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Graph Convolutional Neural Networks Sensitivity
Under Probabilistic Error Model

Xinjue Wang , Graduate Student Member, IEEE, Esa Ollila , Senior Member, IEEE,
and Sergiy A. Vorobyov , Fellow, IEEE

Abstract—Graph Neural Networks (GNNs), particularly Graph
Convolutional Neural Networks (GCNNs), have emerged as pivotal
instruments in machine learning and signal processing for process-
ing graph-structured data. This paper proposes an analysis frame-
work to investigate the sensitivity of GCNNs to probabilistic graph
perturbations, directly impacting the graph shift operator (GSO).
Our study establishes tight expected GSO error bounds, which are
explicitly linked to the error model parameters, and reveals a linear
relationship between GSO perturbations and the resulting output
differences at each layer of GCNNs. This linearity demonstrates
that a single-layer GCNN maintains stability under graph edge
perturbations, provided that the GSO errors remain bounded,
regardless of the perturbation scale. For multilayer GCNNs, the
dependency of system’s output difference on GSO perturbations
is shown to be a recursion of linearity. Finally, we exemplify the
framework with the Graph Isomorphism Network (GIN) and Sim-
ple Graph Convolution Network (SGCN). Experiments validate
our theoretical derivations and the effectiveness of our approach.

Index Terms—Graph convolutional neural network, graph shift
operator, sensitivity analysis, structural perturbation.

I. INTRODUCTION

GRAPH neural networks (GNNs) have steadily gained
prominence as an innovative tool in machine learning and

signal processing, exhibiting unparalleled efficiency in process-
ing data encapsulated within complex graph structures [1], [2],
[3]. Uniquely designed, GNNs utilize a system of intricately
coupled graph filters (GFs) with nonlinear activation functions,
enabling the effective transformation and propagation of infor-
mation within the graph [4].

Different GNN architectures can be delineated based on the
GFs, which are an integral to the functioning of GNNs. A notable
example of these architectures uses graph-convolutional filters.
The GNN employing this design is known as the Graph Convo-
lutional Neural Network (GCNN). Some examples of GCNNs
include the vanilla Graph Convolutional Network (GCN) [5],
Graph Isomorphism Network (GIN) [6], Simple Graph Convolu-
tion Network (SGCN) [7], [8], and Cayley Graph Convolutional
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Network (CayleyNet) [9]. In contrast to the aforementioned
GCNNs, there exist non-convolutional GNNs such as the Graph
Attention Network (GAT) [10] and Edge Varying Graph Neu-
ral Network (EdgeNet) [11], which utilize edge-varying graph
filters [12].

This paper delves into the GCNN, which blends graph convo-
lutional filters with nonlinear activation functions. Graph con-
volutional filters couple the data and graph with the underlying
graph matrix, named graph shift operator (GSO), which can be,
for example, the graph adjacency matrix or graph Laplacian, en-
coding the interactions between data samples [13]. Based on the
GSO, the graph filter captures the structural information by ag-
gregating the data propagated within its k−hop neighborhoods,
and feeds it to the next layer after processing, which can be
applying graph coarsening and pooling [6], [14]. As the key com-
ponent of GCNNs, GSO presents the graph structure, and is typ-
ically assumed to be perfectly known. The precise estimation of
the hidden graph structure is essential for successfully perform-
ing feature propagation in a convolution layer [15], [16], [17].

GSOs form the foundation of GCNN structures. Any perturba-
tion in the graph structure has a direct bearing on the operations
of a GCNN. Previous studies in graph signal processing (GSP)
and GNN have examined both deterministic and probabilistic
perturbations affecting GSOs. A probabilistic graph perturbation
model for a partially correct estimation of the adjacency matrix
is proposed in [18], where a perturbed graph is modeled as a
combination of the true adjacency matrix and a perturbation
term specified by Erdős-Rényi (ER) graph. The work [19]
explores perturbations in graphs using random edge sampling,
a scheme characterized by randomly deleting existing edges.
In [20], a GSO perturbation strategy is formulated leveraging
a general first-order optimization method, which concurrently
imposes a constraint on the extent of edge perturbation. In [21],
the authors propose to perturb eigenvector pairs of the graph
Laplacian, considering single and multiple edge perturbations,
under small perturbation assumption. Here, small perturbations
refer to changes in a small percentage of edges.

The stability of GFs and GCNNs under GSO perturbations is
one of the key research areas in signal processing (SP) and com-
puter science (CS). In the SP community, research focuses on
the relationship between the system’s output differences and the
GSO differences under evasion attacks, emphasizing changes in
the learned representation. In [22], the authors provide bounds
on the output changes of spectral GFs resulting from double
edge rewiring on normalized augmented adjacency matrices.
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This study extends the stability results to SGCN and gives
theoretical bounds. In [23], the authors present interpretable
bounds to verify the stability of spectral GFs against graph edge
perturbations. These bounds are derived under the constraint
that the degree of any node after perturbation cannot exceed
twice its original degree. In [24], the authors apply an additive
error model with norm-bounded perturbations on unspecified
GSOs to provide stability bounds for multi-layer GCNNs. This
model is not generic as it does not explicitly account for the
perturbation of graph edges. It primarily considers perturbations
resembling a uniform scaling of edge weights, a limitation noted
in [25]. Additionally, the bound of error matrix is defined based
on the smallest operator norm achievable via node permutation.
However, this permutation assumption may not suit social or
citation networks where node identification is label-dependent,
as noted in [22]. In [19], authors consider random edge deletions
as the perturbation on GSOs, specifically focusing on adjacency
matrices and graph Laplacians. It concludes that both the GF
and GCNN are linearly stable with respect to several factors,
including the probability of edge dropping, nonlinearity, and the
width and depth of the network architecture. Nevertheless, in the
experiments of [19], the maximum edge deletion probability is
set to 6%, indicating a limited scale on perturbation. Works in
CS [26], [27], [28], [29], [30] focus on the effects of adversarial
attacks affecting GCNN accuracy, considering both evasion and
poisoning attacks. The focus is on the impacts of such attacks on
the downstream task. For instance, under evasion attacks, [27]
demonstrates the reduction on GCNN’s accuracy under small
perturbations, while maintaining the degree distributions after
the attack, and [30] demonstrates the significant drop of accuracy
of GCN when 5% of edges are altered.

In this paper, we introduce a sensitivity analysis framework
for GCNN under the probabilistic edge perturbation model [18].
We understand stability as the characteristic of a system to
maintain bounded output under perturbations, while sensitivity
analysis is an examination of how variations in the output depend
on influencing factors. Our analysis concentrates on studying
the effects of evasion attacks. We use statistical analysis to
give expected bounds for GSO errors (Theorem 1 and Propo-
sition 1). These error bounds are explicitly dependent on the
parameters of the error model. Then, we establish a sensitivity
analysis framework for both GF (Theorem 2) and multilayer
GCNN (Theorem 3) by giving expected bounds for differences
of outputs because of GSO errors. Finally, we exemplify the
framework with GIN (Corollary 1) and SGCN (Corollary 2),
and empirically show that under large-scale graph perturbations
(significant edge modifications), GCNNs maintain stability.

Our detailed contributions are summarized as follows.
1) Probabilistic error model: The probabilistic edge perturba-

tion model considered is general and practically appealing. It is
grounded in stochastic block models, supports both deletion and
addition of edges, and permits a broader perturbation scale. The
corresponding analysis approach contrasts with the constrained
perturbations in existing GCNN analyses, which involve such
restrictions as permitting only edge deletions in [19], double
edge rewiring in [22], and small norm bounded errors in [24].

2) Tight GSO error bound: We give tighter expected bounds
on GSO errors compared to our previous conference work [31],
in which the bounds are deterministic. We use the �1 norm
suggested in [23] to bound the �2 norm and make this bound
interpretable by specifically tracking the changed node de-
grees, which can be directly linked to parameters of the er-
ror model (probabilities of deleting and adding edges). Addi-
tionally, our bound does not require the eigendecomposition
of GSO [19], [24], which is computationally heavy for large
graphs.

3) Generic sensitivity analysis framework: Compared to pre-
vious works [19], [22], [24], our proposed analysis framework
is more generic in the following aspects. (i) We remove the
assumption on limited scale perturbation and allow for a large
perturbation budget, for instance that 50% of edges are deleted
and 70% of edges are added (compared to the original number
of edges). Our analysis is shown empirically to be valid even
under such perturbation, while the maximum edge perturbation
addressed in the current literature is 10% of edges [23]. (ii) We
provide expected bounds under a probabilistic perspective, while
the deterministic perturbations can be seen as special cases of
our analysis. (iii) This framework is applicable to general GCNN
models, with specific adjustments for GSO, graph shifts count,
network layer count, and activation functions.

