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Evaluation Framework for Multi-Modal
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Connectivity and Transfers at Stop Level

Charalampos Sipetas1 , Zhiren Huang2 , and
Alonso Espinosa Mireles de Villafranca3

Abstract
Multi-modal public transport (PT) networks within metropolitan areas are often characterized by complexity resulting mainly
from their infrastructure, design, operations, and demand. This complexity leads to a significant amount of effort on behalf of
the transit agencies to properly evaluate their performance at certain locations and proceed with improvements. This study
proposes a methodology based on clustering techniques that facilitates the evaluation of PT networks. The evaluation frame-
work refers to the comparison between the levels of supply and demand at a certain stop. Service supply is quantified
through an existing connectivity index, whereas demand is considered through the number of transfers that are performed at
each stop. Transfers are critical within multi-modal mobility and often serve as a hindrance for choosing PT. The case study
here is the Helsinki PT network in Finland. General Transit Feed Specification (GTFS) data are used for quantifying connectiv-
ity and a dataset deriving from smartphone ticketing application for quantifying transfers. Results include the evaluation for
each PT mode and for the overall multi-modal PT network. Focusing on the evaluation of the overall multi-modal PT net-
work, connectivity and transfers levels for 75.60% of stops are found to be well aligned. Therefore, these stops could be elim-
inated from the list of candidate stops for performing improvements. Of the remaining stops, 19.73% belongs to the case of
higher connectivity than transfers and 4.67% to the case of lower connectivity than transfers. Stops included in these two
cases require further attention and prioritization during planning processes.
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There is a vital need for efficient public transport (PT)
networks to ensure well-functioning and sustainable cit-
ies. Decision-making associated with planning PT sys-
tems and services can be very complex, especially in large
multi-modal networks where both the set of candidate
actions and locations for improving the offered services
can be very long. Therefore, the development of tools
and methods to evaluate existing PT systems and proceed
with planning decisions to improve them accordingly is
of high importance, considering also the high costs of
constructing new PT systems (1) and the efforts required
for planning infrastructure investments (2). According to
literature, most studies evaluate PT based on supply or
demand, but it is important to account for both (3). In
addition, many of the studies in the field focus on one

travel mode, as for example buses (3–6), which highlights
the need for more multi-modal approaches.

Multi-modal environments are considered in Carroll
and Yamamoto (7), where the authors highlight the need
for balance between system performance and user per-
spective. The importance of multi-modal approaches in
transport evaluation is discussed in Litman (8). In addi-
tion to supporting the role of accessibility in the list of
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conventional factors commonly used for transport eva-
luation, the authors also emphasize on the need for
recognizing the diversity of travel demands and modes to
achieve more comprehensive evaluations. Both supply-
and demand-related factors as part of multi-modal eva-
luations are also considered in Rodrı́guez González et al.
(9). Supply is considered through generating space–time
characterization of the PT system’s operation. Demand is
studied through origin–destination matrices that demon-
strate mobility patterns. An evaluation of multi-modal
trips was performed in Kumar et al. (10), by considering
supply-related performance measures (e.g., level of ser-
vice) and quantifying user experience (e.g., access/egress
time) through surveys.

Considering supply, there are several indicators used
for evaluating PT performance, among which is the usage
of network connectivity measures (11–13). Park and
Kang (14) identified the need for a connectivity index
that accounts for the PT network’s operational character-
istics and thus introduced the transit connectivity index.
This index has been further extended and utilized in vari-
ous studies (15–17). Mishra et al. (15) emphasized on the
role of such an index in prioritizing PT stops for funding
and other planning activities in multi-modal networks,
among other applications.

Planning activities should account for how people
use complex PT networks, as for example, with refer-
ence to demand, accessibility, and trip planning (18).
Therefore, understanding the network usage should be
part of the methods and tools that are implemented for
evaluation purposes. One of the most critical parts of a
PT network’s usage refers to where travelers perform
transfers. Transfers are in the core of multi-modality
and one of the greatest challenges to achieve seamless
PT mobility (19, 20). According to De Witte et al. (21),
transfers are often associated with great disutility when
it comes to mode choice and thus might be a hindrance
for choosing PT instead of competing alternatives (e.g.,
private cars). Therefore, stations serving as transfer
points play a major role in PT networks with various
studies emphasizing the need for more attention to be
given to them (22).

The quantification of a PT network’s performance
as regards supply and demand can be achieved through
a variety of available data sources in the field of PT,
such as automatic vehicle location (AVL), automatic
passenger counts (APC), and smart card data. A widely
available data source concerning PT operational char-
acteristics is the General Transit Feed Specification or
GTFS data (18, 23). As a source for schedule informa-
tion, it is usually released by PT authorities for users to
plan their routes accordingly. Tracking PT users’ tra-
jectories within large multi-modal networks is a com-
plex process and requires the combination of different

traditional data sources under several assumptions.
Moreover, such sources offer information that is not
detailed enough to properly detect transfer activities
(24). Emerging data sources in the field refer to wireless
communication technologies (25) and Bluetooth beacons
which have been applied in PT systems in recent years
(26). The potential role of mobile phones in improving
mobility has been investigated in literature (27). Rinne
et al. (28) proposed an automatic method to recognize
PT trajectories based on activity information and sensor
measurements sensed by mobile phone systems, which
provides a new opportunity to sense PT data.

