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Abstract
Face presentation attack detection (PAD) plays a pivotal role in securing face recognition systems against spoofing attacks.
Although great progress has been made in designing face PAD methods, developing a model that can generalize well to
unseen test domains remains a significant challenge. Moreover, due to the different types of spoofing attacks, creating a
dataset with a sufficient number of samples for training deep neural networks is a laborious task. This work proposes a
comprehensive solution that combines synthetic data generation and deep ensemble learning to enhance the generalization
capabilities of face PAD. Specifically, synthetic data is generated by blending a static image with spatiotemporal-encoded
images using alpha composition and video distillation. In this way, we simulate motion blur with varying alpha values, thereby
generating diverse subsets of synthetic data that contribute to a more enriched training set. Furthermore, multiple base models
are trained on each subset of synthetic data using stacked ensemble learning. This allows the models to learn complementary
features and representations from different synthetic subsets. The meta-features generated by the base models are used as
input for a new model called the meta-model. The latter combines the predictions from the base models, leveraging their
complementary information to better handle unseen target domains and enhance overall performance. Experimental results
from seven datasets—WMCA, CASIA-SURF, OULU-NPU, CASIA-MFSD, Replay-Attack, MSU-MFSD, and SiW-Mv2—
highlight the potential to enhance presentation attack detection by using large-scale synthetic data and a stacking-based
ensemble approach.

Keywords Face anti-spoofing · Ensemble learning · Deep learning · Synthetic data · Recurrent neural network

1 Introduction

Over the past few decades, facial recognition (FR) tech-
nology has been frequently used in numerous real-world
applications, such asmobile payments, access control, immi-
gration, education, surveillance, and healthcare (Kim et al.,
2022). The accuracy of FR is no longer amajor concern, with
the error rate dropping to 0.08%, according to the National
Institute of Standards and Technology (NIST) (Grother et al.,
2019). Despite its great success, a simple FR system might
be vulnerable to spoofing, known as a presentation attack.
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For instance, print attacks, video replays, and 3D masks are
the most common attacks reported recently in the face anti-
spoofing domain (Muhammad & Oussalah, 2022, 2023; Wu
et al., 2021; Jia et al., 2020;Arashloo, 2020). To counter these
attacks, several hand-crafted and deep representation meth-
ods have been proposed to protect FR systems (Boulkenafet
et al., 2016; Liu et al., 2021; Shao et al., 2020; Muhammad et
al., 2022a; Wang et al., 2020; Saha et al., 2020; Muhammad
&Hadid, 2019; Shao et al., 2019).Many of thesemodels have
reported promising performance in the intra-domain testing
scenario. However, their performances remain limited in the
cross-dataset testing scenario due to the distributional dis-
crepancy between the source domain and the target domain.

1.1 Domain Adaptation and Generalization

In the context of cross-dataset testing scenarios, a key
contributing factor to the performance limitations of deep
learning models can often be attributed to the restricted
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size or inadequacy of the training dataset. Another reason
is the inherent assumption in many face presentation attack
detection methods that the training and testing data come
from the same target distribution. This raises several ques-
tions. For instance, if a model is trained on cut photo attack
images, would it work on mask attack images? What if a
model is trained only on replay attack images but tested on
warped photo attacks? Is it possible to deploy a model that
is trained using different illumination conditions and back-
ground scenes under controlled lighting scenarios? Answers
to all these questions depend on how a machine learning
model can deal with such domain shift problems. Therefore,
domain generalization (DG) is essential when the objective
is to build a model that can perform well in entirely new and
diverse domains that were not seen during its training. As
shown in Fig. 1, domain generalization refers to the task of
training a model on data from multiple source domains and
then deploying it on a new, unseen target domain. To address
the domain generalization issue, several face anti-spoofing
methods, such as adversarial learning (Liu et al., 2022),meta-
pattern learning (Cai et al., 2022), generative domain adap-
tation (Zhou et al., 2022), hypothesis verification (Liu et al.,
2022), and cross-adversarial learning (Huang et al., 2022),
have been introduced to improve the generalization ability of
the model.

Sincegeneralization is a fundamental challenge inmachine
learning, researchers have explored various generalization-
related topics such as meta-learning (learning to learn),
regularization techniques, ensemble learning, and data aug-
mentation (Wang et al., 2020; Saha et al., 2020; Shao et al.,
2019; Liu & Liu, 2022). In particular, domain generaliza-
tion is important in face anti-spoofing because collecting
and annotating new datasets in real-world scenarios can be
expensive and time-consuming. On the other hand, domain
adaptation (DA) approaches focus on adapting a model
trained on one or multiple source domains to perform well
on a specific target domain that is different from the source
domains. The main difference between these two approaches
is that domain adaptation assumes that the target domain is
known during model training, while domain generalization
does not. For instance, the research in Jia et al. (2020) relies
on a shared feature space and assumes that it would also be
invariant to domain shift. However, this assumption has lim-
itations in face PAD, because as the source domains become
more diverse, learning a domain-invariant model becomes
more difficult (Zhou et al., 2021). Instead of concentrat-
ing on some domain-specific cues, such as paper texture,
diverse data can help the model generalize better if more
generalized cues are shared by all source domains (Shao et
al., 2019). As spoofing attacks are launched physically by
malicious hackers outside the control of the biometric sys-
tem, domain generalization is generally more important than

domain adaptation because DG does not require the target
domain to be known during training.

