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Abstract—Gesture recognition for human machine interaction
enhances the efficiency, safety, and usability of industrial and
factory automation systems. We investigate hand-gesture recog-
nition using battery-less body-worn reflective tags. Particularly,
we propose two methods for hand gesture recognition using radio
frequency identification (RFID). From backscattered signals we
utilize in-phase and quadrature (IQ) constellation, as well as
the phase. We convert extracted IQ samples into images and
interprete them for gestures using a pre-trained VGG16. As a
second approach we alternatively conduct pre-processing on the
phase of the backscattered signals and propose Zero Crossing-
Modified Derivative (ZCMD) for signal segmentation. Through
signal resampling and wavelet denoising we mitigate undesired
fluctuations introduced during this process, while retaining
crucial signal characteristics. Subsequently, we integrate time-
domain and frequency-domain features of the signals and train
a random forest classifier based on these features to identify
different gestures. Utilizing battery-free body-worn RFID tags,
we are able to outperform a state-of-the art method and recognize
four gestures with an accuracy of 81% with the VGG16-based
model. Employing phase, we achieve an accuracy of 94%.

Index Terms—RFID, gesture recognition, human-sensing, sig-
nal processing, signal segmentation

I. INTRODUCTION

Radio-based human sensing describes the analysis of elec-
tromagnetic signals reflected back from individuals or ob-
jects, for localization [1], gesture [2], vital sign [3] or emo-
tion recognition [4]–[6]. Radio sensing has a high potential
in automation due to the nearly ubiquitous availability of
RF interfaces in industrial IoT and other devices [7]. The
high energy consumption of these approaches is a challenge
though [8], [9]. Further challenges in RF-based human sensing
are, for instance, that clothes and the human body absorb a
remarkable portion of the signal and only a smaller part is
reflected and can therefore be utilized for RF-based human
sensing. Furthermore, existing work typically defines a region
of interest for RF-based human sensing and the recognition
performance degrades for subjects outside of the region of
interest or when the subject is rotated with respect to the
receiving antenna. Finally, RF-based sensing is often perceived
to have privacy issues since subjects who do not intend to take
part in the sensing have indeed no way to opt out.

We address these challenges by requiring that the subject
from which we sense gestures, pose, location and activity, is
instrumented with reflective material (in our case, backscatter-

(a) Image and phase corresponding to 4 different gestures are built using UHF RFID tag
and a USRP equipped with two circularly polarized antennas.

(b) Image data fed to a VGG16 pre-
trained model; the classification head
contains convolutional and dense layers.

(c) Phase signals are pre-processed and
segmented and attributes are extracted
and fed to the classifier.

Fig. 1: System Models and Methodology. We propose and compare image
and phase-based gesture recognition models.

ing Radio frequency identification (RFID) tags). For instance,
RFID tags can be integrated into professional work clothes
or into visitor or name-tag badges at industrial facilities
but they are otherwise not normally found in clothing in
general. RFID tags are conventionally known for identification
applications, but also their potential for human sensing has
been demonstrated [10]. In contrast to many other RF-sensing
technologies, RFID and backscattering tags feature a low cost
(e.g. price, energy, complexity). Attached to the surface of
a human body, RFID and backscatter technology may a)
amplify the energy reflected back from a human target, b)
move together with the human subject, so that the sensing
field follows the moving subject, and c) when employed as
body-worn sensing technology, they allow an opt-in human
sensing system, where the subject decides whether or not to



wear clothes that enable smart interaction with an environment
or service.

Signals reflected from fabric which is not equipped with
RFID tags have a significantly lower energy and are therefore
more difficult to detect compared to signals reflected from
RFID. Furthermore, we have demonstrated in [11] that it
is possible to distinguish different body parts by exploiting
variable phase profiles for body-worn RFID tag groups. Such
marker-based setup allows, for instance, high recognition
rates for complex movements of individual body parts. Note
that RFID may also distribute a unique Electronic Product
Code (EPC), which may give human subjects the possibility
to disclose an identity, e.g. for smart environment-situated
services.

It should be pointed out that proper learning approaches
and pre-processing can significantly enhance the performance
of recognition systems and their robustness. In this regard, we
study transfer learning for gesture recognition. The conversion
of channel state information (CSI) [12] and IQ samples [13]
to images has shown promising results thanks to the existence
of powerful pre-trained image classifier models provided for
vision based tasks, such as VGG16 [14], and ResNet-50 [15].
On top of that, since good representation of a signal profile
corresponding to different gestures is vital, we apply signal
processing steps proposed in ReActor [16], i.e. , an RFID-
based gesture recognition system that used Varri signal seg-
mentation, and propose our own signal segmentation schemes
to design a highly accurate and robust gesture recognition sys-
tem. In summary, this paper has the following contributions.