One of the challenges associated with large datasets
refers to the need for advanced processing to derive use-
ful results for practice. Machine learning techniques are
widely used for analyzing large datasets and producing
results and insights of practical interest. Clustering tech-
niques are common machine learning approaches that
are used for a variety of PT applications (29–31). Among
them, the hierarchical clustering technique consists of
defining clusters of observations progressively and is
often used for classification purposes in PT studies (e.g.,
in He et al. [32]).

Acknowledging the above, this study develops a
methodology to evaluate multi-modal PT systems at the
stop level. This methodology aims at assisting planning
processes for PT improvement. Clustering techniques are
implemented for ordering stops based on their supply
and demand levels. Supply and demand clusters are
compared according to the proposed methodology to
identify the stops that require further attention, thus
reducing the number of stops that planners should inves-
tigate during their efforts for increasing PT performance.
Supply is quantified through the indicator of PT connec-
tivity (14–16) and GTFS data are utilized to obtain the
required information. Demand is studied with a focus on
the critical case of transfer activities, and data derived
from mobile phone applications are used (33). The case
study refers to the PT network of Helsinki (Finland),
operated by the Helsinki Regional Transport Authority
(‘‘Helsingin Seudun Liikenne’’ or ‘‘HSL’’), which also
owns the utilized demand dataset called ‘‘TravelSense’’.

Methodology

This study aims at utilizing traditional and emerging data
sources for the quantification of supply and demand to
evaluate the performance of a multi-modal PT network
that accounts for both. Supply is quantified here through
an established metric of transit connectivity. Demand is
studied here concerning performed transfers per stop.
Clustering techniques are used for evaluating the PT per-
formance. The steps of the proposed methodology are
described in detail as follows.
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Quantification of Connectivity

The connectivity index considered here was first pre-
sented in Park and Kang (14) and later extended and uti-
lized in other studies (15–17). The goal was to identify a
connectivity index that reflects not only the nodes and
links within a PT network, but also allows the reflection
of its operational characteristics. This connectivity index
focuses on a stop n (un) and quantifies the sum of con-
necting powers of all routes r 2 R (Pt

r, n) at stop n. It can
be described by a general formula as follows:

un =
X

r2R
Pt
r, nmr, n ð1Þ

where mr, n takes the value 1 if route r contributes to the
connectivity at node n, and 0 otherwise. As regards Pt

r, n,
it represents the connecting power of route r at node n

and it is the average of inbound (Pi
r, n) and outbound

(Po
r, n) connecting powers of route r at stop n, described

as follows:

Pt
r, n =

Pi
r, n +Po

r, n

2
ð2Þ

The inbound (Pi
r, n) and outbound (Po

r, n) connecting pow-
ers of a route r at stop n are:

Pi
r, n =aCr 3bVr 3gDi

r, n ð3Þ

Po
r, n =aCr 3bVr 3gDo

r, n ð4Þ

where Cr is the passenger capacity of route r (pax), Vr is
the speed of route r (km/h), Di

r, n is the route distance of
stop n from the route origin (km), and Do

r, n is the route
distance of stop n from the route destination (km). The
passenger capacity of a route depends on the passenger
capacity of a vehicle and the number of trips that are
performed in the time period that is studied. The para-
meters a, b, and g are the scaling factor coefficients for
capacity, speed, and distance and are the reciprocals of
the average capacity of the system, the reciprocal of the
average speed on each route, and the reciprocal of the
average network route distance, respectively.

Quantification of Demand

Demand in this study refers to the number of transfers
that are performed at a certain PT stop. Transfers are a
critical part of multi-modal PT trips that are usually chal-
lenging to quantify through conventional data sources.
As transfers, in this study we consider the number of tra-
velers within the network that boarded a PT vehicle at a
certain stop shortly after they alighted another PT vehi-
cle, either at the same or a different PT stop. If two stops
are involved in the transfer activity, then both are attrib-
uted the transfer activity when counting the number of

transfers per stop. The time interval between alighting a
PT vehicle and boarding a new PT vehicle that deter-
mines whether this activity is a transfer or not, is set
according to network and data-specific conditions. These
conditions are described in the following section in which
the case study and utilized data are described.