In most face PAD databases, both real and spoofed classes
exhibit spatiotemporal attributes, offering valuable insights
into facial movements, texture changes, and dynamic char-
acteristics, which are essential for effectively distinguishing
genuine faces from spoofing attacks. For instance, irregular
patterns are often observed in spoofing attacks, particularly
with textured materials like paper or fabric, and these pat-
terns become more evident in video sequences. Similarly,
print attacks can be detected by hand movements or mate-
rial reflections, while replay attacks reveal artifacts caused
by screen sloping. These spatiotemporal effects can help
improve the generalization ability of the model. However,
the presence of noisy camera movements poses a challenge
that can make the detection of spoofing attacks more diffi-
cult. This is especially relevant in the context of face PAD,
where the deep learning models need to effectively analyze
various attributes, patterns, and cues to distinguish between
genuine actions and spoofing attacks. Thus, effectively ana-
lyzing both spatial and temporal information is essential for
improving the robustness of deep learning-based PAD mod-
els. This enables more accurate detection and prevention of
spoofing attacks, ensuring higher security and reliability in
face biometric authentication processes.

1.2 Ensemble Methods and Their Limitations

Recently, ensemble methods have demonstrated increased
generalization capacity for unseen attacks. The concept
behind ensemble learning involves aggregating the predic-
tions of multiple models and combining them to produce
one optimal predictive model. In particular, this combination
of models expects to produce significantly improved results.
For instance, by ensembling diverse face-spoofing attacks
as source domains, researchers achieved the top-ranking
position in the ChaLearn LAP face anti-spoofing challenge,
showcasing the effectiveness of employing an ensemble
technique (Parkin & Grinchuk, 2019). This achievement
demonstrates the capacity of a diverse ensemble of models to
enhance the stability and efficacy of a face anti-spoofing sys-
tem. Additionally, an ensemble learning approach was used
in Vareto and Schwartz (2021) with three different models,
while a score fusion was applied to enhance the generaliza-
tion of face PAD. Similarly, a depth-based ensemble learning
approach was introduced in Jiang and Sun (2022), incorpo-
rating multiple domain-specific modules, to optimize spoof
detection. In Fatemifar et al. (2019), the authors combined
predictions from multiple models using a simple weighted
average rule where distinct weights were assigned to indi-
vidual prediction models according to their performance.

However, one of the main challenges in score fusion-like
approach is finding the correct weighting for the predictions
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Fig. 1 Domain generalization:
The source domains are trained
with diverse sets of synthetic
images, and the meta-learner
leverages this diversity to
acquire complementary
information, enabling robust
generalization to unseen target
distributions

of various models to minimize the impact of noise on the
final prediction, as ensembles may include models that are
sensitive to noise or data outliers (Shahhosseini et al., 2022).
Furthermore, the main challenge in depth-based ensemble
learning arises from the assumption that one of the train-
ing domains closely resembles the target domain where the
model will be deployed. However, this assumption may not
always hold true. Indeed, the target domain may exhibit
differences in data distribution, feature representation, or
other characteristics compared to the training domains. This
domain shift can make it difficult for the model to generalize
to previously unseen data, potentially leading to a decline in
performance.

In contrast to score-based fusion or depth-based ensemble
learning, Fatemifar et al. (2020) introduced a client-specific
anomaly-based stacking ensemble method, where multiple
deep Convolutional Neural Network (CNN) models were
trained on various facial regions in an unseen attack sce-
nario. However, implementing client-specific stacking poses
a significant challenge due to the necessity of training mul-
tiple deep CNNs on various facial regions, which requires
substantial amounts of labeled data. Specifically, obtaining
labeled data for each facial region and for multiple clients
can be laborious and may not always be attainable. Another
challenge is associated with the availability of data for mod-
els that are not adequately trained or optimized for real-world
deployment. This is due to the fact that real-world environ-
ments are inherently complex and dynamic, with variations
that may not have been present or adequately represented

in the training data. These unforeseen variations can pose
challenges for approaches that rely on ensemble learning.

1.3 Limitations in Global MotionMethods

Approaches to global motion estimation are typically cat-
egorized into two main categories: feature-based methods
and direct (or featureless) methods. Feature-based methods
involve detecting key points, edges, or other significant fea-
tures in the data, whereas direct methods, also known as
featureless methods, operate on the raw data by directly min-
imizing the difference between the intensities or pixel values
of the images (Déniz et al., 2011). In feature-based global
motion estimation, the objective is to estimate a transfor-
mation (e.g., affine or homography) that aligns the source
image with the target image. However, this transformation
may cause parts of the target frame to remain empty, leading
to black borders around the transformed image (Muhammad
et al., 2022a). This occurs because each successive trans-
formation, such as rotations, translations, scaling, or affine
changes, modifies the spatial characteristics of the image.
These cumulative alterations can result in the transformed
image exceeding the dimensions of the original bounding
box.

The black border artifacts can be removed by first com-
pensating for global motion using a feature-based method
and then applying a frame difference approach. This combi-
nation is shown to enhance the overall motion estimation in
Zhang et al. (2023). Although the dense-based feature extrac-
tion approach was employed to address the black framing
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issue in face PAD, it requires the extraction and process-
ing of every pixel or grid point in the image compared to
sparse methods, resulting in significantly higher computa-
tional demand (Muhammad et al., 2022b). We argue that
existing approaches in face PAD often overlook the need
to address this issue, which could result in the loss of crit-
ical details crucial for analyzing live and spoofed attacks.
Moreover, black borders or black framing can introduce arti-
ficial cues into the video data, which might mislead or bias
the models during training. Therefore, effectively managing
such spatiotemporal variations and addressing black fram-
ing is essential before training any models, as it is crucial for
improving the performance of face PAD.

1.4 Our Contributions

To address the aforementioned issues, we first introduce a
data synthesis approach that integrates temporal and spatial
transformations. Our method aims to tackle the challenge
of domain generalization by employing a stacking-based
ensemble learning framework based on synthetic data. To
achieve this, we present a video distillation technique
that blends a static image with a stabilized spatiotempo-
ral encoded image. This blending process merges the static
image’s detailswith the blurred features of the spatiotemporal
encoded image, aiding models in gaining a deeper under-
standing of motion blur.