Outline: The remainder of this paper is structured as follows.
In Sections II and III, we establish the fundamentals of GCNNs
and proceed to formulate the problem. Section IV bounds the
difference between original and perturbed GSOs, with particular
emphasis on two cases: the adjacency matrix and its normalized
version. Section V encompasses both GFs and GCNNs like
GIN and SGCN, and demonstrates that variations in the output
of each GCNN layer in response to graph perturbations are
linearly bounded. Empirical validations presented in Section VI
use numerical experiments with both synthetic and real-world
data to corroborate the proposed theorems, thereby attesting
to the reliability of our sensitivity analysis model. Section VII
concludes the paper and discusses the future work.

Notation: Boldface lower case letters such as x represent
column vectors, while boldface capital letters like X denote ma-
trices. A vector full of ones is symbolized as 1N , and a N ×N
matrix full of ones is expressed as 1N×N = 1N1�

N . The identity
matrix of size N ×N is represented as IN×N . The i-th row or
column of the matrix A is given as Ai, and the (i, j)-th element
in matrix A is denoted as [A]i,j or Ai,j . Vector �1 norm is
defined as follows:‖a‖1 =

∑
j |aj |. Matrix norms are defined as

follows: the �1 norm is represented as ‖A‖1 = maxj
∑

i |Ai,j |,
the �2 norm as‖A‖ = ‖A‖2 =

√
max(eig(A�A)) (largest sin-

gular value ofA), and the �∞ norm as ‖A‖∞ = maxi
∑

j |Ai,j |.
In addition, the Hadamard product is expressed with the symbol
◦. We use Pr(·) for probability, E(·) for expectation, Var(·) for
variance, and Cov(·, ·) for covariance.

II. PRELIMINARIES

Graph theory, GSP, and GCNN form the cornerstone of data
analysis in irregular domains. The GSO plays a key role in
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directing information flow across the graph, thereby enabling
the creation of GFs and the design of GCNNs.

The sensitivity analysis of the GSO, which essentially in-
volves matrix sensitivity analysis, provides an empirical insight
into the system’s resilience to perturbations. The GCNN, with
its local architecture, maintains most of the properties of the
graph convolutional filter, making it an ideal tool for sensitiv-
ity analysis. These preliminary concepts are essential for the
implementation of sensitivity analysis in a graph-based context.

Graph Basics: Consider an undirected and unweighted
graph G = (V, E ,W), where the node set V = {1, . . . , N} con-
sists ofN nodes, the edge set E is a subset ofV × V , and the edge
weighting function W : V × V → {0, 1} assigns binary edges.
For an edge (i, j) ∈ E , we have W(i, j) = W(j, i) = 1 due to
our focus on undirected and unweighted graphs. We define the
1-hop neighboring set of a node i as Ni = {j ∈ V : (i, j) ∈ E},
the degree of node i as di, and the minimum degree of nodes
around i as τi = minj∈Ni

dj .
GSO: The Graph Shift Operator (GSO) S ∈ RN×N symbol-

izes the structure of a graph and guides the passage and fusion
of signals between neighboring nodes. It is often represented by
the adjacency matrix A, the Laplacian L, or their normalized
counterparts. These representations capture the graph’s connec-
tivity patterns, marking them indispensable tools for data anal-
ysis in both regular and irregular domains [32]. The adjacency
matrix, denoted by A, incorporates both the weighting function
and the graph topology G, where [A]ij = 1 if (i, j) ∈ E and
[A]ij = 0 if (i, j) �∈ E . The Laplacian matrixL is defined by the
adjacency matrix and a diagonal degree matrix D. Specifically,
L = D−A, where D = diag(A1N ) is a diagonal matrix, and
[D]ii = di. The value di =

∑
j∈Ni

[A]ij denotes the degree of
node i. Moreover, normalized versions of the adjacency and
Laplacian matrices are defined as An = D−1/2AD−1/2 and
Ln = D−1/2LD−1/2, respectively. These normalized versions
help maintain consistency and manage potential variations in the
scale of the data.

Graph Convolutional Filter: Using GSO, graph signals un-
dergo shifting and averaging across their neighboring nodes. The
signal on the graph is denoted byx ∈ RN . Its i-th entry [x]i = xi

specifies the data value at the node vi. The one time shift of
graph signal is simply Sx, whose value at node i is [Sx]i =∑

j∈Ni
sijxj . After one graph shift, the value at node i is given

by moving a local linear operator over its neighborhood values
{xj}j∈N . Based on the graph shifting, a graph convolutional
filter h(S) with K taps is defined via polynomials of GSO and
the filter weights h = {hk}Kk=0 in the graph convolution

y = h0S
0x+ · · ·+ hKSKx =

K∑
k=0

hkS
kx = h(S)x, (1)

where y is the filter’s output and h(S) =
∑K

k=0 hkS
k is a

shift-invariant graph filter with K taps, and denotes the weight
of local information after K-hop data exchanges. The graph
filter is then combined with the nonlinear activation function,
forming the primary component of GCNN and contributing to
its expressivity.

Graph Perceptron and GCNN: A Graph Perceptron [4] is a
simple unit of transformation in the GCNN. The functionality of
a graph perceptron can be seamlessly extended to accommodate
graph signals with multiple features. Specifically, a multi-feature
graph signal can be denoted by X = [x1, . . . ,xd] ∈ RN×d,
where d signifies the number of features. The architecture of
an L-layer GCNN is built upon cascading multiple graph per-
ceptrons. It operates such that the output of a graph perceptron
in a preceding layer serves as the input to the graph perceptron at
the subsequent layer �, where � spans from 1 to L. We denote the
feature fed to the first layer as X0 = X. For an L-layer GCNN,
the graph perceptron at layer � can be represented as

Y� =
K∑

k=1

SkX�−1H�k, X� = σ� (Y�) . (2)

Here, Y� signifies the intermediate graph filter output, σ�(·)
denotes the nonlinear activation function at layer �, and graph
signals at each layer are X� and X�−1 with sizes of RN×F� and
RN×F�−1 , respectively, where F� denotes the number of features
at the �-th layer. The bank of filter coefficients is represented
by H = {H�k}�=1,...,L;k=1,...,K . By recursively using (2) until
� = L, a general GCNN can be formulated as

Φ(X;H,S) = XL = σ

(
K∑

k=1

SXL−1HLk

)
. (3)

This representation captures the nature of GCNN operations,
going through each layer and applying the corresponding trans-
formation defined by the graph signal, filter coefficients, and the
non-linearity function. This hierarchical arrangement facilitates
the flow of information through successive layers, thus enabling
effective learning from graph-structured data.

III. PROBLEM FORMULATION

A pivotal aspect of understanding the sensitivity of a GCNN
is the considerations of potential alterations in the underlying
graph structure. These alterations can be broadly construed as
perturbations to the GSO, intrinsically linking to changes in the
graph topology. In the simplest form, any perturbation to the
GSO can be depicted as

Ŝ = S+E, (4)

where Ŝ signifies the perturbed GSO, S is the original GSO, and
E represents the error term. The spectral norm of this error term
is denoted by

d(Ŝ,S) = ‖Ŝ− S‖ = ‖E‖. (5)

Inspired by a previous work [18], we utilize a probabilistic
error model to represent graph perturbations, where each edge
of the graph is subject to perturbation independently. In this
context, we primarily focus on the alterations occurring within
the neighborhood of a particular node u ∈ V . More specifically,
the perturbed neighborhood may encompass added nodes (Au),
deleted nodes (Du), and remaining nodes (Ru), which ultimately
leads to changes in node degree and modifications to the ad-
jacency matrix. We aim to quantify the sensitivity of GSO in
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Fig. 1. Visual representation of the probabilistic graph error model applied to a random geometric graph. From left to right: (a) Original graph; (b) Graph after
edge deletions (ε1 = 0.3, ε2 = 0); (c) Graph after edge additions (ε1 = 0, ε2 = 0.1); (d) Graph after both edge deletions and additions (ε1 = 0.3, ε2 = 0.1).
Deleted edges are marked in red and added edges are marked in blue. The transformations effectively illustrate the impact of perturbations modeled by (6).

relation to these perturbations. To this end, we adopt and expand
upon the notation used in [22], [23] for clarity and consistency.