Clustering Method

The clustering approach implemented in this study is the
hierarchical agglomerative clustering (HAC) technique,
which is used in several PT applications (e.g., in Cats
et al. [29]). The analysis starts by considering that each
point within the dataset is an individual cluster (i.e., it is
a bottom-up approach) and a similarity (or distance)
matrix is calculated. An iterative process of clustering
the two closest data points and updating the similarity
matrix is implemented until there is only one cluster left.
The similarity between two clusters can be compared
with different linkage methods. In (34) a comparison of
different methods is performed and Ward’s method (35)
seems to be the one performing best in most situations
examined. Therefore, this method is adopted in this
study. There are several ways of determining the optimal
number of clusters. The method used here is to consider
the silhouette score (SS) presented in Rousseeuw (36). It
is a commonly used validation metric of the consistency
of data within a cluster. The score values range from 21
to 1, with score 1 indicating high similarity of points
within a cluster and high difference with points outside
the cluster.

The PT stops per mode are first clustered according to
their connectivity index considering a meaningful maxi-
mum number of clusters that will support the explainabil-
ity of results (e.g., from two to ten). For each clustering,
the SS is recorded. Similarly, the PT stops are then clus-
tered according to the transfers that are performed at
them, and the respective SSs per clustering are recorded.
The number of clusters, k, that has the greatest combina-
tion of SSs for the connectivity and the transfers cluster-
ing approaches is the one that is considered for the rest
of the proposed method.

Evaluation Framework

For each mode, m 2 M , the comparison between supply
and demand clusters is achieved through constructing a
type of matching matrix with dimensions k 3 k and con-
sidering the connectivity and transfer clusters in which
the stops belong. The first cluster is the one associated
with the lowest and the last cluster (i.e., cluster k) with
the greatest values of supply or demand. In such a
matrix, the sum of all cell values should equal the total
number of stops per mode, Nm. A sample of matching
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matrix with Nm =
Pk

j= 1

Pk
i= 1 N

i, j
m stops for mode m is

given in Figure 1. The values in diagonal cells (Ni, j
m with

m 2 ½1,M �, i 2 ½1, k�, j 2 ½1, k� and i= j) present the num-
ber of stops of mode m that belong to the same cluster
for both supply and demand. Therefore, they could be
eliminated during decision-making concerning where to
implement improvements in the supply performance of
the network. The percentage of stops that belong to the
case of equal connectivity and transfers for a mode,
ECTm, and for the overall multi-modal network, ECTo,
can be derived as follows:

ECTm =

Pk
i= 1 N

i, i
m

Nm

ð5Þ

ECTo =

PM
m= 1

Pk
i= 1 N

i, i
mPM

m= 1 Nm

ð6Þ

The cells in Figure 1 that are above the diagonal (also
illustrated in red shade color) include the numbers of
stops for which the connectivity is in lower cluster than
the transfers. These stops require further attention from
PT authorities, to ensure that the PT user experience is
efficient. The percentage of stops that belong to the case
of lower connectivity/higher transfers for a mode,
LCHTm, and for the overall multi-modal network,
LCHTo, can be derived as follows:

LCHTm =

Pk
i= 1

Pk
j= 1jj.i N

i, j
m

Nm

ð7Þ

LCHTo =

Pk
m= 1

Pk
i= 1

Pk
j= 1jj.i N

i, j
mPM

m= 1 Nm

ð8Þ

In general, the closer the cells to the diagonal, the bet-
ter the performance of the included stops relating to
alignment between connectivity and transfers. Among
the cells that are above the diagonal, the cell with N 1, k

m

stops (darker red color in Figure 1) is the extreme case in
which stops that are clustered in the lowest connectivity
cluster are also clustered within the highest transfers clus-
ter. These stops require further attention and a proper
investigation of whether improvement actions are needed
on behalf of the operators. The percentage of stops that
belong to this extreme case of the lowest connectivity
and the highest transfers for a mode, LCHTem, and for
the overall multi-modal network, LCHTeo, can be derived
as follows:

LCHTem =
N 1, k
m

Nm

ð9Þ

LCHTeo =

PM
m= 1 N

1, k
mPM

m= 1 Nm

ð10Þ

In addition to the stops above the diagonal, the stops
included in cells below the diagonal (illustrated with
green shade color in Figure 1) also indicate cases in
which the connectivity and the transfers are not perfectly
aligned. In this case, the stops are included in a higher
cluster of connectivity compared with the cluster of
transfers. Therefore, PT operators should investigate
whether they should decrease their efforts to decrease
their operational costs. For example, the cost savings
could be re-allocated to the stops above the diagonal. In
any case, the operators should also take into account the
marginal effects of such decisions on the PT users experi-
ence. Every action within the network might affect the
overall structure of the matching matrix and iterative
process of re-structuring it after every intervention might
be needed. It is noted that the ideal scenario that results
from this method is a matching matrix in which all stops
belong to the diagonal. The percentage of stops that
belong to the case of higher connectivity/lower transfers
for a mode, HCLTm, and for the overall multi-modal net-
work, HCLTo, can be derived as follows:

