country wide scale. More specifically, we do not know any 
other agent–based model, in which the simulated agents themselves determine their 
own levels of effort to mitigate the effects of the epidemic according to their val-
ues. There are, of course, other approaches in agent–based epidemic modelling, 
summaries of which can be found in [16, 17]. The models most analogous to ours 
are those that study the effects of epidemics spreading in social networks in which 
agent behaviour is a factor [18–20]. Some of the agent-based models concentrate 
on the economic effects of epidemics, but these are usually oriented toward testing 
the effects of different mitigation measures such as non-pharmaceutical interven-
tions (NPIs) [21–23], or the propagation of the effects of the epidemic via supply 
chains [24–26] rather than allowing the agents themselves determine the mitigating 
measures.

The rest of this paper is organised as follows: In the Methods–section we pre-
sent the model, the parameter space and how the simulations are analysed. In the 
Results–section we concentrate on the main findings, while we relegate some of the 
more mundane results to an appendix. The significance of the results are discussed 
in the final section.

Motivation

This study is an extension of earlier work [1], where we presented a novel hybrid 
epidemic model with agent–based and compartmental features. To summarize, in 
the model the simulated epidemic spreads through a two dimensional grid of geo-
graphic cells, each of which has a population whose epidemic situation is modeled 
by a compartmental SEIRS model. Epidemic spreads from one cell to others with 
a probability that is affected by the agent–based features of the model: The popula-
tions of the cells and the authorities of areas consisting of a number of cells can 
choose to make an economic contribution to mitigate the epidemic, i.e. lower the 
probability of its spread. These agents make their choices according to their val-
ues and naturally agents prioritising economic activity tend to choose lower miti-
gation measures than agents prioritising public health, with corresponding conse-
quences for the evolution of the epidemic. The inspiration for our model was the 
public discourse surrounding COVID-19 pandemic in its early stages, during which 
it was loudly debated whether the pandemic mitigation measures were worth their 
economic and social costs. The purpose of the BTH–SEIRS model is to serve as a 
very simple depiction of the ways social values can influence the actions affected 
societies take toward epidemic mitigation and the influence of these actions to the 
evolution of the epidemic.

BTH–SEIRS model has a total of six different parameters representing the val-
ues the agents can have, requiring huge amounts of simulations to map out the 
wholeparameter space. This was not attempted yet in [1].We merely demonstrated 
its basic behaviours in a few instructive cases. In particular, we focused on different 
spreading patterns that we could readily find and their effects on the evolution of the 
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epidemic and socio–economic effects measured by infection rated and agent mitiga-
tion measures, respectively. The easily recognisable spreading patterns were slow 
and chaotic, fast and wavelike, and an apparently transitional state between these 
with features of both. The purpose of the present study is to perform the desirable 
full parameter scan, classify the basic and possibly new behavioural patterns emerg-
ing with machine learning tools, namely self-organising maps (SOMs) and principal 
component analysis (PCA). Particularly, we aim at finding clusters of value param-
eter combinations that result in slow versus fast spread of the epidemic. This is our 
contribution to the emerging field of the machine learning assisted data analysis, a 
review of which can be found in [27].

Methods

In [1] we presented an epidemic model with agent-based and geographical elements 
that we named the BTH–SEIRS model. The main ideas behind the model are that the 
actions of the populations affected by an epidemic have a feedback effect on the evo-
lution of the epidemic itself, and that the actions of the populations are determined 
by the prevailing societal values. In this study we aim to investigate the effects of 
the values further in the BTH–SEIRS model. To this end, we varied the parameters 
representing the societal values in the model. Since the value parameter space of the 
model is quite large, we had to perform a huge number of simulations and analyse 
their results in mass scale using computational methods of the self organising maps 
(SOMs) and the principal component analysis (PCA). In the first part of this section 
we present the BTH–SEIRS model following very loosely the format of the ODD 
protocol [28] and in the second part the computational tools.

Mathematical model

Purpose

The purpose of the BTH–SEIRS model is to describe a situation where an epidemic 
spreading through a populated geographical region inspires the affected populations 
to mitigate its spread. The motivation for the model is to simulate the feedback loop 
between the actions of the populations reacting to the epidemic and the evolution of 
the epidemic itself, of particular interest is the effect that societal values have on the 
behaviour of the population.

Entities, state variables and scales

The BTH–SEIRS model is a hybrid epidemic model which consists of an with agent 
based model (BTH) and a multiple compartmental SEIRS model on a geographical 
two dimensional space. The simulated geographical region is a two dimensional grid 
of cells. In each cell one defines SEIRS dynamical model. The cells are grouped 
together to form larger districts that represent administrative divisions of the region. 
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The populations of the grid cells and the authorities of the districts are treated as 
agents, which can mitigate the spread of the simulated epidemic. The internal state 
variables of these agents can be divided into those related to their decision making 
algorithm driven by the BTH part and those related to the SEIRS part governing the 
evolution of the epidemic. For the population agents the former consists of the effort 
they put in mitigating the epidemic (x) and the latter of the proportions of the full 
population in the susceptible (S), exposed (E), infected (I) and recovered (R) com-
partments. The only state variable that the authority agents have is the restrictions 
(X) they impose on the population agents. Derived variables depicting the compli-
ance of the population agents, the infection rates and the economic activity of the 
districts and the probability for the epidemic to spread from one cell to a neighbour-
ing one are also important to the running of the model as detailed below. In this 
study, there is no meaningful spatial scale, since the spreading of the epidemic is 
stochastic, but the scale of the time-steps is one day.

Basic assumptions

Basic assumptions of the BTH–SEIRS model can be grouped into the assumptions 
regarding spreading and evolution of the simulated epidemic and the decision mak-
ing of the population and authority agents. When it comes to the spreading of the 
epidemic from an infected geographical cell to an uninfected one we assume that the 
spreading process is stochastic, and occurs with a probability that is determined by 
the mobility of the simulated populations of the cells. Once the epidemic has spread 
to a cell, the evolution of the epidemic in that cell is assumed to be independent of 
the epidemic situation in other cells. In other words, we assume that the mobility 
of people only affects how the epidemic spreads from one area to another but oth-
erwise has negligible effects on the infection numbers once the epidemic is in full 
swing. The evolution of the epidemic in each infected geographical cell is governed 
by a SEIRS compartmental model, in which people move from the susceptible com-
partment to exposed exposed, infective and recovered compartments, in that order, 
before eventually returning to the susceptible compartment.

