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Abstract—Recognition of human activities is crucial for en-
hancing safety, efficiency, and productivity within industrial and
factory automation settings. This paper introduces a model for
human activity recognition that leverages battery-less body-worn
reflective antenna components. We perform preprocessing on
both the backscattered phase and Received Signal Strength (RSS)
signals. Independently and simultaneously, we extract features
from phase and RSS signals using a feature extractor imple-
menting a convolutional neural network (CNN). These features
are then concatenated and fed into a fully connected (FC) layer
employing the rectified linear unit (ReLU) activation function,
followed by another FC layer utilizing a softmax function. This
model, which merges extracted features from both phase and
RSS, is termed late fusion model. We show that late fusion yields
better performance than combining phase and RSS signals before
feeding them into the neural network. By employing battery-
free body-worn Radio frequency identification (RFID) tags, we
surpass existing models, achieving an accuracy of 97.5% in
recognizing five activities.

Index Terms—RFID, activity recognition, human-sensing, mul-
timodal learning

I. INTRODUCTION

Human activity recognition (HAR) involves identifying the
actions performed by an individual through the collection
and analysis of data from various sources such as wear-
able [1] or environmental sensors [2]. Applications include
smart home, surveillance, healthcare and assisted living [3].
Utilizing wearable sensors presents certain challenges [4].
Wearable sensors require frequent charging or replacement,
since their operation and continuous data processing consume
significant power. Additionally, for convenience, devices are
lightweight. Therefore, it becomes increasingly difficult to
maintain functionality given the limited available space.

We propose to integrate passive Radio frequency identifica-
tion (RFID) tags with clothing as sensors for human activities.
Passive RFID tags are energy efficient as they do not require
an own power supply and do not process data but backscatter
impinging signals emitted by environment-integrated reader
devices. In the literature, RFID has been exploited for hu-
man [5] and respiration sensing [6], however, the proposed
solutions expect RFID devices in the environment. RFID tags
can offer enhanced security and authentication capabilities [7].
Compared to environment-based instrumentations, sensing via
on-body worn RFID devices inherits several benefits, such as
increased privacy control (opt-in solutions, as people need

to consciously wear sensors in order to be sensed.) and
distinction of various body parts [8].

In this work, we demonstrate activity recognition from
body-worn RFID tags. Particularly, we propose activity recog-
nition utilizing a multimodal learning. The system is evaluated
based on data collected in an indoor office environment.

This work is part of the Horizon Europe EIC project
SustAIn. In SustAIn, we develop a sustainable low energy
building monitoring system.

II. RELATED WORK

Fuelled by advances in machine learning, wearable sensor-
based HAR accuracy has significantly improved [9]–[11]. To
capture long term dependencies in time series data, a CNN
architecture that incorporates a multihead attention mechanism
was introduced in [12] for HAR task. Multilevel network
based on spatiotemporal attention and multiscale temporal
embedding was studied in [13]. Addressing incomplete feature
extraction, a multifeature extraction framework was introduce
with combination of bidirectional gated recurrent unit, at-
tention mechanism, and residual network-18 [14]. While the
attention mechanism can enhance the significance of important
features and reduce the impact of irrelevant ones, it also
introduces architectural complexity, increases computational
expenses, and complicates implementation. In this regard, A
light residual neural network was introduced in [15], aiming
to decrease the number of parameters and simplify the training
process. Contrary to the above works that used wearable sensor
data, such as inertial sensors, we use RFID technology and
offer our dataset for activity recognition.

RFID-based activity recognition is gaining interest because
it is lightweight and energy-efficient [16]. For instance, the
authors in [17] exploit Received Signal Strength (RSS) data
from RFID readings to feed a CNN and a LSTM, to sense
teamwork activities in a trauma resuscitation [17] and daily
routine activities [18]. Activity classification was also studied
in [19] via multivariate Gaussian using maximum likelihood
estimation algorithm embedding RFID array in an indoor en-
vironment. In [20], a method for generating an RFID skeleton
feature matrix has been proposed. In [8], we have further
demostrated that it is possible to distinguish different body
parts by exploiting variable phase profiles for body-worn RFID
tag groups which allows high recognition rates for complex
movements of individual body parts. RFID-based sensing
studies primarily focus on the phase of the backscattered



Fig. 1: RFID hardware setting for activity recognition

signal. To increase data diversity, this paper incorporates both
phase and RSS, extracting time-domain statistical features and
frequency-domain features as recommended in [21].