HCLTm =

Pk
i= 1

Pk
j= 1jj\i N

i, j
m

Nm

ð11Þ

HCLTo =

PM
m= 1

Pk
i= 1

Pk
j= 1jj\i N

i, j
mPM

m= 1 Nm

ð12Þ

The percentage of stops that belong to the extreme cell
of the highest cluster of connectivity and the lowest clus-
ter of transfers (highlighted with darker green color in
Figure 1) for a mode, HCLTem, and for the overall multi-
modal network, HCLTeo, can be derived as follows:

HCLTem =
Nk, 1
m

Nm

ð13Þ

HCLTeo =

PM
m= 1 N

k, 1
mPM

m= 1 Nm

ð14Þ

A summary of notations used in this section is given
in Table 1, with notations listed in the order of appear-
ance in the paper. The overall proposed methodology for
each mode’s evaluation is summarized in Figure 2. As
presented above, the current study focuses on evaluating
each mode separately but the proposed method also
allows deriving conclusions for the overall multi-modal
network performance. The evaluation consists of deter-
mining percentages of stops that belong to each one of
the cases presented above (i.e., diagonal, above diagonal,
below diagonal, and extreme). Such metrics can offer
insights to guide decision-makers through implementing
changes in the network. The proposed method also
allows us to identify the specific stops that require further
attention and therefore reduce the efforts of decision-
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makers when it comes to choosing where (either stop or
mode level) to implement improvements.

Study Area and Data

Helsinki is a metropolitan area that covers 770km2 with
a population of approximately 1.3million inhabitants. It
is characterized by a very diverse mobility ecosystem,
that includes fixed PT (i.e., metro, tram, train, bus, and
ferry), micro-mobility (e.g., shared e-scooters and shared
bicycles), and ride-hailing services (e.g., UBER). Flexible
services have operated in the past, as for example the
Kutsuplus service that was a novel flexible micro-transit
service that was operated by the local PT operator from
2012 to 2015. A map of the study area including the cur-
rent fixed-route PT network is presented in Figure 3.
The operational characteristics of the PT network can be
quantified through data available in the GTFS dataset.
The demand characteristics associated with the PT net-
work can be quantified through an app-based dataset
(‘‘TravelSense’’), which is owned by the local PT
operator.

GTFS Data

GTFS is a data specification that allows PT operators to
publish data that could be further used for different

applications. The GTFS dataset is divided into scheduled
component (e.g., schedule and fare information) and
real-time component (e.g., arrival predictions and vehicle
locations). The focus of this study is on static PT infor-
mation, with the respective files including information
about stops, routes, trips, and fares, among others. The
goal of this study is to utilize GTFS data to derive at a
stop level:

1. number of stops: readily available
2. location of stops: readily available
3. routes per stop: readily available.

At a route level, the required information obtained from
GTFS data refers to:

1. number of routes: readily available
2. number of daily trips per route: readily available
3. shape distances (km) between stops per route:

readily available
4. duration (h) per route: calculated as the difference

between the timestamps of vehicle’s dispatch at
origin stop and vehicle’s arrival at the terminal
stop

5. length (km) per route: calculated as the sum of
shape distances (km) between stop locations
within the route

1, 2, ,

1,2 2,2

1,1 2,1 ,1

,2

(a) (b)

Figure 1. Sample of matching matrix (a) with number of stops per cell and (b) with evaluation of areas. (Color online only).
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6. speed (km/h) per route: calculated as the route
length (km) over route duration (h)

7. type of mode per route: readily available.

An additional piece of information needed in this
study is the vehicle capacity (pax/veh) per mode, which
can be easily identified though the operators’ websites,
among other sources (e.g., reports). The required pro-
cessing for obtaining the above information from GTFS
data is fairly fast and straightforward, since most of it is
already recorded in the dataset while the rest can be eas-
ily calculated.

TravelSense Data

HSL provides PT users with a mobile application which
allows them to buy tickets (i.e., single ticket, day ticket
and season ticket), as well as to find the best route for
their trip and receive information about the PT opera-
tion (e.g., timetables, delays). HSL has incorporated in
this application the option to record trip trajectories for
users who consent and thus detect whether the user is
still, walking, cycling, or on board a vehicle, either PT or
private. Exact coordinates of locations outside the PT

network are not recorded, but are resolved up to grid
cells of dimension 250m3 250m using GPS data. The
required physical sources for the data collection within
PT network includes stationary Bluetooth beacons at PT
stops, moving Bluetooth beacons in PT vehicles and por-
table devices (i.e., users’ mobile phones). Each user’s
mobile phone is assigned a random ID which is updated
every day that the user shares data. Anonymity is pre-
served to avoid identification of individuals.