• We study human gesture recognition extracting IQ sam-
ples according to two approaches for four different ges-
tures. Specifically, we convert IQ samples to images
before we feed them to a VGG16 pre-trained model.

• We extract and pre-process phase of backscattered signals
and present two heuristic signal segmentation methods
that isolate gesture signals from noise. The approaches
are effective in new environments with new participants,
and simultaneously cope with speed variation in gestures.

• We resample signals and suppress unwanted fluctuation
introduced during the resampling with wavelet denoising
while preserving important features of signals. Finally,
we merge time-domain and frequency-domain features of
smooth signals and build a classifier based on the these
features to recognize 4 key gestures.

We demonstrate in case studies with 14 subjects and in three
environments that our approaches outperform the state-of-the-
art.

II. RELATED WORK

RFID-aided human activity recognition is a well researched
domain [17]. The studies mainly were conducted in scenarios
in which tag arrays were embedded into environments. Us-
ing ResNet, fall detection and daily activity recognition was
examined in [18]. Fusing phase and received signal strength
(RSS) of the RFID backscattered signal, a spatiotemporal
graph convolutional neural network based-model was proposed

to recognize human actions [19]. For fine-grained RF-based
gesture recognition, such as the detection of hand and finger
movements in front of an RFID array, different classifiers were
evaluated [20]. The authors in [16] proposed ReActor and
ReActor+ for real-time hand gesture recognition, handling the
impact of varying speeds. Multi-touch fine-grained gestures
were studied in [21] leveraging K-Nearest Neighbors to track
finger trace and Convolutional Neural Networks (CNN) to
recognize gestures. Sign language recognition was considered
using a CNN [22], and adversarial learning [23]. Authors
in [24] proposed a permutation-based dataset generation and
a network with designed loss function and distance metric to
distinguish different gestures. Contrary to the aforementioned
works, we consider body-attached RFID tags.

RFID tags are light and can be attached or woven on or
into outfits. The authors in [25] embedded RFID tags into
gloves and studied hand gesture recognition by interpreting
movement patterns with the help of dynamic time warping. A
position-independent sign language recognition was examined
in [26] by normalizing the hand’s horizontal rotation angle and
radial distance.

Using RFID tags on the human body for coarse-grained
gesture recognition has challenges. First, the tag’s orientation
changes constantly because of large movement, making it dif-
ficult for RFID readers to consistently read the tag. Therefore,
the quality of reflected signals is poor due to polarization
mismatch [27]. Second, the reflection of signals is affected
by the human body’s anatomy and tissues [28]. Different
body compositions and shapes can cause variations in how
RF signals are reflected, potentially leading to various patterns
for the same gestures and makes recognition difficult. Authors
in [29] studied relatively coarse-grained gesture recognition by
integrating multi-modal CNN and Long Short-Term Memory
networks to represent features in RFID signals. We use dif-
ferent methodologies in contrast to this work, proposing two
models, image-based gesture recognition leveraging transfer
learning and phase-based gesture recognition using a random
forest classifier. We also consider a different set of gestures.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We implement the USRP-based UHF RFID reader devel-
oped in [30]. The reader software utilizes GNU Radio and
consists of 6 blocks (USRP source, matched filter, gate, tag
decoder, Generation-2 UHF RFID logic and USRP sink). For
the study, we attach a UHF RFID tag on the hand of a human
subject. Specifically, the IQ samples reflected via the RFID tag
and also their extracted phase are then interpreted for different
gestures.

For the IQ sample extraction, we investigate two approaches
as detailed below (cf. Fig. 3).
DC-Matched filtering-based: We extract IQ samples after DC
offset removal and matched filtering. The reader software is
developed such that the DC offset component is estimated
and removed from each sample. The impulse response of the
matched filter is a square pulse with half a symbol period.
Fig. 2a depicts IQ samples captured by this approach.



(a) Received samples after matched filtering
and DC offset removal (accumulated)

(b) Received samples after synchronization;
two separated states are visible.