When the graph undergoes perturbations, it transforms into
Ĝ = (V, Ê , Ŵ), with the node set remaining unaffected. We
express degrees of node u ∈ V in original and perturbed graphs
as du =

∑
j |[A]u,j | and d̂u =

∑
j |[Â]u,j | = du + δu, respec-

tively. Here, Â denotes the adjacency matrix of the perturbed
graph Ĝ, and δu = δ+u − δ−u is the degree change at node u, with
δ+u = |Au| and δ−u = |Du| corresponding to the number of edges
added and deleted, respectively. We will further delve into the
assumptions for the error model and its effects on the GCNN’s
performance in the following discussion.

A. Probabilistic Graph Error Model

In this work, we utilize an Erdös-Rényi (ER) graph-based
model for perturbations on a graph adjacency matrix, following
the approach proposed in [18]. The adjacency matrix of an
ER graph is characterized by a random N ×N matrix Δε,
where each element of the matrix is generated independently,
satisfying Pr([Δε]i,j = 1) = ε and Pr([Δε]i,j = 0) = 1− ε for
all i �= j. The diagonal elements are zero, i.e., [Δε]i,i = 0 for
i = 1, . . . , N , eliminating the possibility of self-loops. For the
sake of our analysis, we also assume that the perturbed graph Ĝ
does not contain any isolated nodes, meaning that for all u ∈ V ,
d̂u ≥ 1. The model can be adapted by employing the lower
triangular matrix Δl

ε, and then defining Δε = Δl
ε + (Δl

ε)
�.

Consequently, by specifying the error term in (4), the perturbed
adjacency matrix of a graph signal can be expressed as

Â = A−Δε1 ◦A+Δε2 ◦ (1N×N −A), (6)

where the first term is responsible for edge deletion with prob-
ability ε1, and the second term accounts for edge addition with
probability ε2. This error model can be conceptualized as super-
imposing two ER graphs on top of the original graph. To better
illustrate this model, we utilize visual aids based on a random
geometric graph [33], [34]. Fig. 1 visually represents the transi-
tion from the original graph to perturbed versions, which include
the graph with only edge deletions (ε1 = 0.3, ε2 = 0), the graph
with only edge additions (ε1 = 0, ε2 = 0.1), and the graph with

both edge deletions and additions (ε1 = 0.3, ε2 = 0.1). Each
state depicts the progressive impacts of the perturbations.

In this context, the impact of the perturbation on the degree
of a given node u ∈ V can be computed as follows. The effect
of edge deletion is represented by (−Δε1 ◦A)u, where each
non-zero element in Au has a probability of ε1 being deleted.
Thus, the total number of deleted edges δ−u is the sum of du
independent and identically distributed (i.i.d.) Bernoulli random
variables, each with a probability of ε1. Similarly, the effect of
edge addition is denoted by (Δε2 ◦ (1N×N −A))u, and the
total number of added edges δ+u is the sum of d∗u i.i.d. Bernoulli
random variables, each with a probability of ε2, where d∗u =
N − du − 1. Hence, we can express the number of deleted edges
δ−u and the number of added edges δ+u as following binomial
distributions:

δ−u ∼ Bin(du, ε1), δ
+
u ∼ Bin(d∗u, ε2), (7)

where Bin(n, p) represents a binomial distribution with param-
eters n and p.

IV. EXPECTED BOUND FOR GSO ERROR

A. Error Bound for Unnormalized GSO Using �1 Norm

Building on the foundation laid by the discussion of graph
structure perturbations and the proposed error model, we now
outline the primary theoretical contributions of this study. Our
focus here is to detail the probabilistic bounds that help quantify
the sensitivity of the GSO to graph structure perturbations. We
examine the case where the adjacency matrix serves as the GSO,
implying Ŝ = Â and S = A. The error model derived in (6) can
be expressed as

E = Â−A = −Δε1 ◦A+Δε2 ◦ (1N×N −A). (8)

We can link the change in degree with the �1 norm of error term
in (8) as

‖E‖1 = max
u∈V

‖Eu‖1, (9)

where

Yu � ‖Eu‖1 = |Du|+ |Au| = δ−u + δ+u . (10)
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Let Y � maxu∈V Yu. Since δ−u and δ+u are independent ran-
dom variables, it is not appropriate to give deterministic upper
bounds. Instead, we present expected value bounds, which are
better suited for analyzing the degree changes of nodes given
the probabilistic nature of the model. Our goal is to derive a
closed-form expression for the expectation of the maximum
node degree error, i.e.,

E[‖E‖1] = E[max
u∈V

‖Eu‖1]. (11)

The probability mass function (PMF) of Yu can be found by
convolving the PMFs of δ−u and δ+u , which are independent
random variables. Following binomial distributions in (7), we
can obtain the following PMFs

Prδ−u(k) =

(
du

k

)
εk1(1− ε1)

du−k, k = 0, . . . , du, (12)

Prδ+u (k) =

(
d∗u
k

)
εk2(1− ε2)

d∗
u−k, k = 0, . . . , d∗u, (13)

where d∗u = N − du − 1, Prδ−u(k) and Prδ+u (k) represent the
probabilities of δ−u and δ+u taking the value k, respectively. Then,
the PMF of Yu can be computed as

PrYu
(k) =

min{k,du}∑
i=max{0,k−d∗

u}
Prδ−u,δ+u (i, k − i)

=

min{k,du}∑
i=max{0,k−d∗

u}
Prδ−u(i)Prδ+u (k − i), (14)

where k = 0, . . . , N − 1. Using (14), the cumulative distribu-
tion function (CDF) of Y is computed as

FY (k) = Pr(Y ≤ k) = Pr(max(Y1, . . . , YN ) ≤ k)

= Pr(Y1 ≤ k, . . . , YN ≤ k) =
N∏

u=1

Pr(Yu ≤ k). (15)

Given that Yu for u ∈ V are i.i.d. and for k = 1, . . . , N − 1, the
CDFs for Y and Yu are as follows

FY (k) =
N∏

u=1

FYu
(k), FYu

(k) =
k∑

j=0

PrYu
(j). (16)

With the PMF of Y taking on a specific value k being PrY (k) =
FY (k)− FY (k − 1), the expectation of Y can be represented as

E[Y ] =

N−1∑
k=1

kPrY (k) =
N−1∑
k=1

k [FY (k)− FY (k − 1)] , (17)

which provides a closed-form expression for E[Y ] = E[‖E‖1].
The variance of Y can also be given as

Var[Y ] = Var[‖E‖1] = E[Y 2]− (E[Y ])2, (18)

where E[Y 2] =
∑N−1

k=1 k2PrY (k).

B. Bridging �1 and �2 Norms in GSO Analysis

In the analysis of graph-structured data, the spectral norm (�2
norm), is often employed to quantify the graph spectral error.
While [31] did furnish a spectral error bound for the GSO, the
need for a more refined and interpretable bound persists to enable
more comprehensive analyses. Following the approach of [23],
this study uses the �1 norm and assumes that the error matrix E
is fixed. The proposed approach of bounding ‖E‖ is based on
assumptions of an undirected graph and perturbation E = E�.
Using inequalities ‖E‖2 ≤ ‖E‖1‖E‖∞ [35, Sec. 2.3.3] and the
fact that in our case ‖E‖1 = ‖E‖∞, the �2 norm can be bounded
by the �1 norm

‖E‖ ≤ ‖E‖1 = max
u∈V

‖Eu‖1. (19)

The entries in the error matrix E of (8) are random variables.
As such, it is challenging to derive a deterministic bound for
(19) that is both tight and generalizable. In contrast, an expected
bound

E[‖E‖] ≤ E[‖E‖1] = E[max
u∈V

‖Eu‖1], (20)

provides a more reasonable estimate of the true behavior of
the error matrix, as it takes into account the distribution of
the random variables, as well as the structural changes of the
perturbed graph. Thus, we have the following theorem.

Theorem 1: In the context of the probabilistic error model
(8), let GSO be adjacency matrix S = A, and perturbed GSO
be Ŝ = Â, then, a closed-form expression for the upper bound
on the expectation of the GSO distance is given by

E
[
d(Ŝ,S)

]
≤ E[Y ], (21)

where E[Y ] is computed using (17), (16), and (14).
Theorem 1 provides a closed-form expression for the upper

bound, which are explicitly dependent on the parameters (ε1, ε2)
of the probabilistic error model in (8). Using a loose upper bound
proposed in [36], we can bound (21) as

E[Y ] ≤ max
1≤u≤N

(duε1 + d∗uε2)

+

√√√√N − 1

N

N∑
u=1

(duε1(1− ε1) + d∗uε2(1− ε2)).