The information included in the TravelSense dataset
is structured based on ‘‘legs’’ and ‘‘trip chains.’’ A ‘‘leg’’ is
a discrete stage within a journey recognized by the data
collection system and the pre-processing. The reasons for
such recognition could be a pause in the movement or a
change in recognized activity. A ‘‘trip chain’’ is a series of
legs that have been recognized by the pre-processing as
being part of a single journey. A trip chain is ended when
the system detects prolonged periods in the same location
and no changes in activity. The raw information included
in the TravelSense dataset for PT journeys includes:

� start and end timestamps of legs
� start and end PT stop IDs and coordinates for

each leg

Table 1. Summary of Notations

Notation Description

un Transit connectivity index of stop n (unitless)
Ptr, n Connecting power of route r at stop n (unitless)
mr, n Binary variable (1: route r contributes to the connectivity at node n; 0: otherwise)
Pir, n Inbound connecting power of route r at stop n (unitless)
Por, n Outbound connecting power of route r at stop n (unitless)
Cr Passenger capacity of route r (pax)
Vr Speed of route r (km/h)
Di
r, n Route distance of stop n from the route origin (km)

Do
r, n Route distance of stop n from the route destination (km)

a Scaling factor coefficient for capacity (1/pax)
b Scaling factor coefficient for speed (h/km)
g Scaling factor coefficient for distance (1/km)
Nm Number of stops of mode m
Ni, j
m Number of stops of mode m in connectivity cluster i and transfers cluster j

ECTm Percentage of stops of mode m that belong to connectivity cluster i and transfers cluster j, with i= j
ECTo Percentage of stops of the overall network that belong to connectivity cluster i and transfers cluster j, with i= j
LCHTm Percentage of stops of mode m that belong to connectivity cluster i and transfers cluster j, with i\j
LCHTo Percentage of stops of the overall network that belong to connectivity cluster i and transfers cluster j, with i\j
LCHTem Percentage of stops of mode m that belong to connectivity cluster i and transfers cluster j, with i= 1 and j= k

(where k is the number of clusters)
LCHTeo Percentage of stops of the overall network that belong to connectivity cluster i and transfers cluster j, with i= 1 and

j= k (where k is the number of clusters)
HCLTm Percentage of stops of mode m that belong to connectivity cluster i and transfers cluster j, with i.j
HCLTo Percentage of stops of the overall network that belong to connectivity cluster i and transfers cluster j, with i.j
HCLTem Percentage of stops of mode m that belong to connectivity cluster i and transfers cluster j, with i= k and j= 1

(where k is the number of clusters)
HCLTeo Percentage of stops of the overall network that belong to connectivity cluster i and transfers cluster j, with i= k and

j= 1 (where k is the number of clusters)
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� PT mode used at each leg
� PT route used including direction for each leg.

For journeys outside the PT network, the raw informa-
tion includes:

� start and end timestamps of legs rounded to near-
est quarter-hour for privacy purposes

� grid cells associated to each leg
� type of movement including walking, cycling, or

vehicle.

Unlike commonly used data sources for identifying
mobility patterns (e.g., smartcard data), the TravelSense
dataset offers enough details to illustrate the full trajectory
of a door-to-door journey (Figure 4). A full trajectory
allows us to detect and quantify transfers at a PT stop
level. For example, in Figure 4 the PT user boards the bus
(blue vehicle) and after alighting walks to access the
respective PT stop to board the metro (orange vehicle). In
this study, the analysis considers both parts of a transfer
activity. More specifically, the term ‘‘transfers alighting’’
at a PT stop refers to the number of PT users that alight
at a certain PT stop to board another PT vehicle, either at
the same or at another PT stop of the same or different

mode. The term ‘‘transfers boarding’’ refers to the number
of PT users that board a PT vehicle after alighting another
PT vehicle either at the same or at another PT stop of the
same or different mode. The detection of transfers is con-
strained within an amount of time equal to 80min, which
is the validity time for a ticket. Therefore, if a PT user
alights a vehicle and does not board another one within
80min, then it is assumed that there is no transfer activity.
For example, it could be shopping time.

The TravelSense dataset depends on a complex system
of data collection and requires a careful pre-processing
for deriving the required outputs directly from the raw
data. Details about the infrastructure required for
obtaining the data included in TravelSense, the necessary
assumptions required for cleaning the raw data and the
process for deriving the needed transfer related results
are described in Huang et al. (33).

Results

GTFS and TravelSense data are obtained, processed,
and analyzed to evaluate each PT mode that operates
within the multi-modal PT network of Helsinki, follow-
ing the methodology proposed in this study. The results
from each step are presented as follows.

GTFS TravelSenseCalculate connectivity 
per stop

Calculate Silhouette 
Scores for 2,…,
stop clusters based 

on connectivity

Calculate Silhouette 
Scores for 2,…,
stop clusters based 

on transfers

Identify Identifyf
number of number
clusters, 

of
ss, k

Cluster stops in k
clusters based on 

connectivity

Cluster stops in k
clusters based on 

transfers

Construct the 
k
Co
kk x 

ono
xxxx k 

ruct the strns
kk matching x kk mmatchi
matrix

Evaluate mode 

Calculate transfers 
per stop

Figure 2. Flow chart of proposed methodology.
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Data Analysis

GTFS Data Analysis. GTFS data were analyzed to derive
the components of stop connectivity index: passenger
capacity (pax), speed per route (km/h), and length of
route (km). The analysis here considers the operation of
regular weekdays of April 2022 and identifies the stops
and routes that operated during regular weekdays as well

as the details of their operation. The analysis here con-
siders the 7,852 stops that belong to the HSL area (i.e.,
zones A, B, C, and D) and are common among all week-
days. The identified number of routes is 513 for a regular
Friday and 509 for the other weekdays.