Fig. 2: IQ constellation while the RFID tag is fixed

Synchronization-based: We extract IQ samples after synchro-
nization. The tag decoder estimates the symbol rate by max-
imizing the energy of the matched filter output. The frame
synchronization time is needed for the above process [30,
eq. (14)]. It is estimated by maximizing the correlation be-
tween the received signal with known preamble [30, eq. (7)].
As depicted in Fig. 2b, IQ samples for this approach are
separated into two states (RFID absorb state, RFID reflect
state).

IV. SET-UP AND DATA COLLECTION

The RFID system operates in the 910 MHz range. The
distance between transmit and receive antennas is 70 cm
to suppress leakage (cf. Fig. 4). We use the Zebra Z-Select
2000T tag attached to the hands of human subjects. The IQ
constellation diagrams of the tag’s EPC responses for four
different gestures, Lift (L), Lateral Raise (LR), Pull (PL), and
Push (PS) are extracted (cf. Fig. 5). Fig. 1b depicts the scatter
plot for two gestures of two pairs of IQ samples. The IQ
sample plots for a particular gesture are similar. We deploy
these IQ samples and create 3 datasets for the recognition of
different gestures as follows.

Dataset I: Converting IQ constellations after DC-
Matched filtering to images

Dataset II: Converting IQ constellations after Synchro-
nization to images

Dataset III: Phase extraction from IQ constellations after
Synchronization

We utilized an USRP N200 and two circularly polarized
antennas. Collecting data from 14 people (7 male and 7
female) with different height (155 cm-185 cm) and physique,
we extracted IQ sample images and phases for every gesture
and every person. The total number of data points for every
gesture is 140. First, data was collected from 9 participants in
one environment and used to create two models, VGG16-based
and phase-based, to recognize gestures. Next, in two new
environments, we collected data from 5 new participants; i.e.,
unknown to the trained model. The two presented models are
evaluated on the unseen data set. The gestures were performed
in a distance of 1.7 m from the reader.

TABLE I: Data Augmentation Parameters

Parameter Value / state
rotation range 90
width shift range 0.1
height shift range 0.1
shear range 0.1
zoom range 0.1
rescaling factor 1.0/255.0
horizontal flip True

V. VGG16-BASED GESTURE RECOGNITION MODEL

In the following, we detail how we interpret IQ images for
gesture recognition.

A. VGG16 Network

We fed our datapoints, IQ images, to a VGG16 pre-trained
model which is particularly well suited for smaller datasets
because it has learned rich and generalized features from
its extensive training [31]. The VGG16 architecture consists
of 16 layers, including 13 convolutional layers and 3 fully
connected layers. The earlier layers of VGG16 learn low-
level features such as edges, whereas the deeper layers learn
high-level features such as shapes [32]. Applying a fine-
tuning approach, we removed the fully connected layers of
the pre-trained model and re-train the last three VGG16
convolutional layers. As illustrated in Fig. 1b, we then added a
new classification head consisting of two convolutional layers
each, followed by MaxPooling layers, a flatten layer, a fully
connected layer with 256 units applying the rectified linear
unit (ReLU) activation function to allow the model to learn
complex patterns and relationships in the data, a dropout layer,
and finally a fully connected layer with 4 units, which matches
the number of classes in our classification task. The activation
function used for the final layer is softmax, which computes
the probability distribution over the classes and outputs the
probability of the input belonging to each class.

B. Data Augmentation

Since our training data is limited, we created additional syn-
thetic data samples (data augmentation) using the parameters
specified in TABLE I.

C. Results and Discussion

As illustrated in Fig. 6b, the gestures LR and PS were
recognized successfully with 100 % recognition accuracy. This
is due to the relative uniqueness of their scatter plots. Several
scatter plots extracted by the synchronization-based Approach
corresponding to the 4 gestures are shown in Fig. 7. As it can
be seen, PL and L gestures generate similar images. This is
the reason why they are more frequently misclassified. As it
can be seen from the second row of Fig. 7, PL and L are
similar to the PS image in the first row. LR, however, since it
has its own unique image, is easier to be distinguished by the
recognition model.

Regarding the DC-Matched filtering-based Approach, LR
has the highest accuracy due to its dissimilarity with other



Fig. 3: Processing chain for DC-Matched filtering-based Approach and Synchronization-based Approach

Fig. 4: Experimental Setup. RFID attached on the back of the hand moving
in the distance of 1.7 m away from reader and antennas.

(a) L (b) LR (c) PL (d) PS

Fig. 5: The considered gestures.