(22)

We note that (22) showcases how our bound in Theorem 1
is parameterized by the probabilities of adding and deleting
edges. Thus, Theorem 1 precisely captures the resulting struc-
tural changes induced by the probabilistic error model, unlike
the generic spectral bound in [31], which overlooks specific
structural changes on the perturbed GSO.

Remark 1 (Why not use �2 norm?): The spectral bounds
derived using the �2 norm, as presented in [31], cannot fully
capture the specific structural changes to the GSO from pertur-
bations, especially in graphs with unique properties like degree
distribution or sparsity. Focused on worst-case scenarios, these
bounds lead to overestimations, rendering them looser and less
applicable to particular graph types. The �1 norm is preferred
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over the �2 norm for providing an upper bound because it reveals
the impact of structural changes denoted by Δε1 and Δε2 in (8),
whereas the �2 norm absorbs these structural changes into the
overall spectral change, making it more challenging to derive a
tight bound.

C. Error Bound for Normalized GSO

In this context, the GSO is considered as the normalized
version of the adjacency matrix, i.e., S = An. The entries of the
normalized adjacency matrix are as follows, [An]u,v = 1√

dudv
if

(u, v) ∈ E , and [An]u,v = 0 if (u, v) �∈ E . In [23], a closed form
for ‖Eu‖1 is proposed

‖Eu‖1 =
∑
v∈Du

1√
dudv

+
∑
v∈Au

1√
d̂ud̂v

+
∑
v∈Ru

∣∣∣∣∣ 1√
dudv

− 1√
d̂ud̂v

∣∣∣∣∣ , (23)

where d̂u and d̂v denote the degrees of node u and v after
perturbation. However, the assumption in [23] states that the
degree alteration d̂v should not exceed twice the initial degree,
i.e., d̂v ≤ 2dv, v ∈ {Nu ∪ u}. This restriction is not needed in
our work. Following the error model in (6), this limitation could
easily be breached with an increased probability of edge addition
ε2. We start with the following lemma.

Lemma 1: Let Eu be defined as in (23), then its �1 norm is
bounded by a random variable Zu

‖Eu‖1 ≤ Zu = Zu,1 + Zu,2, (24)

where Zu is defined as the sum of Zu,1 =
√

du/τu and
Zu,2 =

∑
v∈Au∪Ru

1√
(du+δ+u −δ−u)(dv+δ+v −δ−v )

, du is the degree

of node u, τu is the minimum degree of neighboring nodes
of u, and δ−u , δ

+
u , δ

−
v , δ

+
v are random variables with bino-

mial distributions as δ−u ∼ Bin(du, ε1), δ+u ∼ Bin(d∗u, ε2), δ
−
v ∼

Bin(dv, ε1), δ+v ∼ Bin(d∗v, ε2) for u ∈ V and v ∈ Au ∪Ru,
where d∗u = N − du − 1 and d∗v = N − dv − 1.

Proof: See Appendix A.
Let

Z � max
u∈V

Zu, (25)

and note that Zu and Z are discrete random variables. While
the binomial random variables and degrees in the expression
for Z are assumed to be i.i.d., the inherent nonlinearity and
high-dimensionality in the function, along with the complexity
introduced by the maximization operation over all nodes, pose
challenges for deriving an analytical expression for E[Z]. Fur-
thermore, the expectation of a maximum of random variables
often lacks a simple closed form with only bounds often being
derivable, not the exact value. On the other hand, Monte Carlo
simulations provide an efficient alternative for estimating E[Z],
which is given as

μZ � E[Z] ≈ 1

Nsamp

Nsamp∑
i=1

Z(i) = μ̂Z , (26)

where Z(i) represents the outcome from the i-th Monte Carlo
trial. Thus, for the normalized GSO, we have the following
proposition as the counterpart of Theorem 1.

Proposition 1: In the context of the probabilistic error model
(8), let GSO be normalized adjacency matrix S = An, and
perturbed GSO being Ŝ = Ân. Then, an upper bound on the
expectation of the GSO distance is given by

E
[
d(Ŝ,S)

]
≤ E[Z], (27)

where E[Z] is computed using (26), (25), and Lemma 1.
The upperbound provided in Proposition 1 focuses specif-

ically on normalized adjacency matrices. This result comple-
ments the analysis for the unnormalized case. We note that the
bound for normalized GSO is not an approximation or an empir-
ical estimation; it presents a theoretical upperbound. The only
difference between the bound in Proposition 1 and the bound in
Theorem 1 is the computation. As for the bound in Theorem 1
(unnormalized case), E[Y ] has a closed-form expression; while
for computing the bound in Proposition 1 (normalized case)
E[Z], we use Monte Carlo simulations.

V. GCNN SENSITIVITY

A. Graph Filter Sensitivity Analysis

The sensitivity of graph filters is a critical aspect that follows
logically from the preceding discussion on the expected bounds
of GSO errors. Having extensively delved into the properties
of GSO perturbations, we now turn our attention to the graph
filters. Graph filters, being polynomials of GSOs, inherit the
perturbations in the graph structure, manifesting as variations in
filter responses.

The sensitivity of a graph filter to perturbations in the GSO
is captured by the theorem below, which establishes a bound on
the error in the graph filter response due to perturbations in the
GSO and the filter coefficients.

Theorem 2 (Graph filter sensitivity): Let S and Ŝ be the GSO
for the true graph G and the perturbed graph Ĝ, respectively. The
distance between polynomial graph filters h(S) =

∑K
k=0 hkS

k

and h(Ŝ) =
∑K

k=0 hkŜ
k is defined as

d
(
h(Ŝ),h(S)

)
= ‖h(Ŝ)− h(S)‖. (28)

The expectation of filter distance (28) is bounded as

E
[
d
(
h(Ŝ),h(S)

)]
≤

K∑
k=1

k|hk| (λkE[‖E‖] + ζk) , (29)

where λk � E[λk−1], ζk � Cov[‖E‖, λk−1], and λ =

max{‖Ŝ‖, ‖S‖} denotes the largest of the maximum singular
values of two GSOs.

Proof: See Appendix B.
Theorem 2 reveals that the expected graph filter distance is

linearly bounded by the expected GSO distance, E[‖E‖], if the
sufficient condition λ = ‖S‖ is met. This bound is influenced by:
the filter degree K, the maximum singular value λ of GSOs, and
the filter coefficients {hk}Kk=1. The theorem indicates that higher
order graph filters are likely to exhibit greater instability. In
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Section VI-B, we present a supporting experiment, specifically
for low-pass graph filters with the unnormalized GSO, S = A.

B. GCNN Sensitivity Analysis

Based on the sensitivity analysis of graph filter, we extend this
study to the sensitivity analysis of the general GCNN. Instead
of meticulously quantifying the specifics of each perturbed
graph, we propose a probabilistic boundary that captures the
potential magnitude of graph perturbations and more insightful
assessment of the system’s sensitivity to graph perturbations.
We present the following theorem to exemplify this approach,
encapsulating the sensitivity of a general GCNN to GSO pertur-
bations.

Theorem 3 (GCNN Sensitivity): For a general GCNN under
the probabilistic error model (8), the expected difference of
outputs at the final layer L is given as

E
[∥∥∥X̂L −XL

∥∥∥] ≤ CσL
BLE [‖E‖] + CσL

DL, (30)

where Cσ�
represents the Lipschitz constant for the nonlinear

activation function used at layer �, for � = 1, . . . , L, B� and D�

for � = 1 and then for � = 2, . . . , L are defined as follows

B1 =

K∑
k=1

kλk‖X0‖‖H1k‖, D1 =

K∑
k=1

kζk‖X0‖‖H1k‖,

B� =

K∑
k=1

(λk+1Cσ�−1
B�−1 + kλk‖X�−1‖) ‖H�k‖,

D� =

K∑
k=1

(μk,�−1 + λkCσ�−1
D�−1 + kζk‖X�−1‖) ‖H�k‖,

(31)

with constant μk,�−1 �
√

Var[‖X̂�−1 −X�−1‖]Var[λk], and λk

and ζk in Theorem 2, for k = 1, . . . ,K.
Proof: See Appendix C.
In Theorem 3, we use recursive bounds containing inter-layer

features to simplify the formulation. Note that these inter-
layer features {X�−1, X̂�−1}L�=2 can be explicitly computed
by the initial input feature X0, both original and perturbed
GSOs (S, Ŝ), GCNN parameters (number of layers L and
graph shift K, network’s learned weights {H�k}, and activa-
tion functions σ(·)). The derivation process employs induction.
For the first layer � = 1, we have X1 = σ1(