The four main PT modes that operate in Helsinki are
bus, tram, metro, and rail services. There are also four
ferry stops, which are not considered here. Bus stops are
dominating the modal split with 94.56% of stops being
bus stops, 3.27% tram stops, 1.53% rail stops, and
0.64% metro stops. Considering vehicle capacity (pax/
veh), the average values used in this study are 97, 180,
600, 700, for bus, tram, rail, metro, respectively, utilizing
values from HSL’s official website (37). Bus mode
includes different types of services, such as express, regu-
lar, regional, and so forth. With reference to stops per
zone, 12.29% of stops belong to zone A, 38.20% to zone
B, 26.62% to zone C, and 22.80% to zone D.

The connectivity index was calculated for each stop
and each day, and then an average daily connectivity per
stop was derived to perform a comparison between the
average connectivity per stop and the transfers that were
performed at these stops in overall during the 22 week-
days of April 2022, as explained in the following section.
For the purposes of this study, the parameters a, b, and g

of Equations 3 and 4 can be calculated either per mode or
for the entire multi-modal PT network without affecting
the clustering and therefore the desired results. The results
of connectivity index per stop are summarized in Figure
5, considering the parameters a= 0:00028 1=paxð Þ,
b= 0:031 h=kmð Þ, and g= 0:054 1=kmð Þ, respectively,
that are calculated based on the entire PT network and
are found to be the same for every day studied here. As

05:30 06:30

TravelSense

Smartcard

05:47 06:13 06:18 06:23

transfer

Soukanlahti Lapinrinne Kamppi Sörnäinen
M2147A

Figure 4. Example of a trajectory derived from TravelSense data and comparison with other data sources. (Color online only).

Figure 3. Map of the Helsinki public transport (PT) network.
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shown in Figure 5, highly connected stops are mostly met
in the center of Helsinki (also shown separately in zoom-
in box within the figure). For the days studied here, the

average connectivity index for bus stops is 1.05, for tram
stops is 1.06, for rail stops is 32.95, and metro stops is
46.27. As expected, rail and metro stops are associated
with considerably higher connectivity index compared
with bus and tram. Figure 6 summarizes the histograms
of stop connectivity index per mode.

TravelSense Data Analysis. Demand data are analyzed for
the 22 regular weekdays of April 2022. For each day, the
number of transfers per stop is quantified and then the
total number of transfers per stop is derived for the study
period. Transfers are aggregated because the number of
PT users who are also mobile ticketing app users who
have accepted the tracking of their trajectories was low
and did not allow a proper analysis at a more disaggre-
gated level. The issue with these low numbers of
TravelSense records is discussed in Huang et al. (33), in
which the authors showed that the TravelSense data can
be considered representative. It is noted that the aggrega-
tion might lead to double counting some daily repeated
travel patterns. However, owing to the anonymity of
data, it is not possible to directly know which trips might
correspond to the same PT user among the studied days
and thus it is not possible to know with certainty which
trips are repeated.

The spatial distribution of demand and transfers is
presented on the map of the study area in Figure 7. Stops
near the center of Helsinki are the ones with the greatest
demand and transfers, but there are also stops in the

Figure 5. Map of under study area with locations of public
transport (PT) stops and colorbar indicating their connectivity
index.

Figure 6. Histogram of connectivity index per stop for (a) bus, (b) tram, (c) rail, and (d) metro.
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suburban areas that are equally highly used by PT users.
In overall, for the study period the TravelSense dataset
recorded 2.3million boardings and alightings with 8.17%
of them corresponding to transfer activities. The histo-
grams of transfer activities per stop for each one of the
four modes studied here is shown in Figure 8.

Clustering Analysis

After connectivity and transfers per stop are quantified,
HAC is used for clustering stops of each mode according
to their connectivity and transfers. To identify the great-
est combination of SSs for clustering based on connectiv-
ity and transfers, we used a maximum number of clusters

Figure 7. Map of under study area with locations of public transport (PT) stops and colorbar indicating the number of PTusers (a) accessing
a PT stop, (b) egressing a PT stop, (c) alighting at a stop during transfer, and (d) boarding a PT stop during a transfer. (Color online only).

156 Transportation Research Record 2678(10)



equal to 20. Eventually, metro stops are clustered in two
clusters, bus and rail stops in three clusters, and tram
stops in four clusters. The results of the clustering

procedure for connectivity index per stop are shown in
Figure 9. The results of the clustering procedure for
transfers per stop are shown in Figure 10. In these

Figure 8. Histogram with number of transfer activities per stop for (a) bus, (b) tram, (c) rail, and (d) metro.