(a) DC-Matched filtering-based Approach
with test accuracy=63%

(b) Synchronization-based Approach with
test accuracy=81%

Fig. 6: Confusion matrices while the dataset was split 60%, 20%, and 20%
for training, validation, and test sets, respectively.

(a) L (b) LR (c) PL (d) PS

Fig. 7: Scatter plot samples of different gestures for the synchronization-based
Approach

gestures. On the other hand, other gestures are highly similar.
This is because the scatter plots extracted by DC-Matched
filtering have a shape as illustrated in Fig. 2a while the
tag is fixed. This causes the images to not be distinct for
different gestures. Thus, gesture recognition becomes then
more challenging when using DC-Matched filtering.

VI. PHASE-BASED GESTURE RECOGNITION MODEL

An extracted phase signal is noisy and erratic and should
be pre-processed before feeding it to gesture recognition
algorithms. We perform signal smoothing and noise reduction
as well as signal normalization. It should be mentioned that
we set a constant inventory round for reader and RFID com-
munication and participants perform the gestures in various
speed. Gestures might be fulfilled before the inventory round is
completed. Thus, we apply signal segmentation to capture the
gesture part of the signal. The length of segmented signals is
diverse and we resample them to a certain length and perform
wavelet denoising to achieve smooth signals while preserving
important features of signals. Finally, we extract time-domain
and frequency-domain features of the resulted signal and
recognize gestures applying a random forest classifier.

A. Signal Filtering and Smoothing

Since high-frequency noise exists in the phase of the signal,
we exploit Savitzky-Golay (S-G) [33] and moving average
filtering, which preserve the integrity of the underlying signal.

B. Signal Normalization

We normalize the phase of the received signal to enhance
gesture-relevant changes and alleviate the impact of back-



ground signals by mapping them to a range of [−1, 1]. The
normalization of the m-th reading phase φm is as follows

φ̃m =

{
φm−φ̄
φmax

φm ≥ 0

−φm−φ̄
φmin

φm < 0
, (1)

where φ̄, φmax, and φmin denote the mean, maximum, and
minimum of all phase readings of the tag (i.e., φ =
[φ1, φ2, . . . , φM ] ), respectively. The total number of phase
readings is M .

C. Gesture Segmentation

Participants perform gestures with different speed and the
actual start and end of a gesture within the signal is initially
unknown and must be segmented adaptatively. This step is
crucial for proper training of the recognition algorithm. Two
methods are considered as explained.

1) Gesture segmentation based on amplitude and frequency
measurement: We apply the Varri method [34], [35] as it was
used in ReActor [16] to extract the active part of the signal
containing the gesture information. This method calculates the
amplitude measurement A and frequency measurement F of
the signal over sliding windows of length L. Accordingly,
these measurements within the n-th window are computed as:

An =

L∑
ℓ=0

|φ̃n,ℓ| (2)

Fn =

L∑
ℓ=0

|φ̃n,ℓ − φ̃n,ℓ−1| (3)

where φ̃n,ℓ indicates the ℓ-th data point (i.e., normalized
phase) in the n-th sliding window. Next, the measurement dif-
ference between two successive sliding windows is calculated
as

G(n) = CA|An+1 −An|+ CF |Fn+1 −Fn|, (4)

where CA and CF are application specific coefficients. We
set CA = 7 and CF = 1. Finally, the local maxima of G
is calculated, which determines the boundary of the gesture
part of the signal.

2) Gesture segmentation based on zero crossing and modi-
fied derivative: In this part, we introduce gesture segmentation
schemes that are able to cope with gesture speed variation and
also are environment independent. Based on our observations,
we have two signal categories and accordingly, we present two
separate segmentation schemes. For L, PL, and PS gestures (cf.
Fig. 8a), zero crossing (ZC) happens along the actual gesture
part of the signal (light green area) within large amplitude
changes. However, for many gestures, we observe that the non-
gesture part of signals (between red lines) also experience ZCs
but with small fluctuations. To capture ZC and large changes,
we calculate a metric over sliding windows, which is defined
as

ϖn ≜ ζn(Φmax
n − Φmin

n ) n = 1, . . . , Ng, (5)

where ζn and Ng denote the number of ZC in the nth sliding
window and the number of sliding windows, respectively. The
maximum and minimum values of the data point in the nth
sliding window are Φmax

n and Φmin
n , respectively. Next, we com-

pare the calculated metric vector ϖ = [ϖ1, ϖ2, . . . , ϖNg
]

with the predefined threshold. The data points among the
first and the last sliding windows whose values ϖ exceed the
threshold are considered as gesture part. To precisely capture
the data point corresponding to the gesture part, the overlap
between two successive sliding windows is set to one sample.