We assume that data in real-world applications often con-
tain varying degrees of blur caused by motion, low frame
rates, or camera shake. On the contrary, a static image, being
a single frame, may not always provide complete informa-
tion. Therefore, training with temporally blurred data can
make the models more resilient and better prepared for such
real-world conditions. Specifically, we utilize three RNNs,
namely LSTM, BILSTM, and GRU, to capture different
aspects of temporal blur information, potentially enhancing
the ensemble’s resilience in real-world scenarios. This diver-
sity helps the meta-learner in the stacking ensemble combine
these complementary strengths effectively.

We also address the issue of black framing in face PAD,
which is generated by feature-based global motion estima-
tion methods (Muhammad et al., 2022a). We observe that
existing works on face PAD do not explicitly focus on com-
pensating for this effect, which can degrade important details
to analyze in live and spoofed attacks for video-based PAD
detection. This is achieved through alpha composition as
a post-processing step, which involves blending the trans-
formed image with the target frame using alpha values to
seamlessly merge them. This process reduces the visibility
of black framing artifacts and aids the model in learning to
recognize actions in the presence ofmotion blur. By doing so,
the proposed video distillation technique not only allows the
models to focus on motion attributes, but also enables them

to operate on a smaller subset of frames, thereby reducing
computational overhead and improving generalization for
subsequent analysis. Since our video distillation scheme fol-
lows a uniform sampling approach by dividing the original
video into video clips of fixed size, it provides the flexibility
to easily control the sampling rate by adjusting the segment
size of the video. This is important because a higher sampling
rate results in a higher temporal resolution but can introduce
more noise, whereas a lower sampling rate is associated with
less frequent sampling, leading to a smoother representation
but potentially lower temporal detail.

Intuitively, we extend our previous approach (Muham-
mad et al., 2022a) in the following ways: (i) We introduce a
new data augmentation technique as a post-processing step
to seamlessly composite the transformed image back into the
target frame, thereby reducing the visibility of black fram-
ing artifacts. These artifacts are unwanted black borders or
areas that can appear around images; (ii) We address the
domain generalization issue by learning from the diversity of
the proposed synthetic data and introducing a deep ensemble
learning framework; (iii)We use several explainability meth-
ods to answer questions such as “why did the model make a
particular prediction?” or “what features were most influen-
tial in the decision-making process?”; and (iv) We balance
the computational cost of the global motion estimation and
system performance.

In summary, our key contributions can be summarized as
follows:

1. We introduce a video-based data augmentation mech-
anism by considering both the spatial and temporal
domains of the video. The proposed approach can assist
deep learning models in capturing spatiotemporal infor-
mation and enhancing their performance in face PAD
tasks.

2. A meta-model is presented that leverages information
from different subsets of synthetic samples, leading to
improvements in the overall performance and robustness
of the ensemble model.

3. Explainability techniques,which includegradient-weighted
class activation mapping, occusion sensitivity maps and
LIME, are employed to explain the decisions made by the
employed model. The model reveals that motion cues are
the most important factors for distinguishing whether an
input image is spoofed or not.

4. Experiments on seven benchmark datasets show that our
proposed method provides very competitive performance
in comparison with other state-of-the-art generalization
methods used nowadays.

The rest of this work is organized as follows: Sect.
2 discusses recent developments and related past works,
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highlighting their advantages and disadvantages. Section 3
details the various steps of our proposed method. Section 4
emphasizes the implementation details, ablation study, and
comparison against several public benchmark datasets. Sec-
tion 5 concludes the entire work and provides suggestions
for future research.

2 Literature Review

Over the past few years, face PAD methods have received
considerable attention from both academia and industry.
In general, these methods can be roughly categorized into
appearance-based methods, temporal-based methods, and
domain generalization methods.

Appearance-based methods: Conventional appearance-
based techniques generally rely on extracting hand-crafted
or low-level features developed prior to the emergence of
deep learning. These methods involve manual design and
engineering of algorithms and features, with a primary focus
on analyzing static visual attributes like textures, colors,
and shapes within an image or frame to make decisions.
For instance, Boulkenafet et al. (2016) claimed that color
information is essential for effective face presentation attack
detection (PAD). They discovered that using luminance-
chrominance color spaces enhances detection performance
compared toRGB and grayscale representations. These color
spaces allowed themethod tomore effectively exploit the dif-
ferences in color information between genuine and spoofed
faces, thereby improving the overall effectiveness of the
detection system. In another subsequent study (Boulkenafet
et al., 2016), the authors proposed deriving a new multi-
scale space for image representation prior to texture feature
extraction. This is achieved through the application of three
multiscale filtering methods: Gaussian scale space, Differ-
ence of Gaussian scale space, and Multiscale Retinex. A
robust face spoof detection algorithm using image distortion
analysis (IDA) was introduced in Wen et al. (2015), consid-
ering features like specular reflection, blurriness, chromatic
moment, and color diversity. Next, an ensemble of SVM
classifiers, each trained for different spoof attacks (printed
photos and replayed videos), was then employed to distin-
guish genuine faces from spoofed ones. In Yang et al. (2013),
a component-based coding framework was proposed. This
consists of four steps: locating face components, encoding
low-level features for each component, creating a high-level
face representation using Fisher criterion-based pooling, and
concatenating histograms from all components to form a
classifier for identification. Freitas Pereira et al. (2012) advo-
cated the use of LBP-TOP descriptor to enhance face PAD
detection. This descriptor integrates spatial and temporal
information into a cohesive representation. By extending
the analysis into the time domain, notable improvements

over previous static frame methods were reported. Addition-
ally, in Patel et al. (2016), image distortions were examined
using various intensity channels (R, G, B, and grayscale) and
across different image regions (entire image, detected face,
and the facial area between the nose and chin). In Li and
Feng (2019), traditional handcrafted features were combined
with convolutional neural networks (CNNs) to enhance face
PAD. Lately, a hybrid technique was presented in Muham-
madet al. (2019), combining informationon appearance from
two CNNs, with an SVM classifier employed to distinguish
between live and spoofed images.While appearance-focused
methods exhibit enhanced performance, especially in intra-
database testing, each method has its own advantages and
disadvantages. We summarize them in Table 1.