The basic assumption of the BTH part of the model is that the simulated agents 
compare themselves to others of their type, and their main motivation is to attain 
as high relative social position as possible. A corollary of this assumption is that 
the values of the agents can be represented as comparison scales with associated 
weight parameters that determine how important it is for a given agent to rank high 
(if the weight parameter is positive) or low (if the weight parameter is negative) 
on each individual comparison scale. The weight parameters are in the context of 
BTH called value parameters. The comparison scales that govern the behaviour 
of the population agents are assumed to be the strength of their epidemic mitiga-
tion efforts, the infection rates and their compliance with the recommendations of 
the authority agents, while the comparison scales that govern the behaviour of the 
authority agents are their restrictions, total infection rates in their districts and the 
reduction of the economic activity in their districts. We also assume that the agents 
will take minimum mitigation efforts allowed by the BTH–utility function, which is 
detailed below.
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In addition to the assumptions associated with the BTH and SEIRS parts of the 
model, we also assume that the mitigation measures of the population agents have a 
linear relation to the probability of the epidemic spreading from one geographical 
cell to others.

Evolution of the epidemic in a single cell: SEIRS

The SEIRS model has the following set of parameters that govern the epidemic 
development in each cell of the two dimensional grid at each timestep: 

1. the period of latency before those who contract the disease become infectious �
2. the period of infectiousness �
3. the period of immunity �
4. the mortality rate �
5. the transitivity of the disease �.

The dynamics of s of susceptible (S), exposed (E), infected (I) and recovered (R), 
are governed by the following map:

where,

and � is the portion of the population that is susceptible again after being recov-
ered. When a cell is infected at time t0 the number of infected people is reset by the 
parameter � , such that St0 = 1 − � and It0 = �.

Spreading of the epidemic between cells

The dynamics of epidemic is described by the SEIRS model introduced in [5], in 
which the epidemic could spread from one cell to a neighboring cell though a Monte 
Carlo process with probability given by a mobility parameter vt , or to a more distant 
cell with some other probability to mimic different means of transportation e.g. air, 
rail, or roads. However, for the sake of clarity, long distance spreading is not consid-
ered in this study.

(1)

St+1 = q(St − Gt + �qbGt−1−b) + �N

Et+1 = q(Et + Gt − q�Gt−�)

It+1 = q(It + q�Gt−1−� − qbGt−1−a)

Rt+1 = q(Rt + qaGt−1−a − qbGt−1−b),

(2)

q = 1 − �

a = � + �

b = � + � + �

G� = S�(1 − e−�I� ),
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Coupling between the two parts of the model

The coupling between the grid cell populations and district authorities of the BTH 
model is accomplished by the dependence of the mobility vt

i
 on the BTH x variable. 

For the sake of simplicity, this dependence is assumed to be linear:

where v0 is the maximum value of the mobility parameter, 0 ≤ xi ≤ 1 is the reduc-
tion of the socio-economic activity of the population agent i, and vmax < v0 is the 
maximum reduction in the infectiousness of the disease that the socio-economic 
measures can deliver, since we assume that the population agents will not reduce 
their economic activity below the level necessary for their survival. For the pur-
poses of this study we have arbitrarily set the base spreading probability v0 to 0.5 
and maximum reduction achievable with non–pharmaceutical interventions (NPIs) 
vmax to 0.49.

Decision making of the agents: BTH

The behaviour of the agents are based on the following utility equations

where the lower case letters refer to the population agent measures and capital letters 
to authority agent measures. Thus,

• uj and Uk are the BTH utilities of the population agent j and the authority agent k, 
respectively.

• xj and Xk are the quantities describing the reduction of economic activity by the 
population agent j and of the restrictions put in place by the authority agent k, 
respectively.

• yj and Yk are the quantities for infection rates in the cell of population agent j and 
the overall infection rated in the district governed by authority agent k, respec-
tively.

• cj = xj − Xr
j
 and Zk =

∑
j∈Dk

xj are the compliance of the population agent j and 
the overall reduction of economic activity in the district Dk governed by author-

(3)vt
i
= v0 − xivmax,

(4)

ui = wx
i

(
xi +

∑

j∈ei

(xi − xj)

)
+ w

y

i

(
yi +

∑

j∈ei

(yi − yj)

)
+ wc

i

(
ci +

∑

j∈ei

(ci − cj)

)
,

(5)

Ui = WX
i

(

Xi +
∑

j∈Ei

(Xi − Xj)

)

+WY
i

(

Yi +
∑

j∈Ei

(Yi − Yj)

)

+WZ
i

(

Z′
i +

∑

j∈Ei

(Zi − Zj)

)

,
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ity agent k, respectively. Zk is linked to the gross domestic product Z′
k
 by 

Z�
k
= 1 − Zk.

• wx
i
 , wy

i
 and wc

i
 are the parameter values that the population agent i holds for their 

own effort to mitigate the epidemic, their own health and their compliance with 
the authorities’ restrictions, respectively.

• WX
i

 , WY
i

 and Wc
i
 are the parameter values that the authority agent i holds for the 

restrictions they put in place to mitigate the epidemic and the overall health and 
economic activity in their districts, respectively.

With some assumptions, principally that the agents will make the minimum effort to 
mitigate the epidemic ( ui = Ui = 0 ), we derived the following expressions for xi and 
Xi for each time step:

Process overview

The processes of the model over one timestep take place in the following order: 

1. Updating the sizes of the SEIRS compartments in each of the geographical cells 
where the epidemic has spread.

2. Simulating the spread of the epidemic. The epidemic spreads from one infected 
cell to another with a probability that is determined by the mitigating efforts of 
the population agents, as described above.

3. Update the mitigating efforts of the population agents and the restrictions imposed 
by the authority agents.

Emergence

If the model parameters are set to allow for a wide range of possible values for the 
spreading probability and the effect of the value parameters is observed, the sim-
ulated epidemic can be seen to spread with varying speed in accordance with the 
population agent mitigation measures. In our earlier studies we have determined 
that the value the population agents place on compliance with the restrictions of the 

(6)

xi =
1

|ei| + 1

(

wx
i

wx
i + wc

i

∑

j∈ei

xj −
wy
i

wx
i + wc

i
(yi +

∑

j∈ei

(yi − yj)

)

+
wc
i

wx
i + wc

i
(|ei|Xr

i −
∑

j∈ei

cj),

Xi =
1

|Ei| + 1

(

∑

j∈Ei

Xj −
WY

i

WX
i

(Yi +
∑

j∈Ei

(Yi − Yj)

)

−
WZ

i

WX
i

(Zi +
∑

j∈Ei

(Zi − Zj))).
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authorities have the most noticeable effect (compliant populations are more effective 
in mitigating the spread), but other values have their effects as well.