∑K
k=1 S

kX0H1k)

and X̂1 = σ1(
∑K

k=1 Ŝ
kX0H1k); for the second layer � =

2, the features are X2 = σ2(
∑K

k=1 S
kX1H2k) and X̂2 =

σ2(
∑K

k=1 Ŝ
kX̂1H2k); by induction, for the �− 1th layer, we

have

X�−1 = σ�

(
K∑

k=1

SkX�−2H�−1,k

)
,

X̂�−1 = σ�

(
K∑

k=1

ŜkX̂�−2H�−1,k

)
. (32)

Theorem 3 forms the bedrock of our analysis, quantifying how
GCNNs respond to graph perturbations, which is described by
a linear relationship at each layer. The sensitivity of multilayer
GCNN to perturbations can be represented by a recursion of
linearity. For multilayer GCNN, its expected output difference
is controlled by: (i) the input feature, (ii) the GSO, error model
parameters, (iii) Lipschitz constants of activation functions, and
(iv) GCNN weights. We note that, choosing activation func-
tions with more conservative Lipschitz constants can possibly
improve the stability of GCNNs by imposing more constraints
on the recursion. However, this may suppress the performance
of a neural network, as noted in [37]. Our sensitivity analysis
framework is generic, allowing for simplifications such as as-
suming a unit Lipschitz constant and normalized input features,
as suggested in [22]. However, these simplifications do not
indicate that the GCNN sensitivity is unaffected by the Lipschitz
constant or input features. This layered analysis also enables an
understanding of how perturbations propagate through GCNN
layers, impacting the overall performance. Additionally, Theo-
rem 3 does not restrict the scale of graph perturbations, which
is a typical restriction in the existing literature.

Within the evasion attack context, where the focus is on
learned representations, we demonstrate the following property:
given that the GSO error is bounded as in Theorem 1 and Propo-
sition 1, the linear bound of each layer of GCNN (illustrated
in Subsection VI-C1) permits the network’s stability against
perturbation as long as the graph error remains within the bound.
In Subsection VI-C2, we show that multilayer GCNN is stable
by showing its finite responses to large scale perturbations, even
under notable declines in accuracy.

C. Specifications for GCNN Variants

Building upon sensitivity analysis Theorem 3, our discussion
now evolves towards two specific GCNN variants - GIN [6]
and SGCN [7], [8]. They apply different GSOs for feature
propagation. In GIN, the GSO for each layer is chosen as a
partially augmented unnormalized adjacency matrix; in SGCN,
the GSO is chosen as a normalized augmented adjacency matrix.
This choice is made to align with the discussions on tight GSO
bounds in Section IV. By focusing on GIN and SGCN, we are
essentially extending our theoretical understanding to practical
and real-world applications.

1) Specification for GIN: The GIN is designed to capture
the node features and the graph structure simultaneously. The
primary intuition behind GIN is to learn a function of the feature
information from both the target node and its neighbors, which
is related to the Weisfeiler-Lehman (WL) graph isomorphism
test [38]. The chosen GSO for GIN is S = A+ (1 + ε)I, where
the learnable parameter ε preserves the distinction between
nodes in the graph that are connected differently, and prevents
GIN from reducing to a WL isomorphism test.

Given the GSO above, only the first order term with K = 1
in (1) is kept, and the intermediate output of such graph filter
is y = Sx. A node Multilayer Perceptron (MLP) hΘ is then
applied to the filter’s output as hΘ(y). Assuming the inner MLP
has two layers in each GIN layer, a single-layer GIN (L = 1)
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can be represented as

XL = σL2(σL1(SXL−1WL1 +BL1)WL2 +BL2), (33)

where (WL1,BL1, σL1(·)) are weight matrix, bias matrix,
and nonlinearity function in the first layer of the MLP, and
(WL2,BL2, σL2(·)) are weight matrix, bias matrix, and non-
linearity function in the second layer of the MLP. Then, we
provide the following corollary.

Corollary 1 (The sensitivity of single-layer GIN): For the
single-layer GIN (L = 1) in (33) under the probabilistic error
model (8), the expected difference of outputs because of GSO
perturbations is given as

E
[
‖X̂L −XL‖

]
≤ ξE [‖E‖] , (34)

with constant

ξ = CσL2
CσL1

‖WL2‖‖WL1‖‖XL−1‖, (35)

where XL−1 = X0 is the input feature.
Proof: See Appendix D.
Corollary 1 shows a linear dependency between the output

difference of a single-layer GIN and GSO perturbations. In GIN,
node vector transformations by MLP contribute significantly
to network’s expressivity. Under evasion attacks, with Corol-
lary 1, the analysis of these transformed node representations is
straightforward.

2) Specification for SGCN: The SGCN is a streamlined
model, developed by aiming to simplify a multilayered GCNN
through the utilization of an affine approximation of graph
convolution filter and the elimination of intermediate layer
activation functions. The GSO chosen for SGCN is S =
D̃−1/2ÃD̃−1/2, where Ã = A+ I is the augmented adjacency
matrix and D̃ is the corresponding degree matrix of the aug-
mented graph.

Given the normalized augmented GSO, the node de-
grees du, u = 1, . . . , N are redefined based on the augmented
GSO, specifically, they are incremented by 1 compared to their
values in the non-augmented version. This streamlined model
simplifies the structure of a vanilla GCN [5] by retaining a single
layer and the Kth order GSO in (1), so the output of the filter
is y = hKSKx. Note that for a SGCN, the maximum number
of layers is L = 1. Consequently, the output of a single-layer
SGCN using a linear logistic regression layer is represented as

XL = σL(S
KXHK), (36)

and thus, we can easily give the following corollary.
Corollary 2 (The sensitivity of SGCN): For the SGCN in (36)

under the probabilistic error model (8), the expected difference
of outputs because of GSO perturbations is given as

E
[
‖X̂L −XL‖

]
≤ CσL

BLE [‖E‖] + CσL
DL, (37)

where BL = λK‖X‖‖HK‖, DL = KζK‖X‖‖HK‖, λK and
ζK are defined in Theorem 3.

With Corollary 2, we conclude that the sensitivity analysis
for SGCN is a specification for the general form of a multilayer
GCNN.

Fig. 2. Comparative analysis of our bound in Theorem 1, the deterministic
bound in Theorem 2 of [31], and the empirical GSO distance in �2 norm.

VI. NUMERICAL EXPERIMENTS

A. Theoretical GSO Bound Corroboration

1) Synthetic Graph: We consider a two-group planted parti-
tion model (PPM), which is a special case of the stochastic block
model. Parameters are set with in-group probability to pin = 0.8,
and between-group probability to pbet = 0.5. The GSO is set as
the unnormalized adjacency matrixS = A. We perturb the PPM
graph using the probabilistic error model (6) with two scales of
perturbation budgets:
� Small-scale perturbation (see Fig. 2, left panel): With ε1 =
0.1 and ε2 = 0.01, the graph is slightly altered, preserving
its fundamental structure.

� Large-scale perturbation (see Fig. 2, right panel): With
ε1 = 0.5 and ε2 = 0.1, the graph is under significant struc-
tural changes.

We carry out 101 Monte Carlo trials for varying graph sizes
(ranging from 50 to 1000, in 50-node increments). These sim-
ulations evaluate the expected bound from Theorem 1 and the
deterministic bound from [31, Theorem 2] in relation to graph
size. Comparisons with empirical GSO distances (5), calculated
using the �2 norm, reveal that our expectation bound is consis-
tently tighter than the deterministic counterpart from [31]. This
difference arises due to the consideration of degree changes
and the probabilistic nature of our bound, as opposed to the
worst-case scenario focus of the deterministic bound. Another
observation is the increased bound magnitude correlating with
higher perturbation budgets, as depicted in Fig. 2. Both bounds
remain valid, even in high perturbation scenarios, underscoring
the robustness of our theoretical frameworks.

2) Real-Life Graph: We utilize the undirected Cora citation
graph [39], which comprises N = 2708 nodes, and C = 7
classes. Assuming the undirected nature of the underlying graph,
we modify the original Cora graph from a directed to an undi-
rected one. The undirected Cora graph has |E| = 5278 edges.
We ascertain the evolution of our theoretical bounds against
an increase in edge deletion probability ε1 and edge addition
probability ε2. These alterations are systematically tracked along
with using the �1 and �2 norms of the discrepancy between the
original and perturbed graphs.