RFID utilization was also studied for occupancy detection.
Using a carpet embedded with RFID tags, a random forest was
trained to predict population density [22]. In [23], both RSS
and phase were calibrated to mitigate the interference from
the line-of-sight (LoS) and multi-path components and CNN
was applied to present an occupant counting system. In [24],
people counting problem turned into a clustering problem and
tags’ feature vectors were build. Then, the distance between
two feature vectors by combining the Hausdorff distance and
the Euclidean distance was used.

Although existing literature predominantly focuses on em-
bedded fixed environmental RFID arrays, our research delves
into the utilization of RFID tags affixed to clothing worn
by individuals for the purpose of activity recognition. In this
context, the reflection of signals is influenced by the anatomy
and tissues of the human body [25]. Varied body compositions
and shapes can lead to differences in how RF signals are
reflected, potentially resulting in various patterns for the same
activities and posing challenges to recognition.

III. BACKSCATTER TECHNOLOGY FOR HAR

Several authors have considered the use of backscatter
devices for human activity recognition [26], [27]. Also com-
mercial RFID technology has been extensively employed in
wireless sensing, demonstrating high reliability and robust
performance in tracking and monitoring applications across
various industries [28], [29].

When an RFID tag enters a reader’s electromagnetic field,
it reflects the signal emitted by the reader [30]. The tag
modulates and backscatters this RF signal according to the
EPCglobal Gen2 (ISO/IEC 18000-63) communication proto-
col to ensure reliable connectivity. By analyzing the reflected
signal, both the stored information and the unique tag ID
can be retrieved. Additionally, the reader device provides RSS
and signal phase data, enabling the detection of tagged object
movements through appropriate algorithms (cf. Fig 1) [20].

The data collected from RFID devices must be pre-
processed. The goal of this pre-processing is to transform raw
data into a consistent and standardized format, enhancing its
readability. This crucial step involves organizing the data to
enhance its accessibility and intelligibility, which, in turn, sim-
plifies the analysis and interpretation processes. The formatted
tag data includes three types of information:

• Tag ID: Unique Identification (UID) code of each tag.
The size of the UID is 96 bits.

Fig. 2: Schematic of the sensing area where the experiment has been
conducted.

• Phase: The relative phase difference in the signal when
the tag reflects the signal emitted by the reader is cap-
tured. This phase data can be indicative of the tag’s
orientation and movement, offering a more nuanced un-
derstanding of the tag’s spatial positioning in relation to
the reader. By analyzing phase variations over time, it is
possible to detect subtle changes in tag orientation, which
can be used to infer the dynamics of user interactions.

• RSS: RSS denotes the power present in a received radio
signal. This metric can be used as a proxy for estimating
the distance between the RFID tag and a reader. It may
hence be used to determine a tag’s location relative to
the reader device. The RSS data can for instance be used
to track the proximity of an individual to various zones
in an office, assess user engagement with specific office
resources, or detect the presence of an individual within
defined spatial thresholds.

IV. PROBLEM STATEMENT

For activity recognition in an indoor space, a proper ar-
rangement of the RFID reader is vital for robust tag reading
due to its limited sensing range. RFID tags can be detected by
a reader within several meters. We install an RFID reader in
an office, and perform activities. The orientation of the utilized
RFID antennas is configured to cover the entrances of office
and open spaces as shown in Fig 2.