LR gestures, however, do not follow the above ZC scheme
as illustrated and explained in Fig. 8b. Thus we monitor the
signal length after ZC segmentation. Based on our observa-
tions, the length of LR gestures are either too short or too
long with considerable differences compared to other gestures.
Accordingly, separate segmentation is employed based on the
length. If the length of the signal after ZC is not in the expected
range, the algorithm will continue with the normalized signal.
As can be seen from Fig. 8b, there is a sudden and significant
change in the phase (light green area). To segment this part
of the signal, a sliding window is applied and the modified
derivative (MD) measurement of the n-th window is calculated
as

Dn =
Φmax
n − Φmin

n

Imax
n − Imin

n
n = 1, . . . , Ng (6)

where Φmax
n , and Φmin

n indicate maximum and minimum value
within the n-th sliding window, respectively. Imax

n and Imin
n

represent the corresponding index of maximum and mini-
mum value, respectively. Next, we find the index of the
maximum value of the MD, i,e., imax = argmax(D) where
D ≜ [D1,D2, . . . ,DNg ] . Accordingly, the gesture part of the
signal can be

Sg =


φ̃ [imax − ⌊0.8|imax − 1|⌋ : imax + Th] a

φ̃ [imax − Th : imax + ⌊0.8|imax −N |⌋] b

φ̃ [imax − Th : imax + Th] otherwise,
(7)

where a ≜ |imax − 1| < Th and b ≜ |imax − N | < Th
are conditions where the large MD value occurs near to the
beginning or end of the signal, respectively. ⌊.⌋ is the floor
function and φ̃[ a0 : b0] captures the component of vector φ̃
from index a0 to index b0. We set the value of Th based on
the data.

D. Resampling and Wavelet Smoothing
Segmented signals vary in length (e.g. duration of gesture,

speed, etc.). Consequently, the attribute feature vector for each
segmented signal might have different lengths since we extract
the wavelet coefficients as part of the feature vector1. Hence,
we apply resampling to harmonize the length of all segmented
signals. Resampling employs an anti-aliasing filter [36], which
is sensitive to large transients of a signal. Therefore, we
observed some resonance effects on the resampled signals.
To alleviate it, we apply wavelet de-noising on the resampled
signals to receive a smooth signal.

1The number of Wavelet coefficients depends on the signal length.
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(a) An exemplary PS signal instance
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 Segment resulted by ZC

(b) An exemplary LR signal instance

Fig. 8: Normalized signals before segmentation: In (a) that is an exemplary
push signal, both gesture part (light green area) and non-gesture part (between
red lines) have zero crossings. Significant changes in the gesture part (light
green area) are captured by Eq (5). In (b) that is an exemplary lateral raise
signal, zero crossing happens between orange dashed lines. Eq (5) that is
the combination of zero crossings and capturing significant changes can not
isolate the desired segment (shown in light green). To capture the pattern, the
modified derivative (Eq (6)) is instrumental.

Fig. 9: The workflow of phase-based gesture recognition that contains zero
crossing and modified derivative segmentation schemes

E. Attribute Extraction

We extract 13 statistical features, namely the mode, the
median, the first quartile, the third quartile, the mean, the
max, the min, the range, the variance, the standard deviation,
the third-order central moment, the kurtosis and the skewness.
Moreover, wavelets provide a multi-resolution analysis of a
signal, meaning that they can capture information at various
levels of detail. This is useful for identifying both coarse
and fine-grained patterns within the data. In this regard, we
use single level discrete wavelet transform with Daubechies
wavelet and extract both low-frequency and high-frequency
coefficients. Wavelet-based features are often more robust
to variations such as translation, scaling, and rotation. This
makes them particularly useful in recognition tasks where such
variations are common. Statistical features and wavelet coeffi-
cients are then concatenated and used to train a random forest
classifier. The workflow of phase-based gesture recognition is
shown in Fig. 9.