Temporal-based methods:Temporal-basedmethods focus
on the temporal dynamics or changes occurring over a
sequence of frames or in a video. These methods often
involve techniques such as optical flow analysis, 3D CNN,
or recurrent neural networks (RNNs) to capture temporal
dependencies and patterns in the data. For instance, in Yin
et al. (2016), a dense optical flow scheme was proposed to
estimate the motion between successive frames. The authors
reported that real and attack videos exhibit different opti-
cal flow motion patterns, enhancing the performance of face
anti-spoofing detection. In Bharadwaj et al. (2013), a novel
method for spoofing detection in face videos was introduced
by utilizing motion magnification. It enhances facial expres-
sions through Eulerian motion magnification and proposes
two feature extraction algorithms: an improved LBP config-
uration for texture analysis and amotion estimation technique
using the histogram of the oriented optical flow (HOOF)
descriptor. To enhance the robustness of face recognition
systems against spoof attacks, this paper employs dynamic
mode decomposition (DMD) to capture liveness cues, such
as blinking and facial dynamics (Tirunagari et al., 2015).
To address 3D mask presentation attack detection (PAD),
remote Photoplethysmography (rPPG) was used as an intrin-
sic cue, unaffected by mask material or quality. In particular,
temporal variations of rPPG signals were extracted using a
multi-channel time-frequency analysis scheme to enhance
discriminability (Liu et al., 2021). A sample learning based
recurrent neural network (SLRNN) was introduced to cap-
ture both appearance and temporal cues in Muhammad et
al. (2019). In Chang et al. (2023), a Geometry-Aware Inter-
action Network (GAIN) using dense facial landmarks with a
spatio-temporal graph convolutional network (ST-GCN)was
introduced to improve the PADdetection.A generalized deep
feature representation by incorporating both spatial and tem-
poral information using a tailored 3D convolutional neural
network was put forward in Li et al. (2018). The network is
initially trained with augmented facial samples using cross-
entropy loss and further refined with a custom generalization
loss serving as regularization. In Liu et al. (2018), a CNN-
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Table 1 Summary of
advantages and disadvantages of
appearance-based methods

Methods Advantages Disadvantages

Freitas Pereira et al. (2012) By taking into account temporal
dynamics, the LBP-TOP
descriptor is capable of capturing
motion or temporal variations

Variations in lighting conditions,
camera motion, or occlusions
over time could introduce
inaccuracies or false positives in
the analysis

Yang et al. (2013) By pooling features with weights
derived from the Fisher criterion,
the method is likely to capture
discriminative information

The effectiveness of feature
pooling with weights derived
from the Fisher criterion relies on
the accurate determination of
parameters

Wen et al. (2015) Using an ensemble of SVM
classifiers, enhances the
algorithm’s robustness and
adaptability to different spoofing
attacks

Extracting multiple features
(specular reflection, blurriness,
chromatic moment, and color
diversity) can be computationally
intensive

Boulkenafet et al. (2016) The method addresses the
challenge of varying image
quality and resolution

Deriving a multiscale space
through multiscale filtering
methods may require additional
computational resources

Patel et al. (2016) By examining individual intensity
channels (R, G, B, and
grayscale), the method can
capture subtle differences in
color

Examining multiple channels and
regions might lead to redundant
information

Boulkenafet et al. (2016) Color information can make the
system more robust to variations
in lighting and other
environmental conditions

Processing and analyzing
additional color space
components can require more
computational power

Li and Feng (2019) Demonstrating the robustness of
handcrafted features and the
ability of CNNs to learn complex
patterns

Integrating handcrafted features
with CNNs requires careful
feature engineering

RNN model was trained with pixel-wise supervision for
estimating face depth and sequence-wise supervision for esti-
mating rPPG signals, which were then fused to distinguish
live versus spoof faces. In Muhammad and Oussalah (2023),
a video processing scheme using a Gaussian weighting func-
tion (GWF) was proposed to model long-range temporal
variations, followed by employing a CNN-RNN for PAD
detection. A global motion was estimated to compensate for
camera motion in Muhammad et al. (2022a), allowing for
more detailed analysis of the video content by capturing
subtle variations and movements. Following this, a CNN-
RNNmodel was employed to detect PAD. This combination
leverages the strengths of both global motion estimation and
deep learning models. To further improve the performance
of global motion, a dense sampling approach was applied in
Muhammadet al. (2022b).Although temporal-focusedmeth-
ods typically demonstrate their effectiveness, their detection
performance remains vulnerable to degradation due to real-
world variations, such as user demographics, input cameras,
and variations in illumination. In addition, each method pos-

sesses its own set of advantages and disadvantages, which
we summarize in Table 2.