The range of ε1 and ε2 is set within [3× 10−2, 3× 10−1],
increasing in steps of 3× 10−2. In each step, we compute
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Fig. 3. Theoretical (bound in Thm. 1) and empirical bounds (�1 and �2 norms)
for the perturbed Cora graph with S = A. Left panel: varying ε1 with fixed
ε2 = 0. Right panel: varying ε2 with fixed ε1 = 0.5.

Fig. 4. Theoretical (bound in Prop. 1) and empirical bounds (�1 and �2 norms)
for the perturbed Cora graph with S = An, under identical (ε1, ε2) settings as
Fig. 3.

the �1 and �2 norms of the difference between the original
and perturbed adjacency matrices. We then compare these em-
pirical results with the theoretical bounds provided in The-
orem 1 and Proposition 1. In Fig. 3, with the GSO as the
unnormalized adjacency matrix S = A, two distinct scenarios
are presented: varying ε1 with ε2 = 0 (left panel), and vary-
ing ε2 with ε1 = 0.5 (right panel). Through 101 Monte Carlo
trials, the theoretical bound closely aligns with the empirical
�1 norm, particularly in scenarios where increased ε2 leads
to denser graphs. This trend suggests that enhanced preci-
sion of the bounds as graph densities shift from sparse to
dense.

In Fig. 4, employing the normalized adjacency matrixS = An

as the GSO, a similar analysis is conducted. In the left panel,
an increase in �1 and �2 norm bounds is observed under rising
error, and Proposition 1 gives a stable upper bound. However,
the accuracy of the bound is comparatively less satisfactory in
the normalized case. The right-hand case illustrates a stable
empirical �2 norm with an increasing number of edges, while the
�1 norm and our bound present slight increases and decreases,
respectively. These observations can be attributed to the follow-
ing factors: (i) the normalization operation keeps the adjacency
matrix operator norm around 1; (ii) an increased number of edges
raises the �1 norm; (iii) increases in the denominator in Lemma 1
result in a general decrease in the bound.

B. GF Sensitivity Test

In this experiment, we evaluate the sensitivity of GF to the
probabilistic error model. We employ an ER graph with N =
100 nodes and a connection probability of 0.1 as the baseline
graph. The GSO is set as the unnormalized adjacency matrixS =
A. Our focus is on the relationship between filter distance and
the bound in Theorem 2 for low pass GFs of orders K = 1, 2, 3.
The findings are presented in Figs. 5 and 6.

In Fig. 5, the edge addition probability is fixed as ε2 = 0.05
and the edge deletion probability ε1 varies among [0.1,0.2,0.3].
Over 101 Monte Carlo trials, we plot the empirical GF dis-
tances d(h(Ŝ,S)) alongside the corresponding GSO distances
d(Ŝ,S) = ‖E‖ as scatter plots. These empirical GF distances
demonstrate the linear scaling with the bounds in Theorem 2,
depicted as solid lines. It is noted that the tightness of these
bounds decreases with an increase in the GF order. The primary
aim of this analysis is to confirm the linear relationship in
Theorem 2.

In Fig. 6, the expected output differences of GFs
E[d(h(Ŝ),h(S))] with orders K = 1, 2, 3 are plotted against
the expected GSO differences E[d(Ŝ,S)] and the bound in
Theorem 1. Over 101 Monte Carlo trials with perturbation
probabilities ε1 ∈ [0, 0.3] and ε2 ∈ [0, 0.05], the left panel shows
that output differences increase with the GF order. The right
panel confirms that the bound E[Y ] captures trends similar to
the empirical expectation of GSO distance, corroborating The-
orem 1. This suggests that for small, sparsely connected graphs,
the sensitivity of a low pass GF to perturbations intensifies as its
order increases.

C. GCNN Sensitivity Test

1) Linearity Corroboration: The experimental validation of
Theorem 3 is conducted using GIN (Corollary 1) and SGCN
(Corollary 2). We note that Corollary 1 is only applicable for
the single-layer GIN (L = 1). For the multi-layer GIN, our
experiments show the recursion of linearity indicated in The-
orem 3 empirically (see left panel of Fig. 7). These experiments
are carried out on the Cora citation dataset, as discussed in
Section VI-A, to assess the sensitivity of GIN and SGCN to
perturbed GSOs under evasion attacks.

In Fig. 7, for GIN (left panel), each layer comprises 16 hidden
features. GIN variants with 1, 2, and 3 layers differ only in the
number of cascaded graph filters with MLPs. We investigate
the correlation between empirical GIN output differences and
GSO distances. The edge deletion probability, ε1, is varied
within [5× 10−2, 3× 10−1] in increments of 5× 10−2, while
the edge addition probability is fixed as ε2 = 1× 10−4. The
results, categorized by edge deletion probability ε1, are obtained
from 101 Monte Carlo trials, computing pairs of bounds and
GIN output differences. For SGCN (right panel), we exam-
ine networks of orders K = [1, 2, 3] using a similar approach.
Empirical observations for L = 1, 2, 3 and K = 1, 2, 3 in GIN
and SGCN demonstrate a linear correlation between output
differences and GSO distances, corroborating the theoretical
frameworks in Corollary 1 and Corollary 2.
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Fig. 5. Comparison of Theorem 2 bounds (solid lines) and empirical GF distances (scatter points) with fixed ε2 = 0.05 and varying ε1 in [0.1,0.2,0.3].

Fig. 6. Expected GF output differences under increasing GF order and pertur-
bation budget, illustrating intensified sensitivity along increased GF order and
the alignment of Theorem 1 bound with empirical GSO distance trends.

Notably, the output differences observed in the two cases
operate on different scales. For the SGCN with normalized GSO
(right panel), the variation in output differences with increasing
perturbation probability is more gradual compared to the unnor-
malized GSO used in GIN (left panel), which shows a steeper
change. This discrepancy is likely due to the influence of the
estimated GSO spectral norm λ.

2) Accuracy Drop Under Perturbation: After affirming the
linear sensitivity in Theorem 3, we also examine the stability
of GCNN under significant graph perturbations by observ-
ing the accuracy changes of same GCNN candidates as in
Section VI-C1.

These experiments are conducted on three citation datasets:
Cora, CiteSeer and PubMed [39]. The objective is to assess the
impact of different perturbation budgets on the accuracy of GIN
and SGCN models. The perturbation budget parameters are set
as follows: edge deletion probability ε1 varies within [0,0.5]
in increments of 0.1, and edge addition probability ε2 varies
within [0, 1× 10−3] in increments of 2× 10−4. Consistent with
the experimental settings in Section VI-C1, the same GCNN
candidates are utilized. The averaged accuracy results are shown
in Fig. 8, where the bar indicates the standard variance of
accuracy results. The first, second and third rows correspond
to datasets Cora, CiteSeer and PubMed, respectively.

A consistent pattern of accuracy decrease across all datasets
and GCNN models is observed in Fig. 8, where the accuracy
gradually decreases with increasing perturbation budgets. No-
tably, larger graphs (e.g., PubMed) exhibit a faster accuracy drop

Fig. 7. Correlation between GIN (left panel) and SGCN (right panel) output
differences and GSO distances. Analysis is conducted with varying edge deletion
probabilities ε1, and a fixed edge addition probability ε2 = 1× 10−4.

compared to smaller graphs (e.g., Cora and CiteSeer). This can
be attributed to the alteration of more edges under the same
perturbation budget in larger graphs. When fixing edge deletion
probability ε1, accuracy drops by approximately 10% (as in
Fig. 8(a), 1st row with L = 1), and up to 20% (as in Fig. 8(a),
3rd row with L = 3). With a fixed edge addition probability
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Fig. 8. Accuracy changes for GIN (L = 1, 2, 3) and SGCN (K = 1, 2, 3) under perturbations, with ε1 ∈ [0, 0.5] and ε2 ∈ [0, 1× 10−3]. The 1st, 2nd and 3rd
rows correspond to Cora, CiteSeer, and PubMed datasets, respectively.

ε2, the accuracy drop is around 10% (as in Fig. 8(a), 1st row
with L = 1), and approximately 5% (as in Fig. 8(a), 3rd row
with L = 1). This is likely because that, for sparse graphs, the
same edge addition probability results in the addition of more
edges than the number influenced by the same edge deletion
probability.

The maximum of edge perturbation budget ε1 and ε2 is set
to 0.5 and 1× 10−3, respectively. Consequently, up to 50% of
the edges are deleted, and 70% are added relative to the original
edge count. In this case, the graph structure is significantly per-
turbed. This significant graph perturbation makes the accuracy
drop by up to 20%. Under such large perturbations, GCNN
gives finite responses. Thus, the GCNN is stable in our context
even when the downstream task performance is significantly
impacted, which is due to large-scale edge perturbations. This
also verifies Theorem 3, where it is stated that as long as the GSO
perturbation is bounded/finite, the GCNN output difference is
also bounded/finite.