Additional notes on the agent functions

The simulated agents have no adaptive, predictive or learning features. The popula-
tion agents sense the infection rates and the mitigating efforts of the neighbouring 
population agents, while the authority agents sense the infection rates in their own 
areas and the restrictions enacted by all the other authority agents. The simulated 
agents do not interact directly, but the decisions they make on the mitigation efforts 
or restrictions have an effect how others behave.

Data analysis methods and the surveyed parameter space

Surveyed parameter space and simulated data

As described above, the BTH–SEIRS model has a total of six different value 
parameters, which makes the value parameter survey a large computational task. 
However, it is possible to simplify the governing equations of the agents in a way 
that reduces the amount of value parameters by two. Since the minimum effort 
assumption implies wc

i
< 0 and WX

i
< 0 , the equations 6 can be written in the form

where

and wc
i
≠ wx

i
 (or w̃c

i
≠ 1 ) always to prevent division by zero.

The formulations in Eqs.  7 and 8 allow us reduce the dimensionality of this 
parameter survey from six to four, since we need only consider the tilde param-
eters. Thus we conduct the survey with the following grid:

• w̃
y

i
= −0.25,−0.5,−1,−2,−4,−3,−5,−10,−25,−50,−15,−20,−30,−40,−45

• W̃Y
i
= −0.25,−0.5,−1,−2,−4,−3,−5,−10,−25,−50,−15,−20,−30,−40,−45

• w̃c
i = −0.25,−0.5,−1,−2,−4, 0.25, 0.5, 1, 2, 4,−0.75,−3,−5,−7.5,−10, 0.75, 3, 5, 7.5, 10

• W̃Z
i = −0.25,−0.5,−1,−2,−4, 0.25, 0.5, 1, 2, 4,−0.75,−3,−5,−7.5,−10, 0.75, 3, 5, 7.5, 10

Here we have chosen W̃Y
i

 and w̃y

i
 to be always negative because of the assumption 

that the population and authority agents will make minimum efforts to mitigate 

(7)

xi =
1

|ei| + 1
(

1

w̃c
i
− 1

∑

j∈ei

xj −
w̃
y

i

w̃c
i
− 1

(yi +
∑

j∈ei

(yi − yj))) +
w̃c
i

w̃c
i
− 1

(|ei|Xr
i
−
∑

j∈ei

cj),

Xi =
1

|Ei| + 1
(
∑

j∈Ei

Xj + W̃Y
i
(Yi +

∑

j∈Ei

(Yi − Yj)) + W̃Z
i
(Zi +

∑

j∈Ei

(Zi − Zj))),

(8)w̃
y

i
=

w
y

i

|wx
i
|
, w̃c

i
=

wc
i

|wx
i
|
, W̃Y

i
=

WY
i

|WX
i
|
, W̃Z

i
=

WZ
i

|WX
i
|
,
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the epidemic, ruling out herd immunity approach to dealing with the epidemic. 
We have chosen W̃Z

i
 to have both positive and negative values, even though it 

means that authority agents in the former case consider a declining economy to 
be an asset. This choice was made because there are no theoretical reasons to 
exclude positive values of W̃Z

i
 , although there may be no real world authorities 

taking this view.
For each of these grid points we made two simulations in which the value param-

eters were randomized within the radius of 0.1 and the mean value indicated by 
the grid point, for a total of 105 simulations. From these simulations we saved the 
information of the number of districts, size of the districts, value parameters of the 
authority and population agents, the times series of gross domestic products, gov-
ernment regulations, population compliance, infection rates by district, and finally 
the epidemic arrival time map Aij and the slowness Λ.

Of these the Aij and Λ are measures of the speed of the spreading epidemic in the 
simulation, which we have introduced to monitor the spread of the epidemic with 
more detail in our simulations. These work as follows: The time step at which the 
epidemic spreads to geographical cell located at (i, j) is recorded to the arrival time 
map element Aij . If the epidemic does not spread to a cell during the time frame of 
the simulation, the time will be marked down as the last time step of the simulation. 
The elements of the matrix Aij are then summed together to get an overall measure 
for the spreading rate of the epidemic,

AT attains its maximum value Amax
T

 in the situation where the epidemic is not spread-
ing at all from its initial beginning cell, in which case

where Ts is the simulation length and Nc the number of simulated cells. Comparing 
AT to Amax

T
 yields a fractional measure that describes the slowness of the epidemic 

spread

which we will call the Λ measure. The lower Λ is, the faster the propagation of the 
epidemic, with a theoretical minimum value of

which occurs in the case where the epidemic spreads instantly to all the geographi-
cal cells in a simulation, while Λ = 1 indicates that the epidemic does not spread at 
all, as stated above. The Λ measure can be defined for each district separately by tak-
ing into account the arrival time of the epidemic into each district.

(9)AT =
∑

i,j

Aij.

(10)Amax
T

= Ts × (Nc − 1) + 1,

(11)Λ =
AT

Amax
T

,

(12)min(Λ) =
Nc

Amax
T

,
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Data analysis methods

The quantities tracked by our model are the average economic activity, government 
regulations, dynamic compliance, infection rates in the nine modeled districts, and 
the Λ measures defined in the previous section, and we construct feature vectors for 
classification purposes for all of these. With the information from the simulations 
we then endeavour to find different behavioural types in the simulations with self 
organising maps (SOM) using the Minisom python package [29]. We also made use 
of the Scikit Learn python package [30] to perform a principal component analysis 
(PCA)for the Minisom feature vectors for visualisation purposes.

Our data analysis workflow can be detailed as follows: For the first four meas-
ures listed above we construct the feature vectors by averaging the simulation 
data over time and then arranging the these averages by the district number, 
such that the feature vectors take the form (average measure in district 1, aver-
age measure in district 2,..., average measure in district 9). For the Λ measure 
we take into account both the last Λ time stamp in each district and the indi-
vidual district Λ measures and arrange this data into the following feature vector: 
(maximum recorded Λ time step in district 1,..., maximum recorded Λ time step 
in district 9, Λ measure in district 1,..., Λ measure in district 9). Next, we perform 
a dimensionality reduction on these vectors using PCA to visualise them in three 
dimensions to make sense of the classifications of this data for which purpose we 
use the SOMs. They require a two dimensional neuron matrix as input, to which 
the data is mapped. Here we use 1 × n row matrices as the input, with the neuron 
counts n going from 2 to 20.