Deep Domain Generalization methods: Deep Domain
Generalization (DDG) methods focus on creating models
that generalize well to new unseen domains. In particular,
the models aim to perform well across a variety of domains
without needing to see target domain data during training. For
instance, the Domain-invariant Vision Transformer (DiVT)
for FASenhanced the generalizabilitywith respect to two loss
functions. First, a concentration loss helps learn a domain-
invariant representation by aggregating features of real face
data. Second, a separation loss unifies various attack types
fromdifferent domains (Liao et al., 2023).Huang et al. (2022)
proposed adaptive vision transformers (ViT) with ensemble
adapters and feature-wise transformation layers for robust
cross-domain face anti-spoofing. In Liu et al. (2024), a novel
Class Free Prompt Learning (CFPL) paradigm that employs
two lightweight transformers, Content Q-Former (CQF) and
Style Q-Former (SQF), was introduced to learn semantic
prompts based on content and style features using learnable
query vectors for face PAD. In Zhang et al. (2019, 2020),
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Table 2 Summary of
advantages and disadvantages of
temporal-based methods

Methods Advantages Disadvantages

Bharadwaj et al. (2013) By using Eulerian motion
magnification, subtle facial
expressions are amplified,
improving the accuracy of
detecting spoofing attempts

The effectiveness of motion
magnification and subsequent
analysis relies heavily on the
quality of the captured video

Tirunagari et al. (2015) The use of dynamic mode
decomposition (DMD) efficiently
captures liveness cues such as
blinking and facial dynamics

The accuracy of the method
heavily relies on the quality of
the video input

Yin et al. (2016) Leveraging the distinct motion
patterns in optical flow vectors

Calculating dense optical flow for
successive frames can be
computationally intensive

Muhammad et al. (2019) The use of sparse filtering with
Residual Networks (ResNet)
decreases feature redundancy

The performance of the model
heavily relies on the effectiveness
of the sparse filtering process

Liu et al. (2021) Using remote
Photoplethysmography (rPPG) as
a detection cue ensures that the
method is effective regardless of
the mask’s material

Despite improvements, the method
may still struggle with severe
noise in the rPPG signals,
affecting its accuracy

Muhammad et al. (2022a) Compensates for camera
movement, providing a more
stable and smoother video
sequence for subsequent analysis

The appearance of black framing
and other artifacts can introduce
biases into the training data

Chang et al. (2023) The cross-attention feature
interaction mechanism allows
GAIN to integrate seamlessly
with other existing methods

The use of dense facial landmarks,
ST-GCN, and cross-attention
mechanisms can make the model
complex to implement

Muhammad et al. (2022b) Dense sampling can help avoid
black framing after
transformations

Significantly raises the
computational demands,
requiring more processing power
and memory

a multi-modal fusion approach, aiming to enhance gener-
alization by conducting feature re-weighting, emphasizing
the most informative channel features while attenuating the
less relevant ones within each modality, was investigated.
To extract discriminative fused features, a Partially Shared
Multi-modal Network is proposed to learn the fused infor-
mation from single-modal and multi-modal branches (Liu
et al., 2021). For the same purpose, George et al. suggested
that incorporating analysis across multiple channels could
offer a solution to this problem. Hence, they introduced a
CNN approach that operates across multiple channels for
PAD (George et al., 2019). In Srivatsan et al. (2023), a
new method for making FAS more robust across different
situations was introduced by connecting visual representa-
tions with natural language. By matching image features
with descriptions, based on how we talk about things,
FAS can work better even when there’s not much data
available. In Wang et al. (2020), it was found that incor-
porating spatio-temporal information from multiple frames
using a Spatio-Temporal Propagation Module (STPM) can
help the model generalize better to variations in depth cues

across different environments or conditions. An Instance-
Aware Domain Generalization framework was introduced
in Zhou et al. (2023) by aligning features at the instance
level without domain labels. Sun et al. (2023) proposed
Dynamic Kernel Generator and Categorical Style Assembly
to extract instance-specific features for improving gener-
alization of face PAD. Specifically, the authors formulate
their FAS strategy of separability and alignment (SA-FAS)
as a problem of invariant risk minimization (IRM), and
proposed encouraging domain separability while ensuring
uniform live-to-spoof transitions across domains. Inspired
by vision-languagemodels, a method known as VL-FASwas
introduced in Fang et al. (2024) by leveraging fine-grained
natural language descriptions to guide attention towards the
face region, resulting in cleaner and more generalized fea-
tures.

A domain adaptation method that generates pseudo-
labeled samples named cyclically disentangled feature trans-
lation network (CDFTN) was proposed in Yue et al. (2023).
Chuang et al proposed to improve the generalization based on
one-side triplet loss (Chuang et al., 2023). InCai et al. (2022),
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Table 3 Summary of
advantages and disadvantages of
domain generalization methods

Methods Advantages Disadvantages

Zhang et al. (2019) The multi-modal fusion approach
improves generalization by
effectively combining
information from multiple
modalities

Despite improvements, effective
multi-modal fusion often
requires sufficient labeled data
from each modality for training

Wang et al. (2020) Introducing a novel Contrastive
Depth Loss can lead to more
accurate depth supervision,
which can be beneficial for
improving generalization

The method involves multiple
modules (RSGB, STPM,
Contrastive Depth Loss) which
may increase the complexity of
the model

Huang et al. (2022) The ensemble adapters module
enables the model to adapt to
different domains with only a
few samples

There is still a risk of overfitting,
especially if the samples are not
sufficiently representative of the
target domain’s variability

Liao et al. (2023) The combination of concentration
loss and separation loss improves
the model’s ability to learn
domain-invariant representations

Transformers typically require
large amounts of data to train
effectively

Srivatsan et al. (2023) Leveraging both images and text
through multimodal contrastive
learning enhances feature
generalization

There might be a semantic gap
between the natural language
descriptions and the actual image
content

Zhou et al. (2023) Asymmetric Instance Adaptive
Whitening, Dynamic Kernel
Generator, and Categorical Style
Assembly offer flexibility and
adaptability in handling various
styles and shifts in the data

Optimizing the various
components and hyperparameters
of the framework may require
careful tuning and additional
complexity

Liu et al. (2024) Using lightweight transformers,
CQF and SQF, makes the model
efficient