VII. CONCLUSION AND DISCUSSION

This paper has presented an analytical framework for in-
vestigating the sensitivity of GCNNs to GSO perturbations,
employing a probabilistic graph perturbation model. We have
established tighter error bounds than those previously available.
We have theoretically demonstrated that the expected output
variation for a single layer of GCNN is linearly bounded by
the GSO error, ensuring the stability (bounded output differ-
ence) of single-layer GCNN under bounded GSO errors. For
multilayer GCNN, our analysis has shown that the dependency

of GCNN output difference on GSO error can be described
through a recursion of linearity. Specifically, this dependency
is explicitly controlled by: the input feature, the GSO, error
model parameters, Lipschitz constants of activation functions in
GCNN, and GCNN weights. Through numerical experiments,
we have validated our theoretical findings and confirmed that
GCNNs (exemplified with GIN and SGCN) maintain stability
under large-scale graph edge perturbations, despite significant
performance reductions.

In this work, our primary focus is on edge perturbations in
graphs, while potential modifications to the graph signal and
node injections are not considered. Any alterations to the graph
signal could be subsumed within the spectral norm when per-
forming sensitivity analysis. However, node injection presents a
challenge that cannot be addressed using the current definition
of graph distance. This is due to the discrepancy in sizes between
the unperturbed and perturbed graphs as the number of nodes
increases. A potential solution to this issue could involve redefin-
ing the GSO distance using a different metric. In this context,
Optimal Transport (OT) and its variants emerge as viable candi-
dates for this task [40], [41], [42]. These methods allow for the
augmentation of a smaller graph, facilitating the establishment
of a meaningful graph distance metric [43]. Consequently, future
research could explore an encompassing approach that considers
all of the aforementioned types of graph perturbations. Such
an investigation has the potential to yield more comprehensive
insights into the stability of GCNNs under perturbations.

Graph regularization methods are commonly used to achieve
robust graph learning and estimation [44]. Research on adversar-
ial training of GCNNs typically uses specifically designed loss
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functions to strengthen GCNNs against structural and feature
perturbations, thus improving their performance stability against
certain graph disturbances [45], [46], [47], [48], [49]. In graph
learning, several techniques have been developed to regulate
graphs and signals based on specific graph signal assumptions
to perform graph estimation [15], [16], [50], [51]. With the in-
clusion of effective graph regularization, our sensitivity analysis
offers insight that can contribute to the development of a uniform
metric, paving the way for a more transferable and robust GCNN.

APPENDIX A
UPPER BOUND OF ‖Eu‖1

Proof of Lemma 1: We start with the first term in (23), which
is bounded by τu ≤ dv

∑
v∈Du

1√
dudv

≤
∑
v∈Du

1√
duτu

=
δ−u√
duτu

. (38)

The second and third terms in (23) can be bounded using triangle
inequality as follows

∑
v∈Au

1√
d̂ud̂v

+
∑
v∈Ru

∣∣∣∣∣ 1√
dudv

− 1√
d̂ud̂v

∣∣∣∣∣
≤
∑
v∈Au

1√
d̂ud̂v

+
∑
v∈Ru

(
1√
dudv

+
1√
d̂ud̂v

)

=
∑
v∈Ru

1√
dudv

+
∑

v∈Au∪Ru

1√
d̂ud̂v

. (39)

For the first term in (39), we have

∑
v∈Ru

1√
dudv

≤
∑
v∈Ru

1√
duτu

≤ du − δ−u√
duτu

. (40)

For the second term in (39), we have

∑
v∈Au∪Ru

1√
d̂ud̂v

=
∑

v∈Au∪Ru

1√
(du + δ+u − δ−u )(dv + δ+v − δ−v )

(41)

Thus, we have a new bound, which is more suited to our error
model, that is

‖Eu‖1 ≤ δ−u√
duτu

+
du − δ−u√

duτu

+
∑

v∈Au∪Ru

1√
(du + δ+u − δ−u )(dv + δ+v − δ−v )

=
√
du/τu

+
∑

v∈Au∪Ru

1√
(du + δ+u − δ−u )(dv + δ+v − δ−v )

.

(42)

We will adapt the general bound (42) to the probabilistic error
model presented in (8). In (42), we let

Zu,1 =
√

du/τu,

Zu,2 =
∑

v∈Au∪Ru

1√
(du + δ+u − δ−u )(dv + δ+v − δ−v )

, (43)

where δ−u ∼ Bin(du, ε1), δ+u ∼ Bin(d∗u, ε2), δ
−
v ∼ Bin(dv, ε1),

δ+v ∼ Bin(d∗v, ε2), d
∗
u = N − du − 1 and d∗v = N − dv − 1. Fi-

nally, we obtain

‖Eu‖1 ≤ Zu,1 + Zu,2. (44)

This completes the proof.

APPENDIX B
GRAPH FILTER SENSITIVITY

Proof of Theorem 2: First, we recall the following result.
Lemma 2: (Lemma 3, [52]): Suppose that Ŝ,S,E ∈

RN×N are Hermitian matrices satisfying Ŝ = S+E, and λ =
max{‖Ŝ‖, ‖S‖}. Then for every k ≥ 0

‖Ŝk − Sk‖ = ‖(S+E)k − Sk‖ ≤ kλk−1‖E‖. (45)

Expand the filter representation in ‖h(Ŝ)− h(S)‖, as

∥∥∥h(Ŝ)− h(S)
∥∥∥ =

∥∥∥∥∥
K∑

k=0

(
hkŜ

k − hkS
k
)∥∥∥∥∥ . (46)

By Lemma 2 and repeatably using triangle inequality, (46) is
bounded by∥∥∥∥∥

K∑
k=0

(
hkŜ

k − hkS
k
)∥∥∥∥∥ ≤

K∑
k=0

|hk|‖Ŝk − Sk‖

≤
K∑

k=0

|hk|kλk−1‖E‖ =

K∑
k=1

|hk|kλk−1‖E‖. (47)

The correlation between λ and ‖E‖ has two cases:
1) If λ = ‖S‖,

E[λk−1‖E‖] = E[λk−1]E[‖E‖]; (48)

2) If λ = ‖Ŝ‖,

E[λk−1‖E‖] = E[λk−1]E[‖E‖] + Cov[‖E‖, λk−1].
(49)

The following proof is based on the second case (49) because
the covariance term can be set to zero to include the first case.
By using (46) and taking the expectation of (47), we obtain

E
[∥∥∥h(Ŝ)− h(S)

∥∥∥] ≤ E

[
K∑

k=1

|hk|kλk−1‖E‖
]

≤
K∑

k=1

k|hk|E
[
λk−1‖E‖]

=

K∑
k=1

k|hk|
(
E[λk−1]E[‖E‖] + Cov[‖E‖, λk−1]

)
. (50)
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In (50), let

λk = E[λk−1], (51)

ζk = Cov[‖E‖, λk−1]. (52)

Then, we have

E
[∥∥∥h(Ŝ)− h(S)

∥∥∥] ≤ K∑
k=1

k|hk| (λkE[‖E‖] + ζk) . (53)

This completes the proof.

APPENDIX C
GCNN SENSITIVITY

Proof of Theorem 3: First Layer. At the first layer � = 1, the
graph convolution is performed as follows

Y1 =

K∑
k=1

SkX0H1k, X1 = σ1(Y1). (54)

For a perturbed GSO Ŝ, the difference between the perturbed
and clean graph convolutions is

Ŷ1 −Y1 =

K∑
k=1

(Ŝk − Sk)X0H1k. (55)

Using Lemma 2, we can bound (55) as follows

∥∥∥Ŷ1 −Y1

∥∥∥ ≤
K∑

k=1

kλk−1‖X0‖‖H1k‖‖E‖. (56)

Similar to giving the upper bound for the expectation of graph fil-
ter distance from (47) to (53), given the constants λk = E[λk−1]
and ζk = Cov[‖E‖, λk−1], we take the expectation of (56) and
obtain

E
[∥∥∥Ŷ1 −Y1

∥∥∥] ≤ E

[
K∑

k=1

kλk−1‖X0‖‖H1k‖‖E‖
]

=
K∑

k=1

k‖X0‖‖H1k‖E
[
λk−1‖E‖]

=
K∑

k=1

k‖X0‖‖H1k‖
(
E[λk−1]E [‖E‖] + Cov[‖E‖, λk−1]

)