Having created these 19 different classifications for each of the feature vectors 
we proceed to evaluate their quality with silhouette numbers, for which we use the 
definition given in [15]. Silhouette numbers for individual simulations can range 
between −1 to 1, with positive values meaning that the cluster the simulation has 
been assigned to by the SOMs is the optimal one in the given classification and 
negative values meaning that the simulation would be better places in another clus-
ter. Values near zero mean that the simulation is situated in space between two or 
more different clusters. The higher the silhouette numbers of all the simulations are 
overall, the better the classification found by the SOMs is. We evaluate the overall 
performance of the SOM classifications by average and median silhouette numbers, 
along with the proportion of negative silhouette numbers. Experimenting with the 
feature vectors defined above we found that the ones based on infection rates within 
districts and the district Λ measures exhibited the highest average and median sil-
houette numbers at more than 0.8 and the lowest proportion of the negative silhou-
ette numbers at less than 0.1, resulting in most easily recognizable clustering behav-
iours in the PCA visualisation. All the other classifications hardly reach average and 
median silhouette numbers of 0.7 at maximum, and barely recognizable clusters in 
the PCA visualisations.

In the following subsections we present the results of this procedure in the 
order given above. It should be noted that we are only interested in the large scale 
behaviour of the system, and so we use relatively simple methods as the PCA and 
SOMs to make our classifications, as opposed to more involved methods. Since the 
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classification results are not interesting themselves, we assign them to an appendix, 
but in short, they can be characterised as follows: Infection rate and Λ classifications 
form easily identifiable clusters, while the compliance classification appears to have 
two clusters touching each other, while the silhouette numbers suggest an optimum 
clustering with three SOM neurons. The economic and regulation classifications 
consist of bundles of filamentary structures that are not easily clustered. Next we 
take a closer look at the infection rate, regulation and Λ classifications, while ignor-
ing the economic and compliance classifications. As stated above, our goal is to find 
easily identifiable phases, not to shift through all the possible fine structures present 
in the data we generated as part of this parameter survey.

Fig. 1  The SOM classifications based on average infection rates and Λ measure with three SOM neurons: 
A Exhibits the distribution of the SOM clusters as arranged by PCA for the former and (B) for the lat-
ter. C and D show the corresponding silhouette profiles of the classifications., which are constructed by 
arranging the simulations in the SOM assigned clusters to ascending order according to their silhouette 
numbers, and then plotting their silhouette number by clusters. In the profiles we have marked the maxi-
mum, minimum, average (a) and median (m) silhouette numbers of all three clusters. E Shows a three 
dimensional distribution of the clusters in the value parameter space for the infection rate classification, 
when the fourth dimension W̃Y is collapsed into the others
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Results

The classification by infection rates and 3 measures

As shown in the appendix, the infection rate and Λ classifications using SOMs pro-
duce consistently the highest quality results as judged by the silhouette numbers, 
when compared with other classification schemes used. In this section we study why 
this is the case. The easiest way to see this is by taking a closer look to the classifi-
cations using three SOM neurons. The top panels of Fig. 1 illustrate this case in the 
PCA space, while the middle panels show the silhouette profiles.

The positioning of these clusters in the value parameter space is shown in 
panel (E) of Fig. 1, in which the four dimensional parameter space is projected into a 
three dimensional space by collapsing W̃Y to the other dimensions. Since the clusters 
are very similar in shape in both the infection rate and Λ classifications, only the for-
mer is shown. Similarly, it makes little difference if w̃y were collapsed instead of W̃Y.

Panel (A) of Fig. 1 shows that there are a total of three different clusters of vary-
ing densities that SOM has identified correctly. In the order of increasing density we 
have cluster 2 coloured green, cluster 0 coloured blue and cluster 1 coloured orange. 
Similarly, in the case of Λ classification shown in panel (B) of Fig. 1 there are three 
clusters, two of which look like wings and a third of which is less well defined in 
shape. In the value parameter space, as shown in Fig. 1(E), we see that these clusters 
mostly occupy the spaces defined by their position on the w̃c axis: Cluster 1 consists 
of the simulations on the left side of the w̃c = 1 plane, while cluster 2 takes most of 
the right hand side of the the w̃c = 1 plane. Cluster 0 consists of points in the w̃c = 1 
plane.

Table 1  Cluster statistics with Λ classification

Cluster Variable Min Mean Max Var

0 Λ 4.03 × 10−2 0.11 0.22 1.10 × 10−3

0 W̃Y − 50.10 − 10.65 − 0.15 225.48
0 W̃Z − 10.10 2.04 × 10−4 10.10 21.22
0 w̃y − 50.01 − 10.65 − 0.24 225.49
0 w̃c 0.99 1.00 1.01 1.16 × 10−5

1 Λ 1.20 × 10−2 1.46 × 10−2 3.35 × 10−2 3.14 × 10−6

1 W̃Y − 50.10 − 10.65 − 0.15 225.50
1 W̃Z − 10.10 1.89 × 10−5 10.10 21.22
1 w̃y − 50.01 − 10.65 − 0.24 225.50
1 w̃c − 10.02 − 2.5 0.76 10.13
2 Λ 0.29 0.35 0.42 2.42 × 10−4

2 W̃Y − 50.10 − 10.65 − 0.15 225.50
2 W̃Z − 10.10 7.92 × 10−6 10.10 21.22
2 w̃y − 50.01 − 10.65 − 0.24 225.49
2 w̃c 1.99 5.25 10.16 7.48
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The silhouette profile of the infection rate classification shows that judging by the 
mean and median silhouette numbers, cluster 1 is probably the best defined of these 
clusters, followed by cluster 2 and then cluster 0. The results for the Λ measure clas-
sification are almost identical to the infection rate classification in the value parame-
ter space (and so we only display the infection rate classification results in panel (E) 
of Fig. 1), while the silhouette numbers indicate that the all the clusters are generally 
much better defined in the Λ classification in comparison to their equivalents in the 
infection rate classification, especially when the minimum silhouette numbers are 
considered.

Having established these clusters with the use of SOM, we have to now deter-
mine their physical meaning. To that end we calculated some statistics on the clus-
ters, which we show in Table 2 for the infection rate classification and in Table 1 for 
the Λ classification. We calculated the mean value parameters of all the agents and 
the mean infection rates of the geographic cells from each of the simulations, and 
displayed the minimum. average and maximum values of those in the Tables. Also 
included is the variance of the means in the clusters. The tables show the ranges of 
the value parameters and the quantities that the classification is based upon. The 
results of [1] identified two main behavioural types in the BTH-SEIRS model: the 
regular and fast spreading wave fronts with negative w̃c and slow and chaotic spread-
ing patterns with positive wc , which clearly correspond to clusters 1 and 2 of the 
infection rate and Λ classifications, respectively. Cluster 0 is the transitional cluster 
between the other types, with a behavioural type that we called broken wave.