By detecting the tag IDs, identification of subjects is also
possible. Furthermore, to improve the recognition accuracy
regardless of the orientation of the subject, two RFID tags are
attached to upper torso and the upper back of the study sub-
jects’ clothing. To further improve recognition, two additional
tags may also be placed to the outer sides of the right and left
upper arms. Activities performed by human subjects equipped
with the RFID tags in this way can then be recognized. In
a settings where multiple instrumented subjects reside in the
same area, their tag IDs can be read separately and their
movement and motion can be tracked individually.

A. System Implementation and Data Collection

We utilize the USRP-based UHF RFID reader developed
in [31]. The reader software uses GNU Radio and consists



Fig. 3: Illustration of the setup

of 6 blocks (USRP source, matched filter, gate, tag decoder,
Generation-2 UHF RFID logic, and USRP sink).

For the study, we attach two UHF RFID tags (Zebra Z-
Select 2000T), one at the upper front torso and another in the
upper back of a human subject (cf. Fig 3).

The RFID system operates in the 910MHz range. The
distance between transmit and receive antennas is 130cm.
RSS and phase of backscattered signals are captured for
five different activities related to presence detection including
Opening the door (O), Closing the door (C), Turning the light
on (TL), Leaving the room (EX), and Entering the room (EN)
(cf. Fig 4).

We utilized a USRP N200 with 15 dBm output power and
two circularly polarized antennas with 9 dBic antenna gain as
well as elevation and azimuth beamwidth of 70◦. We collected
data from 8 people (5 male and 3 female) with different heights
and physiques in the age range 25-45. For every activity and
person, we collected RSS and phase while the activities (O,
C, TL, EX, EN) were performed. The total number of data
points collected is 80 for every activity.

B. Data Pre-processing
The extracted RSS and phase signals are noisy and erratic

and require pre-processing before feeding them to activity
recognition algorithms. We pre-process both RSS and phase
using signal smoothing and noise reduction as well as signal
normalization.

Since high-frequency noise exists in the RSS and phase
of the signal, we utilize a Savitzky-Golay (S-G) filter with
polynomial order of 15, with a frame length of 500 [32] and
moving average filtering, which preserves the characteristic
patterns of the underlying signals.

We normalize the RSS and phase to enhance activity-
relevant changes and to alleviate the impact of background
signals by mapping them to a range of [ 0, 1] and [−1, 1],
respectively. The normalization of the m-th RSS reading αm

is computed as
α̃m =

αm

αmax
(1)

where αmax denote the maximum of all RSS readings of the
tag (i.e., α = [α1, α2, . . . , αM ] ). The total number of readings

is M . Besides, the normalization of the m-th phase reading
φm is computed as

φ̃m =

{
φm−φ̄
φmax

φm ≥ 0

−φm−φ̄
φmin

φm < 0
, (2)

where φ̄, φmax, and φmin denote the mean, maximum, and
minimum of all phase readings of the tag (i.e., φ =
[φ1, φ2, . . . , φM ] ), respectively.

C. Data Augmentation

As illustrated in Fig 5, we apply time series augmentation
techniques such as jittering, flipping, scaling, magnitude warp-
ing [33], and amplitude and phase perturbations (APP) in the
frequency domain [34].

V. ACTIVITY RECOGNITION MODELS

We introduce a multi-modal learning architecture in which
features of RSS and phase are extracted. For evaluation, we
compare it to a random forest classifier [21] and to a residual
network [15].

A. Random Forest Model

We extract 13 statistical features from RSS and phase
including the mode, the median, the first quartile, the third
quartile, the mean, the max, the min, the range, the variance,
the standard deviation, the third-order central moment, the
kurtosis, and the skewness. Moreover, we use discrete wavelet
transform with Daubechies wavelet and extract both low-
frequency and high-frequency coefficients.

Accordingly, we create three datasets:

Dataset SPR: Only statistical features from phase and
RSS and their concatenation

Dataset SWP: Statistical features and wavelet coeffi-
cients from phase

Dataset SWPR: Statistical features and wavelet coeffi-
cients from phase and RSS and their
concatenation

We then use the above datasets to train three separate
classifiers based on random forest.