≤
K∑

k=1

k‖X0‖‖H1k‖ (λkE [‖E‖] + ζk) . (57)

For simplicity, let B1 =
∑K

k=1 kλk‖X0‖‖H1k‖, and D1 =∑K
k=1 kζk‖X0‖‖H1k‖. Thus, (57) illustrates that the expecta-

tion of the graph filter distance at the first layer is bounded by a
polynomial of E[‖E‖] as

E
[∥∥∥Ŷ1 −Y1

∥∥∥] ≤ B1E[‖E‖] +D1. (58)

Consider the nonlinearity function σ1(·) at the first layer, which
satisfies the Lipschitz condition

‖σ1(Ŷ)− σ1(Y)‖ ≤ Cσ1
‖Ŷ −Y‖. (59)

Applying this Lipschitz condition to (56), we have

E
[
‖X̂1 −X1‖

]
= E

[∥∥∥σ1(Ŷ)− σ1(Y)
∥∥∥]

≤ Cσ1
E
[∥∥∥Ŷ −Y

∥∥∥] ≤ Cσ1
B1E [‖E‖] + Cσ1

D1. (60)

Second Layer. At the second layer � = 2, the graph convolution
is performed as

Y2 =

K∑
k=1

SkX1H2k, X2 = σ(Y2). (61)

The difference between the perturbed and clean graph convolu-
tions is given by

Ŷ2 −Y2 =

K∑
k=1

ŜkX̂1H2k −
K∑

k=1

SkX1H2k

=

K∑
k=1

(ŜkX̂1 − ŜkX1 + ŜkX1 − SkX1)H2k

=

K∑
k=1

(
Ŝk(X̂1 −X1) + (Ŝk − Sk)X1

)
H2k.

(62)

Taking the expectation of (62) and using (49), Lemma 2 as well
as the submultiplicativity of the spectral norm, we have

E
[∥∥∥Ŷ2 −Y2

∥∥∥]

≤ E

[∥∥∥∥∥
K∑

k=1

(
Ŝk(X̂1 −X1) + (Ŝk − Sk)X1

)
H2k

∥∥∥∥∥
]

≤
K∑

k=1

‖H2k‖E
[∥∥∥Ŝk(X̂1 −X1)

∥∥∥+ ∥∥∥(Ŝk − Sk)X1

∥∥∥]

≤
K∑

k=1

‖H2k‖
(

E[λk]E
[
‖X̂1−X1‖

]
+Cov

[
‖X̂1 −X1‖, λk

]

+ k‖X1‖
(
E[λk−1]E [‖E‖] + Cov[‖E‖, λk−1]

))
. (63)

Let

μk,�−1 = Cov[‖X̂�−1 −X�−1‖, λk], (64)

where k = 1, . . . ,K, and � = 2, . . . , L. Thus, in (63), we have
μk,1 = Cov‖X̂1 −X1‖. Then, we can express (63) as a function
controlled by E[‖E‖]

E
[∥∥∥Ŷ2 −Y2

∥∥∥] ≤
K∑

k=1

‖H2k‖
(
λk+1E

[
‖X̂1 −X1‖

]

+ μk,1 + kλk‖X1‖E[‖E‖] + kζk‖X1‖
)

≤
K∑

k=1

‖H2k‖
(
(λk+1Cσ1

B1 + kλk‖X1‖)E

× [‖E‖] + μk,1 + λkCσ1
D1 + kζk‖X1‖

)
≤ B2E[‖E‖] +D2, (65)
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where B2 =
∑K

k=1(λk+1Cσ1
B1 + kλk‖X1‖)‖H2k‖ and

D2 =
∑K

k=1(μk,1 + λkCσ1
D1 + kζk‖X1‖)‖H2k‖. Consider

the second layer’s nonlinearity function σ2(·), we have

E
[
‖X̂2 −X2‖

]
≤ Cσ2

B2E[‖E‖] + Cσ2
D2. (66)

Generalization to Layer � ≥ 1. By induction, we can generalize
the result to the output difference at any layer � ≥ 1

E
[∥∥∥X̂� −X�

∥∥∥] ≤ Cσ�
B�E [‖E‖] + Cσ�

D�, (67)

where

B� =

K∑
k=1

(λk+1Cσ�−1
B�−1 + kλk‖X�−1‖) ‖H�k‖,

D� =

K∑
k=1

(μk,�−1 + λkCσ�−1
D�−1 + kζk‖X�−1‖) ‖H�k‖.

(68)

This completes the proof. �

APPENDIX D
SINGLE-LAYER GIN SENSITIVITY

Proof: In a single-layer GIN, we assume that the inner MLP
has two layers as earlier introduced in the paper. The outputs of
a single-layer GIN (L = 1) with original and perturbed GSOs
are given as

XL = hΘL

(
SXL−1

)
, (69)

X̂L = hΘL

(
ŜX̂L−1

)
. (70)

Expanding (69) and (70) with full matrix transformations, we
have

XL = σL2(σL1(SXL−1WL1 +BL1)WL2 +BL2), (71)

X̂L = σL2(σL1(ŜX̂L−1WL1 +BL1)WL2 +BL2). (72)

We can split (71) as

YL1 = SXL−1WL1 +BL1, (73a)

XL1 = σL1(YL1), (73b)

YL2 = XL1WL2 +BL2, (73c)

XL = σL2(YL2), (73d)

whereXL1 denotes the intermediate output of the first layer, and
XL represents the output of the second layer. For simplicity of
notation, we use XL instead of XL2. Similarly, we split (72) as

ŶL1 = ŜX̂L−1WL1 +BL1, (74a)

X̂L1 = σL1(ŶL1), (74b)

ŶL2 = X̂L1WL2 +BL2, (74c)

X̂L = σL2(ŶL2). (74d)

Then, the �2 norm of difference between the perturbed (74d) and
clean outputs (73d) is

‖X̂L −XL‖ = ‖σL2(ŶL2)− σL2(YL2)‖. (75)

Using the Lipschitz condition of the nonlinearity functionσL2(·)
in (75), we have

‖X̂L −XL‖ ≤ CσL2
‖ŶL2 −YL2‖. (76)

Representing ŶL2 by (74c) and YL2 by (73c), we have

‖ŶL2 −YL2‖ = ‖X̂L1WL2 −XL1WL2‖
≤ ‖X̂L1 −XL1‖‖WL2‖. (77)

Representing X̂L1 by (74b) and XL1 by (73b), we obtain

‖X̂L1 −XL1‖ = ‖σL1(ŶL1)− σL1(YL1)‖. (78)

Using the Lipschitz condition of the nonlinearity functionσL1(·)
in (78), we have

‖X̂L1 −XL1‖ ≤ CσL1
‖ŶL1 −YL1‖. (79)

Representing ŶL1 by (74a) and YL1 by (73a), we have

‖ŶL1 −YL1‖ = ‖ŜX̂L−1WL1 − SXL−1WL1‖. (80)

We can rewrite (80) by deleting and adding SX̂L−1WL1 as

ŜX̂L−1WL1 − SXL−1WL1

= ŜX̂L−1WL1 − SX̂L−1WL1 + SX̂L−1WL1

− SXL−1WL1

= (Ŝ− S)X̂L−1WL1 + S(X̂L−1 −XL−1)WL1. (81)

Substituting (81) into (80), and using the triangular inequality,
we have

‖YL1 − ŶL1‖
≤ ‖(Ŝ− S)X̂L−1WL1‖+ ‖S(X̂L−1 −XL−1)WL1‖
≤ ‖Ŝ− S‖‖X̂L−1‖‖WL1‖+ ‖S‖‖X̂L−1 −XL−1‖‖WL1‖.

(82)

For the second term in (82), we have X̂L−1 = XL−1 = X0 for
L = 1. Then, with the definition of GSO error (5), (82) becomes

‖ŶL1 −YL1‖ ≤ ‖E‖‖XL−1‖‖WL1‖. (83)

By connecting (83), (79), (77), (76) together, we can bound the
one-layer GIN output difference as

‖X̂L −XL‖ ≤ CσL2
CσL1

‖WL2‖‖WL1‖‖XL−1‖‖E‖. (84)

Taking the expectation of (84), we have

E
[
‖X̂L−XL‖

]
≤ CσL2

CσL1
‖WL2‖‖WL1‖‖XL−1‖E [‖E‖] .

(85)

Finally, let ξ = CσL2
CσL1

‖WL2‖‖WL1‖‖XL−1‖, then, we
have

E
[
‖X̂L −XL‖

]
≤ ξE [‖E‖] . (86)

This completes the proof. �
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