Observing the results shown in Table 1 we can also see that Cluster 2 has the 
slowest spreading epidemic and cluster 1 the fastest. These result in correspond-
ingly higher infection rates in the latter, as shown by Table 2. The value parameters 

Table 2  Cluster statistics with infection rate classification

Cluster Variable Min Mean Max Var

0 yi 3.75 × 10−2 5.97 × 10−2 7.41 × 10−2 4.48 × 10−5

0 W̃Y − 50.10 − 10.69 − 0.15 226.03
0 W̃Z − 10.10 −1.27 × 10−2 10.10 21.24
0 w̃y − 50.01 − 10.68 − 0.24 225.94
0 w̃c 0.99 1.00 1.01 1.16 × 10−5

1 Inf 6.68 × 10−2 7.55 × 10−2 7.83 × 10−2 4.18 × 10−7

1 W̃Y − 50.10 − 10.65 − 0.15 225.46
1 W̃Z − 10.10 1.01 × 10−3 10.10 21.22
1 w̃y − 50.01 − 10.65 − 0.24 225.46
1 w̃c − 10.02 − 2.50 1.01 10.14
2 Inf 1.77 × 10−3 1.41 × 10−2 4.43 × 10−2 1.96 × 10−5

2 W̃Y − 50.10 − 10.65 − 0.15 225.49
2 W̃Z − 10.10 2.68 × 10−6 10.10 21.22
2 w̃y − 50.01 − 10.65 − 0.24 225.50
2 w̃c 1.00 5.25 10.16 7.48
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are very similar in all the clusters with the exception of the compliance. Clusters 2 
and 0 have always positive compliance, while cluster 1 has mostly negative com-
pliance. All value parameters other than compliance range the whole spectrum of 
allowed values in all the clusters, which shows definitely that compliance determines 
whether the chaotic pattern manifests itself in a given simulation run. The results 
on the value parameters on Table 2 are numerically almost identical to those of 1, 
with the only substantial exception being the minimum compliance value, which is 
1.99 in the Λ classification and 1.00 in the infection rate classification. In any case, 
results this similar suggest that both classifications deal with the same underlying 
reality, when it comes to the evolution of the simulated epidemic.

Two things should be noted at this point about the effects of increasing or decreas-
ing the number of SOM neurons used to make the infection rate classification, which 
also apply to the Λ measure classification: 

1. If only two neurons were used to make the classification, clusters 0 and 1 (and 
their equivalents in the Λ classification) will merge into one, while cluster 2 would 
remain effectively unchanged, which is the expected result judging from Fig. 5.

2. If more than three neurons are used to make the classification, clusters 1 and 2 
will remain unchanged for the most part, while cluster 0 will be divided into as 
many new clusters as the neuron count allows the SOM to find.

These facts indicate that the transitional state from the wave spreading pattern to 
the chaotic pattern represented by cluster 0 is very complex, with great deal of local 
variation according to the value parameters used in each simulation. It is notewor-
thy that the density of the three clusters seems to decrease in the PCA visualisation 
as their regularity increases, which is perhaps to be expected as PCA organizes the 
simulations according to their contribution to the variance between the simulations. 
At least intuitively one would expect more variability in the chaotic spreading pat-
tern than the wave like pattern.

In order to demonstrate the behavioural types of the clusters found by SOM, we 
performed simulations in the vicinity of the centroids of the clusters in the value 
parameter space. Because wc

i
 must not have exactly the same numerical value as wx

i
 , 

w̃c cannot have exact value of 1. That is why we chose to perform two simulations 

Fig. 2  Representative visualisations of the simulations near the centroids of the clustersWith two exam-
ples for cluster 0 for purpose of demonstrating the effects of small differences at w̃c = 1 point. . (A): clus-
ter 0 when w̃c = 0.99 , w̃y = W̃Y = −10 and W̃Z = 0 , (B) The same as (A), except w̃c = 1.01 (C): cluster 
2 ( ̃wc = 5.2 , w̃y = W̃Y = −10.7 and W̃Z = 0 ), (D): cluster 1 ( ̃wc = −2.5 , w̃y = W̃Y = −10.7 and W̃Z = 0)
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near this critical point for the cluster 0 and display both of them in order to dem-
onstrate the effect of the compliance value parameter. Fig. 2 visualizes the results: 
Panels (A) and (B) represent cluster 0 at different sides of the w̃c = 1.0 , while panels 
(B) and (C) represent clusters 2 and 1, respectively. (A) shows a transitional state 
between chaotic and wave-like spreading types where the spreading pattern is still 
wavelike in form, but very irregular in comparison with the fully wave-like spread-
ing pattern shown in Panel (C). Panel (B) in contrast shows spreading pattern where 
some regularity remains in the form of small pockets of very irregular wave-like 
fronts, but very similar to the fully chaotic spreading patterns shown in panel (D).

The time-evolution of the district infection rates of these simulations, averages 
of which the present classification is based on, are depicted in Fig. 3. The wave-like 
cluster 1 exhibits naturally very regular periodic behaviour, while the chaotic clus-
ter 2 has not even fully settled into a regular periodic pattern. The behaviour of the 

Fig. 3  Infection rates of the simulations shown in in Fig. 2 , with matching panel labels
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transitional cluster 0 can be very similar to the chaotic or wavelike clusters depend-
ing on which side of the w̃c = 1 plane they happen to be on. The infection rates 
found in chaotic side of cluster 0 are only slightly more elevated when compared 
with the fully chaotic cluster, with the exception of area 1, which has significantly 
lower infection rates after t ≈ 750 . Due to the chaotic nature of the spreading in cha-
otic cluster, however, this is a situation which may have arisen purely by chance. The 
wave-like side of cluster 0 is much more different from the fully wave-like cluster 1, 
with the infection rates being very regular in the latter, and irregular in the former.

The reason for the transition from wavelike spreading patterns to chaotic ones 
at w̃c = 1 can be found in Eq. 7, where (w̃c − 1)−1 appears as a coefficient. In the 
simulations the value parameters are randomized for each population agent so that 
0.9 ≤ w̃c ≤ 1.1 in the vicinity of the w̃c = 1 point. this means that (w̃c − 1)−1 can 
have both positive and negative values, and that those values have very large abso-
lute values. In fact,

always. The end result is that in this limiting case all the population agents are either 
doing their utmost or very little, if anything at all, to mitigate the spread of the epi-
demic, and it is random which behavioural type any given agent adopts. In the simu-
lations this manifests as the massive difference in behaviour shown in panels (A) 
and (B) of Fig. 2.