Integrating and fine-tuning
multiple components such as
CQF, SQF, PTM, and DSP adds
complexity to the model’s
implementation

a two-stream network was utilized to fuse the input RGB
image, while meta-pattern learning was proposed to improve
generalization. In Huang et al. (2022), a cross-adversarial
training scheme was proposed to improve the generalization
by minimizing the correlation among two sets of features.
The work reported in Zhou et al. (2022) aims to learn a
generalized feature space by designing the target data to
the source-domain style called generative domain adaptation
(GDA). A hypothesis verification framework was proposed
in Liu et al. (2022) where two hypothesis verification mod-
ules are utilized for improving the generalization. InWang et
al. (2022), a novel shuffled style assembly network (SSAN)
was introduced by aligning multiple source domains into
a stylized feature space, while domain generalization was
improved by a contrastive learning strategy. To select a com-
mon feature space, adversarial learning was proposed, and
aggregation of live faces was performed to achieve a gener-
alized feature space in Liu et al. (2022). Nonetheless, there is
no clear consensus that the pre-defined distributions can be
considered the optimal ones for the feature space. We argue

that different domains have their strengths and weaknesses.
By combining them, their collective knowledge and diversity
can lead to a more comprehensive understanding of faces.
However, implementing and fine-tuning such approaches, as
discussed in Table 3, might be complex and require care-
ful consideration of alignment methods, ensemble learning
techniques, and evaluation strategies to ensure the desired
performance improvements are achieved.

3 Methodology

A key idea underlying our approach is to enhance the PAD
model’s generalization ability. This objective is achieved
through training multiple sub-models using distinct subsets
of synthetic data. Specifically, we embark on data augmenta-
tion by blending a static image with spatiotemporal encoded
images, effectively replicating the visual effect ofmotion blur
through the manipulation of alpha values applied to the static
image. This variation in alpha values governs the extent of
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Fig. 2 Schematic diagram of the proposed data augmentation and deep ensemble learning for face anti-spoofing countermeasure

each image’s influence on the final composite, thereby yield-
ing an array of synthetic data subsets. As a further stride in
our methodology, we introduce ameta-model, which capital-
izes on the predictions of the base models. In the following
sections, we describe all these steps in detail. An overall view
of our proposed methodology is presented in Fig. 2.

3.1 Data Augmentation

The process of data augmentation involves five main steps,
as follows: (1) Select a source and a target frame of an
input video; (2) Estimate the global motion transformation
between the source and target frames; (3) Perform the geo-
metric transformation on the source frame to align it with
the target frame; (4) Create a new spatiotemporal encoded
image by stabilizing the segments of the video; and (5) Use
alpha blending to combine the transformed image with the
target (static) frame, considering the transparency of each
pixel. Each of these steps is explained in the following sub-
sections.

3.1.1 Global Motion Estimation

Suppose a video V is equally divided into P non-overlapping
segments, i.e., V = {Sk}P

k=1, where Sk is the k-th segment.
The length of each segment is set to be N = 40 frames. For
each segment, features are extracted from the fixed (first) and
moving (second) images of the segment. In particular, the
FAST feature detector (Rosten & Drummond, 2005) is uti-
lized to detect interest points, and then the FREAKdescriptor
(Alahi et al., 2012) extracts the features to collect points of
interest from both frames. For matching the interest points,
Hamming distance (HD) is utilized in our work. The trans-
formation between frames is calculated from the first frame
onward using a rigid (Euclidean space) transformation. The
rigid transformation preserves lengths, angles, and shapes,
and includes translation, rotation, and reflection. On the con-
trary, the affine transformation used in Muhammad et al.
(2022a) includes translation, rotation, scaling, and shear-
ing, and preserves parallel lines and ratios of distances, but
can change shapes through scaling and shearing. Thus, rigid
transformation for each subsequent frame in the segment is
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estimated as:
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In this equation,
[
a′ b′ 1

]
represents the homogeneous coor-

dinates in the fixed image, and
[
a b 1

]
represents the

homogeneous coordinates in the moving image. The rigid
transformation matrix M describes the inter-frame motion.
To eliminate false-matching points and robust estimation
of the geometric transformation between the frames, we
use the M-estimator Sample Consensus (MSAC) algorithm
(Torr & Zisserman, 1997) to detect outliers and remove
false matching points. To obtain a warped (spatiotemporal)
image, accumulation is performed using the following equa-
tion (Muhammad et al., 2022b):

A = 1

N

N∑
i=1

Ii · M, (2)

where A is a single image that represents the combined
motion in the segment after applying the accumulated trans-
formation M , N is the number of frames that are considered
for accumulation and Ii represents the i-th frame in the seg-
ment. Each frame Ii is transformed using the accumulated
transformation M before being added to the sum. 1

N is the
scaling factor that ensures the final result is an average. In
particular, Eq. (2) shows that we take each frame in the seg-
ment, apply the accumulated transformation M to it, sum
up these transformed frames, and then divide by N to gen-
erate a final composite frame A for that particular segment.
To show the importance of this approach, we simply remove
the accumulated transformation M and use alternatively the
following equation:

B = 1

N

N∑
i=1

Ii . (3)

This calculates the average frame B by summing all the indi-
vidual frames in the segment and then dividing that sum by
the total number of frames N . The outcome of both equations
is illustrated in Fig. 3. The first row represents the noisy cam-
eramotion,which can be observed after using theEq. (3). The
second row shows that the proposed approach significantly
removes themotion blur using the Eq. (2). Although the cam-
era motion issue is eliminated, black framing near the border
of the images in the second row appears, which requires fur-
ther preprocessing. In the following sub-section, we address
this issue and explain the motivation of data augmentation.