Figure 9. Clustering results for connectivity per stop of (a) bus, (b) tram, (c) rail, and (d) metro.
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figures, the stops per mode are ordered from low to high
value according to their connectivity or transfers, with
different colors indicating the cluster in which they
belong. The resulting mean values per cluster and the SS
per cluster are also included in the figures. In this study,
‘‘cluster 1’’ refers to low connectivity and the greater the
number of cluster the greater the connectivity. The same
holds for transfers clusters.

Evaluation

The matching matrices for each one of the four modes of
the Helsinki network are shown in Figure 11. This figure
also presents the SS for both the clustering based on con-
nectivity and the clustering based on transfers. As shown,
it is always positive and close to one, for all clustering
processes implemented here, indicating a high accuracy
of results. It is noticeable that in all four modes there are
more stops in the area of high connectivity and low
transfers (i.e., green color shaded area in Figure 11) com-
pared with the area of low connectivity and high trans-
fers (i.e., red color shaded area in Figure 11). In addition,
the extreme case of low connectivity and high transfers
includes zero number of stops for tram, rail, and metro.
The eight bus stops that belong to the extreme case of
low connectivity and high transfers (Figure 11a) require
further investigation from the operator to ensure that the
user experience is efficient at these stops.

Table 2 summarizes the results of Figure 11 with refer-
ence to percentage of stops that belong to the cases of
equal connectivity and transfers (ECT), low connectivity-
high transfers (LCHT), and high connectivity/low trans-
fers (HCLT). The percentages of stops per mode belong-
ing to the extreme cases of low connectivity/high
transfers (LCHTe) and high connectivity/low transfers
(HCLTe) are also included in the table. As shown, there
is a high percentage of stops that belong to the equivalent
cluster of supply and demand for all modes (i.e., more
than 50% for all modes). Metro mode is shown in this
table to have a high percentage of stops belonging to the
case of high connectivity and low transfers, compared
with the respective percentages of other modes. It is
noted that for metro stops the LCHT and LCHTe values
are equal because the stops are clustered in two clusters.
The same holds for HCLT and HCLTe.

Table 2 also includes the evaluation of the overall
multi-modal network based on each mode’s evaluation.
Considering the dominating role of bus stops within
Helsinki’s multi-modal network (i.e., 94.56% of stops
are bus stops), it is noted that the overall multi-modal
network’s evaluation is similar to that of the bus mode.
Therefore, it has a high percentage of stops within ECT
(i.e., more than 75% of Helsinki stops present equivalent
connectivity and transfers), and more stops belonging to
the area of high connectivity and low transfers compared
with the case of low connectivity and high transfers.

Figure 10. Clustering results for transfers per stop of (a) bus, (b) tram, (c) rail, and (d) metro.
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Discussion and Conclusions

Summary of Findings and Discussion

This study focuses on the evaluation of multi-modal PT
networks’ performance and proposes a clustering-based
methodology to compare supply and demand using tradi-
tional and emerging data sources. The implementation of
the proposed methodology led to the Helsinki’s PT stops
being clustered according to their connectivity and trans-
fers. The constructed matching matrices showed that the
majority of stops presents a good alignment between sup-
ply and transfers (i.e., more than 50% of stops for each
mode and for the overall multi-modal network). These
stops can be thus eliminated from the investigation of

planners as regards where to perform improvements,
reducing significantly their planning efforts. Considering
stops in which supply and demand are not equivalent, it
is shown that they mostly refer to cases of stops belong-
ing to higher clusters of connectivity when compared
with the transfers clusters in which they belong. This
observation ensures the good quality of offered services,
but it is up to the operator to decide whether they would
like to reduce their efforts in some stops to properly allo-
cate funding to other stops that require more attention
(i.e., to the stops of low connectivity and high transfers).
The high performance shown by this analysis is well
aligned with a recent survey that has ranked Helsinki’s
PT services as the second best among European urban
regions with a percentage of user satisfaction equal to
76% (38).

Implications for Practice

This study required the availability of sufficient informa-
tion to quantify supply and demand. Quantifying supply
was achieved through utilizing an existing connectivity
index suitable for PT networks. Acknowledging the
importance of proposing a methodology that can be eas-
ily replicated, the authors utilized openly available
GTFS data, as suggested also by existing literature (39).
However, quantifying transfers is a more challenging
task which can be achieved either through fusing tradi-
tional data sources or through using emerging sources in
this field. The former case is more complex computation-
ally, while the latter requires the availability of such data
source. Mobile phone-based demand data sources, like
the one utilized here, are promising for quantifying PT
demand (28). Therefore, it is expected that they will
become more common in advanced PT networks in the
near future, allowing the replication of the proposed
method in more case studies. Despite the uncertainties of
what percentage of demand can be captured by such a
dataset, the TravelSense data were shown to be efficient
in revealing the relationship between supply and demand
within the Helsinki network as indicated by the high
ECT of most modes, thus enhancing the findings of

Figure 11. Matching matrix for (a) bus, (b) tram, (c) rail, and (d)
metro mode. (Color online only).