W̃Z > 0 implies the hypothetical scenario in which governments would like to 
have their economy harmed by their own regulations, which is very unlikely. There-
fore, in the appendix we show SOM classification using only simulations with 
W̃Z < 0 as an additional experiment. The results for the infection rate and Λ feature 
vectors are striking in that in these halved parameter spaces there are three clear 
clusters to be found that clearly correspond to the three main behavioural types of 
the model detailed above. In short in this limited space the complications brought by 
wavelike portion of cluster 0 disappear.

Uncertainty test

In order to test our value parameter randomisation scheme and the stability of our 
model under multiple repetitions, we chose to perform 100 iterations of the model 
near three points representing the centroids of the clusters 0 − 2 with the same ran-
domisation scheme that we used to generate the data for the classification programs. 
The value parameters used are the same as used for clusters 1 and 2 in Figs. 2 and 3, 
but for cluster 0 we used only one point with w̃c = 1 , w̃y = W̃Y = −10.6 and W̃Z = 0 , 
since only one point in each was needed for the purposes of this uncertainty test. 
From this independent dataset we calculated statistics on the infection rates ( yi ), the 
reduction of the economic activity ( xi ) and the dynamic compliance of the popula-
tion agents, the restrictions put in place by the authority agents ( Xi ) and the Λ factor. 
The results of this test are given in Table  3. The randomisation scheme naturally 
causes some variations, but the variances are very small.

(13)|(w̃c − 1)−1| ≥ 10
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Table 3  Results of the uncertainty test

Cluster Variable Min Mean Max Var

0 yi 4.9 × 10−2 5.92 × 10−2 6.59 × 10−2 7.28 × 10−6

0 xi 0.62 0.70 0.74 4.41 × 10−4

0 ci 0.43 0.53 0.61 1.7 × 10−3

0 Xi 0.12 0.17 0.25 7.34 × 10−4

0 Λ 9.72 × 10−2 0.14 0.21 3.05 × 10−4

1 yi 7.72 × 10−2 7.78 × 10−2 7.84 × 10−2 9.15 × 10−8

1 xi 0.23 0.27 0.33 4.31 × 10−4

1 ci −5.71 × 10−2 −3.95 × 10−2 −2.48 × 10−2 5.3 × 10−5

1 Xi 0.25 0.31 0.39 7.61 × 10−4

1 Λ 1.45 × 10−2 1.59 × 10−2 1.76 × 10−2 5.04 × 10−7

2 yi 2.24 × 10−2 2.69 × 10−2 3.22 × 10−2 4.42 × 10−6

2 xi 0.51 0.57 0.63 6.32 × 10−4

2 ci 0.35 0.40 0.47 6.35 × 10−4

2 Xi 0.15 0.17 0.18 4.77 × 10−5

2 Λ 0.31 0.35 0.37 1.68 × 10−4

Fig. 4  The classification using a three neuron SOM with the average dynamic compliance as the feature 
vector. A The classification in the value parameter space. B The same in PCA space. C The silhouette 
profile
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Classification by dynamic compliance c
i

Judging from Figs. 5 and 6 in the appendix, the dynamic compliance classification 
seems most promising for closer analysis. While the shape of the PCA visualisation 
would suggest two clusters touching each other, the silhouette plot shows that three 
neuron SOM classification has the maximum average and median silhouette num-
bers, and the minimum proportion of negative silhouette numbers. The silhouette 
numbers are not as great as for the infection rate and Λ classifications, but nonethe-
less we choose to show the results of this optimum classification in Fig. 4, which 
shows the identified clusters in the value parameter space (A) and the PCA visuali-
sation (B), along with the silhouette profile (C).

The PCA visualisation shows two main clusters 0 and 1, with cluster 2 forming a 
bridge between them. In the value parameter space we can see that cluster 2 encom-
passes most of the w̃c < 0 and W̃Z > 0 sides of the value parameter space, leaving 
the w̃c > 0 and W̃Z > 0 quarter mostly for cluster 1. Cluster 0 seems to mostly con-
sist of points near the w̃c = 0 plane in Fig. 4. Cluster 2 seems best defined in terms 
of the silhouette clusters, followed by cluster 1 and then cluster 0. While the silhou-
ette numbers are not even remotely as high as those found in the infection rate and 

Table 4  Cluster statistics with compliance classification

Cluster Variable Min Mean Max Var

0 ci − 0.98 − 0.22 0.21 2.42 × 10−2

0 Xi 0.00 0.42 1.00 6.58 × 10−2

0 xi 0.00 0.16 0.80 2.74 × 10−2

0 W̃Y − 50.10 − 17.91 − 0.15 295.01
0 W̃Z − 10.10 1.52 10.10 25.59
0 w̃y − 50.01 − 6.89 − 0.24 155.36
0 w̃c − 5.01 − 0.16 1.01 0.79
1 ci − 0.49 0.27 0.80 2.22 × 10−2

1 Xi 0.00 0.20 0.96 3.33 × 10−2

1 xi 8.19 × 10−2 0.62 1.00 2.44 × 10−2

1 W̃Y − 50.10 − 11.65 − 0.15 243.34
1 W̃Z − 10.10 − 2.42 5.09 10.55
1 w̃y − 50.01 − 10.21 − 0.24 218.03
1 w̃c 0.99 4.68 10.01 8.52
2 ci − 0.58 3.19 × 10−3 0.30 5.09 × 10−3

2 Xi 0.00 0.24 1.00 7.19 × 10−2

2 xi 2.11 × 10−4 0.23 1.00 6.19 × 10−2

2 W̃Y − 50.10 − 7.65 − 0.15 165.25
2 W̃Z − 10.10 0.43 10.10 20.59
2 w̃y − 50.01 − 12.17 − 0.24 246.15
2 w̃c − 10.02 − 1.83 10.02 21.46
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Λ classifications on any measure, they are at least mostly positive, in contrast to the 
transitional cluster in those classifications.