B. Residual Network (Early Fusion Model)

In [15], a residual network is proposed where the inputs
are tensors, each containing nine 1-D signals captured by
inertial sensors of a smartphone. These signals are triaxial
acceleration, triaxial estimated body acceleration, and triaxial
angular velocity. Drawing inspiration from this data-feeding
method, we construct input data incorporating both phase and
RSS values, with dimensions of (2, 1, 25600), where 25600
represents the samples (length) of the phase and RSS readings.
We then feed this tensor data into the residual network [15].
Since we combine phase and RSS before extracting features,
we refer to this approach as early fusion.



(a) Opening the door (O) (b) Closing the door (C) (c) Turn on the light (TL) (d) Leaving the room (EX) (e) Entering the room (EN)

Fig. 4: Schematic illustration of the activities conducted during the study.

(a) Original signal (b) Jittering (c) Flipping (d) Scaling (e) Magnitude warping (f) APP

Fig. 5: Time series augmentation operations applied to the RSS and phase sequences

Fig. 6: In late fusion, RSS and phase features are extracted individually before
combining them

C. Multimodal Learning (Late Fusion Model)

We extract features of phase and RSS independently and si-
multaneously by the feature extractor (cf. Fig 6). Subsequently,
the concatenated features are fed into a fully connected (FC)
layer utilizing the rectified linear unit (ReLU) activation func-
tion, which is then followed by another FC layer employing a
softmax function. Since we merge phase and RSS only after
feature extraction, we refer to this model as late fusion.

VI. RESULTS AND DISCUSSION

The confusion matrices are presented in TABLE II to
TABLE VI. For the random forest classifier, the datasets SPR,
SWP, SWPR are divided into 90% and 10% for training
and testing, respectively. By extracting only statistical features
from both phase and RSS, i.e., dataset SPR, an overall
test accuracy of 85.66% is achieved. Beside, extracting both
statistical features and wavelet coefficients from the phase,
i.e. dataset SWP, yields an overall test accuracy of 92.33%.
Applying a random forest classifier to dataset SWPR, which

TABLE I: Accuracy (Acc.), Precision (Pre.), Recall (Rec.), and F1-score (F1)
of Methods

Method
Metric Acc. Pre. Rec. F1

Random forest classifier with SPR 85.66 85.82 85.61 85.71
Random forest classifier with SWP 92.33 92.94 92.25 92.59

Random forest classifier with SWPR 95 95 94.97 94.98
Early Fusion Model 95.16 95.22 95.12 95.16
Late Fusion Model 97.5 97.47 97.46 97.46

includes statistical features and wavelet coefficients from both
phase and RSS, results in superior performance compared to
the two previous datasets, with an accuracy of 95%. The
activity of entering the room (EN) is classified with 100%
accuracy in this case and the accuracy for the remaining
classes exceeds 93%. This confirms that considering both
RSS and phase signals enhances recognition accuracy, and
extracting wavelet coefficients as attributes offers a more
sophisticated interpretation [35].

Utilizing phase and RSS, multimodal learning and the
residual network outperform the random forest classifier. The
datasets are split into 80%, 10%, and 10% for training, valida-
tion, and testing, respectively. Employing a residual network,
the Early Fusion Model [15], achieves an overall test accuracy
of 95.16%. The confusion matrix for this model is illustrated in
TABLE V. Applying this model, the activity of turning on the
light (TL) is identified with 100% accuracy, while the accuracy
for the other classes surpasses 91%. The late Fusion Model
surpasses other models and attains an overall test accuracy
of 97.5% (TABLE VI). Entering the room (EN) is classified
with 100% and accuracy of other classes are all above 95%.
An overall comparison for methods is shown in TABLE I.