Fig. 3 a Temporal averaging is performed based on Eq. (3) to visualize
the global motion, which exhibits a significant amount of distortion
in the encoded image. b The cumulative transformation is calculated
by applying the transformation matrix of each frame’s motion to the
previous cumulative transformation, according to Eq. (2). c The result
of the cumulative transformation with alpha blending is based on Eq.
(4). The images in the column are the results of averaging 40 frames

3.1.2 Alpha Transparency

While Eq. (2) effectively removes the disruptive effects of
noisy camera motion, the spatiotemporal-encoded images
inherently exhibit a certain level of motion blur. This blur
arises from the inherent movement between the camera and
the scene during each exposure. In particular, if the subjects
move their hands or change the direction of their face in
the scene while the camera’s shutter is open, their motion
appears as a blur in the spatiotemporal-encoded image. This
observation has encouraged us to propose a new basic aug-
mentation technique, called alpha transparency, for face
PAD. The concept is to assign appropriate alpha values to the
first (static) frame of the segment and then blend it with the
spatiotemporal-encoded image based on those alpha values.
This approach helps preserve more details and finer features
of the scene, as the spatiotemporal-encoded image captures
different stages of the motion blur. The alpha blending pro-
cess is achieved through the following two steps: (1) Obtain a
source image (i.e., a spatiotemporal-encoded image based on
Eq. (2)); and (2) Choose first (still) image of each segment to
blend with the source image. Let us assume, without loss of
generality, that we blend the source image P1 over the target
image P2 as follows:

Pblended(a, b) = αP1(a, b) + (1 − α)P2(a, b). (4)

The equation represents how to combine the information
from the two source values P1(a, b) and P2(a, b) to cre-
ate a new value at the location (a, b) in the synthetic image.
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The weight factor α determines the contribution of P1(a, b)

to the blended result. When α is closer to 1, P1(a, b) has a
higher influence, and when α is closer to 0, P2(a, b) has a
higher influence. Thus, blending the source image with the
target image helps to eliminate the black framing issue, as
shown in the third row of Fig. 3, creating a visually seamless
transition.Moreover, Fig. 4 displays images that represent the
results of blendingwith different α values. This approach can
be useful in scenarioswhere someonewants to emphasize the
overall motion of the scene while maintaining a recognizable
background or main subject. We hypothesize that the com-
bination of alpha blending and spatiotemporal encoding can
be beneficial in simulating motion blur and helping the deep
learning model become more robust to real-world scenarios
where camera motion is present.

3.2 Deep Ensemble Learning

Deep learning methods based on 2D Convolutional Neu-
ral Networks (CNNs) have shown improved performance
compared to classical machine learning approaches (Wang
et al., 2020; Liu et al., 2021; Shao et al., 2020). However,
mainstream 2D CNN frameworks primarily focus on spatial
information, thus lacking the capacity to understand sequen-
tial data. Moreover, 2D CNNs do not possess a memory
mechanism to capture temporal relations. Motivated by the
fact that recurrent neural networks (RNNs) can effectively
handle temporal information, we develop a stacking-based
deep ensemble learning framework to learn from motion
blur by processing sequences of images representing motion
over time. Ensemble learning has been supported bymultiple
approaches such as bagging, boosting, and stacking, resulting
in a better generalization of learningmodels (Fatemifar et al.,
2020). Specifically, stacking is an integration technique that
involves combining the predictions based on different weak
model predictions, where the meta-model is used to integrate
the output of basemodels (Ganaie et al., 2021). One common
approach in stacked ensemble learning is to develop a set of
Tier-1 classifiers denoted as S1, S2, S3, . . . , SN . These clas-
sifiers are developed through cross-validation of the training
dataset. Then, the outputs or predictions from these Tier-1
classifiers are subsequently employed as inputs for a higher-
level classifier or meta-learner within the ensemble (Polikar,
2012).

Since our primary goal is to learn from the variations
of motion blur sequences, we train diverse recurrent neural
networks to leverage the benefits of the proposed data aug-
mentation mechanism. The approach involves fine-tuning a
CNN model on the labeled datasets in the first stage. Then,
we extract the fine-tuned features from the pooling layer and
utilize them as input to train different variants of RNNs.
In our work, three base models-Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997), Bidirectional

Long Short-Term Memory (BiLSTM) (Schuster & Paliwal,
1997), and Gated Recurrent Unit (GRU) (Cho et al., 2014)
are selected. The first base model (LSTM) captures tempo-
ral patterns and dynamics across frames using its special
memory cells, allowing it to maintain long-range dependen-
cies in sequential data. When presented with a sequence of
blurred frames, the LSTMcan learn to recognize patterns one
by one and retain relationships between consecutive frames.
The secondbasemodel (BiLSTM)captures information from
both past and future contexts in sequential data. It consists of
two sets of LSTMcells, where both cells work independently
to capture information from both past and future contexts.
The hidden states from both directions are then concatenated
or combined to obtain the final output. The third base model
(GRU) incorporates gating mechanisms similar to LSTM,
enabling it to selectively learn and update information over
time.

In particular, this approach encourages each submodel to
focus on different aspects of the data, such as variations in
temporal blur. For example, one model might specialize in
certain features based on synthetic data, while another model
may perform better in other aspects. We then combine the
predictions from these weak experts (base models) and use
them as input to a meta-model (another RNN). The meta-
model learns to integrate these predictions andmake the final
decision. We call it a meta-model because it leverages the
diversity and complementary strengths of the individual base
models, leading to improved generalization for face PAD.
Table 4 illustrates the configuration of the proposed meta-
model.

4 Experimental Analysis of Using Open
Datasets

Since spoofing attacks have become more realistic and a big-
ger security concern for face recognition systems, researchers
around the world have paid attention to developing more
diverse datasets. These datasets include faces captured in
various lighting conditions and utilize different spoofing
techniques, such as photos, videos, makeup, masks, etc.
These diverse datasets can be single modality, focusing on
one type of data (e.g., images), or multimodal, combining
multiple data types (e.g., images and depth information). To
evaluate our model’s performance in detecting face spoofing
attacks, we trained and tested it on several state-of-the-art
datasetswidely used in the face anti-spoofingdomain.Details
about these datasets are provided in the following section.