In order to make more sense of the SOM classification, we repeated the same 
statistical analysis we did for the infection rate and Λ classifications and show the 
results in Table 4. In addition to the compliance ci we also display its components 
Xi and xi . It turns out that cluster 0 has the lowest compliance value on all measures 
(minimum, mean and maximum), while cluster 1 is revealed as the one with the 
highest compliance. Cluster 2 is then left with the average compliance values. With 
an average w̃c of −0.16 we can confirm the observation on the position of the cluster 
0 we made visually from Fig. 4, although some points in cluster 0 can have as low 
values as −5.01 and as high as 1.01. All other value parameters of the points in clus-
ter 0 run their whole allowed ranges, but their average values suggest that there is 
greater variability in the distributions of the clusters in the value parameter space in 
this classification than in the infection rate or Λ classifications. For example, W̃Z has 
on average the value of 1.52, which is higher than the average of about 0 one would 
expect if the distribution of cluster 0 was symmetric with respect to W̃Z . Similar 
asymmetries can naturally be seen in the statistics of cluster 2 as well: while all the 
value parameters span their whole allowed ranges, as one would expect from Fig. 4, 
there averages do not fall exactly near the values they would be if they were sym-
metric in terms of value parameters. This reflects the fact that clusters 0 and 2 inter-
mingle in the same regions of the parameter space. Cluster 1 in turn has somewhat 
more clearly defined position, though it is surprising to see that W̃Z can have as high 
values as 5.09, when from Fig. 4 one would expect W̃Z < 0 for all points in cluster 1.

The results for the government regulations Xi and the reduction of economic 
activity by the population agents xi shown in Table 4 reveal some interesting details 
about the compliance classification. For example, we can see that the average regu-
lations in cluster 0 are about twice as tough as in the other two clusters, 0.42 as 
opposed to 0.23 in cluster 2 and 0.20 in cluster 1. Also, the population agents in 
cluster 0 reduce their economic activity on average less than the population agents 
in the other clusters, and even the maximum reduction they make is only 0.80 com-
pared with 1.00 reduction in the other clusters (Notably, 1 is the maximum pos-
sible value for xi ). This may explain why the compliance values are lower in cluster 
0 than the others. Another noteworthy observation is that the average reduction of 
economic activity is almost three times as high in cluster 1 than in the other clus-
ters, 0.62 vs 0.16 and 0.23, while the regulations in the same cluster turn out to be 
the lowest at 0.20, although they are not much lower than the ones in cluster 2 with 
average regulations of 0.24. When it comes to minimum and maximum values of Xi 
and xi , all the clusters are actually very similar, with the exception of the maximum 
regulations of cluster 0, which are significantly lower than the respective maximum 
regulations in other clusters. Other than that, the maximum values are at or close to 
the maximum possible value of 1, and the minimum values are at or very close to 
the minimum possible value of 0.

Why does the SOM algorithm distinguish these three clusters in the case of the 
compliance feature vector, and what does that mean in relation to the infection 
rates? It is quite clear that cluster 1 is distinguished as a separate cluster due to it 
having relatively low regulations and very high popular commitment to epidemic 
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mitigation, leading to very high rates of compliance in comparison with other clus-
ters. In the case of cluster 2, on the other hand, the average regulations and popular 
mitigation measures are very similar in value, which results in near zero average 
compliance. It is likely that cluster 2 contains simulations that have both high reg-
ulations and high compliance (e.g. W̃Z > 0 and w̃c > 0 ) and simulations with low 
regulations and low compliance (e.g. W̃Z < 0 and w̃c < 0 ), which brings about this 
outcome. The remaining Cluster 0 is characterised by very high average regulations 
and very low popular mitigation efforts, which singles it out as the one with the low-
est compliance. From Table 4 we can see that average W̃Y is substantially lower for 
this cluster than the others, which may contribute to the higher regulations, and that 
the average w̃y is higher, which in turn may contribute to the lower willingness of the 
population agents to take epidemic mitigation measures, along with mostly negative 
w̃c . In summary, cluster 0 can be thought as the cluster in which authorities put up 
high regulations, but the populations do not follow them, cluster 1 can be thought 
of as a cluster where the authorities put up relatively low regulations, but popula-
tions go above and beyond in their epidemic mitigation measures, and cluster 2 is 
the cluster where populations on average match their mitigation measures with the 
regulations. Comparing these results with the infection rate and Λ classifications we 
see that the w̃c > 1 part of the value parameter space with generally lower infection 
rates is made up of cluster 1 in the W̃Z < 0 half and the rest is taken up by a quarter 
of cluster 2. The w̃c < 1 part is taken up by rest of the cluster 2 and cluster 0.

Conclusions

In this study we have explored the parameter space of our hybrid socio-economic 
epidemic BTH-SEIRS model[1] to investigate different behavioural phases of the 
model and transitions between them. This was done by wrapping two of the value 
parameters, WX and wx , into others and varying the resulting value parameters W̃Z

i
 , 

w̃c
i
 , W̃Y

i
 and w̃y

i
 for all the agents in the vicinity of 50, 000 points of the value param-

eter space. The mapping of this parameter space required in total of 100,000 simula-
tions. The vast set of data was analysed with SOM to classify the data, PCA to help 
visualize the feature vectors used in the SOM classifications, and silhouette numbers 
to evaluate the quality of the SOM classifications. The feature vectors of our classifi-
cations were based on the averages of the four main quantities tracked by the model 
namely, the infection rates, economic activity, government regulations and the popu-
lar compliance, together with a special Λ measure we introduced to measure the 
propagation speed of the epidemic. These data analysis techniques are powerful in 
revealing the most typical patterns in the data, which is in the focus of this study.

We find that the most significant value parameter in terms of the epidemic 
spreading type is the one representing the compliance of the general populations 
w̃c
i
 . Depending on this parameter value two main behavioural types of the model 

emerge: the wavelike spreading patterns with w̃c
i
< 1 and the chaotic spreading 
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patterns with w̃c
i
> 1 , while w̃c

i
= 1 marks the transitional state between these two. 

SOM revealed that the transition from one pattern to another is very complex in the 
parameter space, as judged by the fact that increasing the number of neurons in the 
SOM results in the transitional cluster being subdivided into more sub-clusters. The 
classifications based on the Λ factor turned out to agree with the infection rate clas-
sifications very closely.