VII. CONCLUSION

We explored the application of body-mounted RFID tags to
recognize human activities. By utilizing a USRP-based reader
along with two UHF RFID tags affixed to the upper torso and
upper back of subjects’ clothing, we successfully identified
five activities with an accuracy of 97.5% using multimodal



TABLE II: Confusion matrix resulted from ran-
dom forest classifier [21] with dataset SPR

Predicted label
C EN EX O TL Recall

Tr
ue

la
be

l

C 110 2 2 19 4 80.2%80.2% 1.4% 1.4% 13.8% 2.9%
EN 4 108 5 2 0 90.7%3.3% 90.7% 4.2% 1.6% 0%
EX 2 4 98 0 11 85.2%1.7% 3.4% 85.2% 0% 9.5%
O 6 3 3 101 3 87%5.1% 2.5% 2.5% 87% 2.5%
TL 1 1 13 1 97 85.8%0.8% 0.8% 11.5% 0.8% 85.8%
Pre. 89.4% 91.5% 80.9% 82.1% 84.3%

TABLE III: Confusion matrix resulted from
random forest classifier [21] with dataset SWP

Predicted label
C EN EX O TL Recall

Tr
ue

la
be

l

C 126 0 1 3 7 91.9%91.9% 0% 0.7% 2.1% 5.1%
EN 0 113 2 0 4 94.9%0% 94.9% 1.6% 0% 3.3%
EX 1 1 96 0 17 83.4%0.8% 0.8% 83.4% 0% 14.7%
O 1 0 3 111 1 95.6%0.8% 0% 2.5% 95.6% 0.8%
TL 0 0 3 2 108 95.5%0% 0% 2.6% 1.7% 95.5%
Pre. 98.4% 99.1% 91.4% 95.6% 78.8%

TABLE IV: Confusion matrix resulted from ran-
dom forest classifier [21] with dataset SWPR

Predicted label
C EN EX O TL Recall

Tr
ue

la
be

l

C 128 1 1 7 0 93.4%93.4% 0.7% 0.7% 5.1% 0%
EN 0 119 0 0 0 100%0% 100% 0% 0% 0%
EX 2 0 108 1 4 93.9%1.7% 0% 93.9% 0.8% 3.4%
O 5 1 1 109 0 93.9%4.3% 0.8% 0.8% 93.9% 0%
TL 1 0 5 1 106 93.8%0.8% 0% 4.4% 0.8% 93.8%
Pre. 94.1% 98.3% 93.9% 92.3% 96.3%

TABLE V: Confusion matrix resulted from
Early Fusion Model [15]

Predicted label
C EN EX O TL Recall

Tr
ue

la
be

l

C 129 1 1 7 1 92.8%92.8% 0.7% 0.7% 5% 0.7%
EN 0 110 0 0 4 96.4%0% 96.4% 0% 0% 3.5%
EX 2 1 99 0 6 91.6%1.8% 0.9% 91.6% 0% 5.5%
O 2 1 0 115 3 95%1.6% 0.8% 0% 95% 2.4%
TL 0 0 0 0 118 100%0% 0% 0% 0% 100%
Pre. 96.9% 97.3% 99% 94.2% 89.3%

TABLE VI: Confusion matrix resulted from
Late Fusion Model

Predicted label
C EN EX O TL Recall

Tr
ue

la
be

l

C 135 1 0 3 0 97.1%97.1% 0.7% 0% 2.1% 0%
EN 0 114 0 0 0 100%0% 100% 0% 0% 0%
EX 0 0 105 0 3 97.2%0% 0% 97.2% 0% 2.7%
O 1 0 1 116 3 95.8%0.8% 0% 0.8% 95.8% 2.4%
TL 1 0 2 0 115 97.4%0.8% 0% 1.6% 0% 97.4%
Pre. 98.5% 99.1% 97.2% 97.4% 95%

.

CNNs. The networks were trained individually with pre-
processed phase and RSS signals. Our findings showed that
combining both phase and RSS improves the accuracy of
activity recognition. In our model, features of phase and
RSS are first extracted through a CNN and then fused. We
demonstrated that this method of fusion surpasses the approach
of combining phase and RSS signals prior to feeding them into
the neural network.
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