Table 2. Evaluation of Stops’ Performance Per Mode

Mode ECT (%) LCHT (%) LCHTe (%) HCLT (%) HCLTe (%)

Bus 76.27 4.36 0.11 19.37 0.40
Tram 69.65 11.67 0.00 18.68 0.00
Rail 52.50 10.83 0.00 36.67 2.50
Metro 62.00 0.00 0.00 38.00 38.00
Overall 75.60 4.67 0.10 19.73 0.66

Note: ECT = equal connectivity and transfers; LCHT = low connectivity-high transfers; HCLT = high connectivity-low transfers; LCHTe = low connectivity-

high transfers (extreme); HCLTe = high connectivity-low transfers (extreme).
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Huang (33). In that study, the authors found that this
dataset’s magnitudes of demand and transfers per stop
are much lower than the ones deriving from alternative
sources; however, their relative magnitude is considered
representative. In a study like the one performed here,
the importance is on identifying a dataset that can reveal
the relationship among all stops of a network as regards
transfers (and not necessarily the actual magnitudes per
stop), thus allowing them to be clustered properly.

As regards the evaluation of the proposed methodol-
ogy’s results, the case of high connectivity and low trans-
fers can be evaluated in different ways. One approach is
that the demand data and their filtering processes did not
allow the proper representation of transfers at these
stops. Another approach is that the effects of COVID-19
on demand were still present in the case study during
April 2022. If data are assumed to be fully representative,
then this case means that the operators have allocated
more efforts than they should on these stops (e.g., as
regards budget allocation). Therefore, the operations at
these stops should be re-planned to account for the actual
levels of transfers that take place at them. For example,
that could happen through re-allocating funding from
these stops to others that require support. Reducing the
supply at a stop, however, is a decision that should be
carefully taken, while also accounting for the marginal
effects of the respective actions on the entire PT network.
A simple example here is that reducing the efforts at a
stop might lead PT users to use other stops, therefore
increasing their demand and therefore creating new pro-
blematic stops in the network. Such scenarios can be
investigated by using iteratively the proposed methodol-
ogy, aiming at the highest possible percentage of stops
that belong to equivalent clusters of supply and demand
in tandem with the least possible number of problematic
stops.

Considering the supply indicator for PT evaluation,
an existing transit connectivity index was utilized here,
including components of passenger capacity, speed, and
length of routes. Therefore, the actions of the operator
for adjusting supply to demand levels at a stop should be
related to these components, either directly or indirectly.
If a network is associated with different needs that can-
not be reflected through this indicator, then the proper
one should be incorporated in the proposed methodol-
ogy. The set of actions that a PT operator can take with
reference to planning PT services according to demand
can vary from less to more intrusive approaches associ-
ated with different levels of labor and budget require-
ments. This study aims at identifying points of interest
that require further attention by the PT operators to
reduce the set of candidate points that they have to inves-
tigate while planning improvements. The following step

includes personal judgment on behalf of the operators
and/or additional methods for the identification of spe-
cific actions. This step lies beyond the scope of this study.

Future Directions

There are several ways in which this study could be
extended in the future. A future study refers to identify-
ing the effect of specific changes in the PT network. It is
noted that the Helsinki PT network is constantly going
through changes aiming at improving the user experi-
ence. In recent years, the Helsinki metro was extended,
including the transformation of a direct bus network into
a metro system with feeder buses (40). The improvements
of metro services continue up to date, with an additional
line extension performed during 2023. It is noteworthy
that the Helsinki tram network is currently under
improvements that started already during 2021 and will
continue until 2035 (41). The evaluation framework pro-
posed in this study could be used for evaluating the effect
of a change in the PT network, considering the perfor-
mance of the network before and after a certain change.

A different supply indicator could be selected (e.g.,
another connectivity related index), depending on the
goals for which the PT operators perform the evaluation.
The analysis performed here is static, referring to the PT
operations on a daily basis and focusing only on regular
weekdays. Future studies could account for the dynamic
changes of operational characteristics at smaller time
periods within a day. Special days and weekends could
also be part of the analysis. Considering data, this study
considered the TravelSense demand data which were col-
lected during a time period that could be affected by
COVID-19 pandemic and during the early stages of
introducing the trajectory tracking option in the ticketing
app. An interesting future direction refers to comparing
the evaluation of PT performance after the impact of
COVID-19 has faded and the TravelSense data have
achieved a better penetration among PT users. Finally,
this study focused on the evaluation of a multi-modal
network as regards alignment between stop connectivity
and transfers. Future studies could focus on proposing
specific planning actions for improving the performance
of these stops and ensuring high quality of services and
high user satisfaction.
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