F. Results and Discussion

The normalized confusion matrices of classifying differ-
ent gestures are presented in Fig. 10. We use data from 9
participants to train the model. For the phase-based model,
the dataset is divided into 90% and 10% for training and
testing, respectively. Fig. 10a shows the confusion matrix on
test data points applying the ZCMD method. The overall
test accuracy achieved is 94.44%. Note that, applying ReAc-
tor [16], including Varri signal segmentation, achieves only

TABLE II: Accuracy (Acc.), Precision (Pre.), and Recall (Rec.) of Methods

Test data categories* Category 1 Category 2

Method
Metric Acc. Pre. Rec. Acc. Pre. Rec.

ZCMD 94.44 95 94 87 86.9 87
ReActor [16] 77.77 80.2 79.2 62.5 58.5 62.5

Synchronization-based 81 81.1 81.9 56.66 59.1 56.5
* Category 1 is for trained model on test data pints. Category 2 is for trained
model on the data points from unseen participants in the new environments.

77.77% accuracy (cf. Fig. 10b). This is because Varri includes
parameters CA and CF that are basically application-dependent
coefficients. Moreover, it is well suited in biomedical signals
such as electroencephalogram where the multi-path effects
have already been mitigated. In ReActor [16], where Varri was
applied, the tags were fixed and gestures were performed very
close to tags and antenna, so that the signals were less effected
by multi-path than in our study. LR and PS are classified with
100% accuracy in ZCMD.

The trained models based on these two segmentation meth-
ods are then evaluated in terms of robustness. We assess the
models on collected data from 5 new participants (unseen par-
ticipants via model) in new environments. The corresponding
confusion matrices are demonstrated in Fig. 10c and Fig. 10d.
ZCMD performs effective in the new condition with an overall
accuracy of 87% and the recognition accuracy of all gestures is
more than 80%. Even though LR test data points are classified
with 100%, the accuracy of this gesture drops by almost 20%
on the new test data. This is because signal propagation and
noise in new environments impact on the thresholding of MD
segmentation.

An overall comparison for the 3 methods is shown in TA-
BLE. II in terms of accuracy, precision, and recall for two test
data categories. Although the VGG16-based model can reach
81% test accuracy, it is highly dependent on environments
and participants. Its accuracy drops to 56.66%. While the
test accuracy of the ReActor-based model [16], i.e. 77.77%,
is lower than that of the VGG16-based model, it performs
better in new conditions and reaches 62.5%. The ZCMD-based
model, however, outperforms both models with an overall test
accuracy of 94.44% and also remains functional and effective
in new conditions and its accuracy is 87%.

VII. DISCUSSION AND LIMITATIONS

There are certain constraints when it comes to non-static
RFID-based gesture recognition. The tag’s orientation shifts
continuously due to movement, complicating the RFID read-
ers’ ability to consistently read the tag. Consequently, the
quality of reflected signals suffers due to polarization mis-
match. Additionally, variations in body composition and shape
can alter RF signal reflections, potentially creating different
patterns for the same gestures and making recognition chal-
lenging. Data augmentation can help to address this issue.
Besides, since angular measurements are not provided in a
single receiver antenna scenario, gestures might not seem



(a) Accuracy=94.44% (b) Accuracy=77.77%

(c) Accuracy=87% (d) Accuracy=62.5%

Fig. 10: Confusion matrices: (a) Confusion matrix with ZCMD segmentation
on test data points; (b) Confusion matrix with Varri segmentation applied
in ReActor [16] on test data points (c) Confusion matrix with ZCMD
segmentation on test data points, i.e. , collected from new participants in
new environments (d) Confusion matrix with Varri segmentation applied in
ReActor [16] on test data points, i.e. , collected from new participants in new
environments.

distinct easily. Sweep (hand motion from right to hand) and
lift, for example, might generate similar backscatterd signals
from the receiver’s perspective. In this regard, exploring new
features through feature engineering may help.

VIII. CONCLUSION

We have investigated the use of body-mounted RFID tags
for human gesture recognition. Using a USRP-based reader
and a single UHF RFID tag, we have successfully distin-
guished four gestures through two distinct methodologies.
Firstly, we applied a VGG16 pre-trained model on IQ sample
images, and secondly, we trained a random forest classifier
using pre-processed and segmented backscattered phase sig-
nals. In the second methodology, we introduced the ZCMD
technique as an efficient segmentation to deal with varied
speed of participants’ gestures. Accuracy of 81% and 94%
were attained for VGG16-based and phase-based models,
respectively. Thanks to our adaptive gesture segmentation, the
phase-based model could operate robustly in new environ-
ments with new participants with an accuracy drop of only 7%.
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