Our analysis revealed significant patterns also with regard to compliance of the 
simulated populations. In this case silhouette numbers suggested three neurons to be 
the optimal for SOM classification, while shape of the feature vector in PCA visu-
alisation seemed more like two clusters colliding with each other. A closer statis-
tical look at the compliance, popular epidemic mitigation measures and epidemic 
regulations by the authorities in the clusters of the three neuron classification found 
by SOM showed that they represent recognizable joint behavioural patterns by the 
population and authority agents. In one cluster, mostly confined to the quarter of 
the parameter space with w̃c

i
> 1 and W̃Z

i
< 0 , the authority agents have relatively 

lax regulations, while the population agents make significant epidemic mitigation 
efforts, resulting in a high dynamic compliance on average. In the second cluster, sit-
uated in the parameter space between w̃c

i
≈ −5 and w̃c

i
≈ −1 , the agents have oppo-

site behaviours when compared with their counterparts in the first cluster, meaning 
high regulations and low mitigation measures, resulting in low compliance. Third 
and final cluster takes up most of the space in the outside of the quarter dominated 
by the first cluster, and consists of simulations in which the mitigation measures 
by the population agents match, on average, the regulations made by the authority 
agents, causing the dynamic compliance to have near zero average value. There is a 
reason to believe that this cluster then contains both simulations with matching low 
or high regulations and mitigation measures, which makes it the most widely spread 
of all the clusters in the value parameter space.

In sum the full parameter scan of the model yielded new insights into the behav-
ior of the model, and confirmed our preliminary results in [1]. The emphasis in the 
present study was to investigate measures describing the spread of the epidemic, 
namely the speed of its propagation and the dynamic infection rate. We found out 
that the compliance of the population is the major determining value parameter—in 
compliant populations the epidemic spread significantly slower than in non-compli-
ant ones. Using dynamic compliance as the feature vector we were also able to iden-
tify three clusters that correspond to different joint behavioural types of the popula-
tion and authority agents in our model. It turns out that in most areas of the value 
parameter space the mitigation measures by the population agents actually match the 
regulations given to them by the authority agents and, given how dynamic compli-
ance is defined, high compliance can only really occur when regulations are rela-
tively low. Similarly, low compliance is only possible when regulations are high. In 
this case the value parameter depicting how much authorities care about economic 
activity seems to be most important determinant of the stringency of the regulations 
they put in place, and together with the compliance of the population it determines 
how keenly the populations follow the regulations.
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Appendix: PCA and silhuette results

Figure 5 shows the results of the PCA analysis of our data with these feature vectors. 
It turns out that the economic feature vector produces a shape in the PCA space that 
does not readily lend itself to classification, at least when judged with human eyes, 
as there is only one easily identifiable cluster with rather complicated structure and 
and with some filamentary features. This is also the case for the regulationfeature 
vector, although there are a lot more filamentary features. The feature vector made 
from the average dynamic compliance looks like two clusters of points touching 
each other, with interesting symmetrical filaments attached to each cluster. The fea-
ture vector constructed from the average infection rates seem the easiest to classify, 
as it takes the form of three easily distinguishable clustersof varying density. The Λ 
measure feature vector, similarly, consist of three easily identifiable clusters, but the 
shapes of the clusters are very different from the infection rate feature vector: two of 
them are winglike, one has somewhat irregular shape.

Fig. 5  The PCA profiles of the feature vectors constructed form: A Average economic activity. B Gov-
ernment regulations. C Dynamic compliance. D Infection rates. E The Λ measure
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It is clear from the PCA analysis that the feature vectors formed from the average 
governmental regulations, the infection rates and the Λ measures are most amenable for 
computational classification. In this study we use SOM classification with 2–20 neu-
rons, and evaluate the quality of these classifications with standard silhouette numbers 
[15]. Figure 6 shows the average and median silhouette numbers with different SOM 
neuron counts and feature vectors, along with the proportion of the simulations with 
negative silhouette numbers in each classification. As expected, the silhouette numbers 
of the classifications based on economic activity, dynamic compliance and government 
regulations are much lower than those based on infection rates and the Λ measures, and 
generally higher proportions of the negative silhouette numbers.

Apart from the compliance classification, all the classifications show downward 
trends in median and average silhouette numbers as a function of the number of 
SOM neurons used, in addition to rising proportions of the negative silhouette num-
bers. However, with the the infection rate and the Λ classifications the average and 
median silhouette numbers never dip below 0.8, while the economic and regulation 
classifications have maximum average and median silhouette numbers of about 0.6 
and 0.5, respectively. While the proportions of the negative silhouette numbers stay 

Fig. 6  The mean and median silhouette numbers, along with the proportion of negative silhouette num-
bers when SOMs are used to classify the simulations according to the feature vectors visualised in Fig. 5
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just about below 0.1 for the economic classification, in the regulation classification 
they rise to numbers just above 0.1. The compliance classification also has the same 
general trends as the others, except that the average and median silhouette numbers 
rise significantly above their expected trends at neuron numbers 3, 7, 15 and 20. 
The proportions of the negative silhouette numbers also fall significantly at these 
neuron numbers. The silhouette numbers are the highest overall at neuron count 3, 
with median of about 0.63 and average of about 0.55. The proportion of the negative 
silhouette numbers also reach a minimum of approximately 0.2 at this point.

Halving the parameter space: W̃Z < 0

As noted in the main text, W̃Z < 0 means that local authorities are happy to have 
their economies decline, which would be a very unusual attitude in the modern 
world. Because of this concern, we also applied our PCA and SOM procedures to 

Fig. 7  The PCA profiles of the feature vectors when applied only to the half of the simulations with 
W̃Z < 0 . The different feature vectors are presented in the same order as in Fig. 5. The Λ , infection rate 
and compliance classifications have been created using SOM with three neurons
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the set of simulations with W̃Z < 0 as an experiment. The results can be seen in 
Fig. 7, in which the feature vectors are represented in the same order as in Fig. 5, 
and with the infection rate, Λ and compliance feature vectors classified by SOM into 
three clusters. The main effect of halving the value parameter space seems to be 
accentuating the differences between the different clusters in the infection rate and Λ 
classifications (panels (D) and (E), respectively) and splintering in the other classi-
fications. The splintering is most dramatically observed in the case of the economic 
feature vector (panel (A)), in which we see the emergence of up to three different 
clusters. Contrary to what one might expect, however, these clusters are not neatly 
recognized by the SOM method, and so we have chosen not to show any cluster-
ing for the halved economic activity classification. The the government regulation 
feature vector (panel (B)) on the other hand looks like multiple colliding rodlike 
structures in the halved parameter space, and we could not detect simple clusters in 
this case with SOMs either. The compliance feature vector (panel (C)) has a similar 
structure to the regulation feature vector (not surprising, given that dynamic compli-
ance is defined in part by the regulations), except with only one rodlike structure 
that has suggestive clustering formations along its length. These SOM method can 
classify quite nicely with two or three neurons, of which we chose to visualise the 
three neuron classification, like in earlier. While not all the points may be classified 
intuitively, this visualisation makes it more plausible that three is indeed the optimal 
number of neurons to use for classifying the compliance feature vector.
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