4.1 Datasets

Seven diverse databases, including the Wide Multi-Channel
PresentationAttack (WMCA) database (George et al., 2019),
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Fig. 4 2D synthetic samples
from CASIA-MFSD are shown.
In the left column, we present
video segments used in the
process of data augmentation. In
the right column, we display
composite images after blending
with spatiotemporal images
using alpha values of 0.5 (Synt
1), 1.0 (Synt 2), and 1.5 (Synt
3), respectively. The encoded
clip is based on alpha values of
0.1. These synthetic samples can
be effectively employed for
ensemble stacking, resulting in a
significant improvement in face
anti-spoofing performance

Table 4 Base model
architectures and their
parameters

Base model 1 Base model 2 Base model 3 Meta-Model

Layer type LSTM BiLSTM GRU BiLSTM

No. of layers 1 1 1 1

No. of units 500 500 500 100

Optimizer ADAM ADAM ADAM ADAM

Learning rate 0.0001 0.0001 0.0001 1

Cost function Cross entropy Cross entropy Cross entropy Cross entropy

the CASIA-SURF database (Zhang et al., 2020), the OULU-
NPU database (denoted as O) (Boulkenafet et al., 2017), the
CASIA-MFSD database (denoted as C) (Zhang et al., 2012),
the Idiap Replay-Attack database (denoted as I) (Chingovska
et al., 2012), the MSU-MFSD database (denoted as M) (Wen
et al., 2015), and the SiW-Mv2 dataset (Guo et al., 2022)
were used to conduct the experiments.

The Wide Multi Channel Presentation Attack (WMCA)
database comprises 1941 short video recordings, featuring
both genuine and presentation attacks from 72 distinct iden-
tities. These recordings utilize various channels, including
color, depth, infrared, and thermal.

The Chalearn CASIA-SURF dataset is one of the largest
face anti-spoofing datasets, consisting of 1000 subjects and
21,000 video clips across three modalities: RGB, Depth, and
IR. Each sample in the dataset comprises one live video clip
and six spoof video clips, each representing a different attack
method.

The OULU-NPU database contains 4950 videos, encom-
passingboth real and attackvideos.Twoprimarypresentation
attack typeswere considered in this database: print andvideo-
replay. The videos recorded from the 55 subjects.

CASIA-MFSD consists of a total of 50 subjects, with each
subject having 12 videos captured under varying resolutions
and lighting conditions. This dataset is developed to include
three distinct types of spoof attacks: replay, warp print, and
cut print attacks. In particular, CASIA-MFSD comprises 600
video recordings. Out of these, 240 videos from 20 subjects
are allocated for training purposes, while the remaining 360
videos from 30 subjects are designated for testing.

The Idiap Replay-Attack database comprises 1300 video
clips that consist of photo and video attacks on 50 clients,
all conducted under varying lighting conditions. Data for the
attacks was gathered in two distinct lighting conditions: con-
trolled, with office lights on, blinds down, and a uniform
background; and adverse,with raised blinds, a complex back-
ground, and no office lighting.

TheMSU-MFSDdataset was constructed through the par-
ticipants of 35 individuals, resulting in a combined total
of 280 video entries. The recordings were captured using
two distinct camera types, each with varying resolutions
(720 × 480 and 640 × 480). Regarding generating live
recordings, every participant contributed two video clips, one
recorded with a laptop camera and the other with an Android
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device. In contrast, for video attack instances, two differ-
ent camera models, specifically iPhone and Canon cameras,
were utilized to capture high-definition videos for each sub-
ject. Thus, the presence of diverse lighting conditions and a
wide array of attack types introduces significant complexity
and difficulty when dealing with these datasets.

The SiW-Mv2 dataset includes 785 videos from 493 sub-
jects and 915 spoof videos from 600 subjects, ranging from
common print and replay attacks to various masks, imper-
sonation makeup, and physical material coverings. It is a
large-scale face anti-spoofing (FAS) dataset with 14 types of
diverse spoofing attacks. For instance, obfuscation makeup
and partial coverings are designed to hide a subject’s identity,
while impersonation makeup and masks are used to imitate
other identities.

4.2 Implementation Details

All the images are adjusted to a size of 224 × 224 to align
with the input specifications of the pretrained DenseNet-
201 architecture (Huang et al., 2017). Fine-tuning of the
CNN model is carried out employing the Stochastic Gra-
dient Descent (SGD) optimizer, with a mini-batch size of 32
and a validation check performed every 30 iterations. The
learning rate is set at 0.0001, and fixed-size epochs are not
used. Instead, we implement an early stopping mechanism
(Prechelt, 1998) to automatically stop the training process
to prevent overfitting. During the ensemble learning phase,
the CNN model undergoes fine-tuning with spatiotemporal-
encoded video clipswith alpha values of 0.1 and three distinct
synthetic sets individually. These subsets introduce random
expansion to the training images through alpha values of 0.5,
1.0, and 1.5 as defined in Eq. (4). Additional data augmenta-
tion techniques are utilized, such as rotation within the range
of −20 to +20 degrees, as well as random translations along
the x and y axes. Subsequently, the features from the fine-
tunedmodel are extracted and used as inputs to train a LSTM,
a BiLSTM and a GRU.

4.3 EvaluationMetrics

Various standard metrics are utilized in this study for com-
parison, such as Equal Error Rate (EER), Attack Presentation
Classification Error Rate (APCER), Bona Fide Presentation
Classification Error Rate (BPCER), and Average Classifica-
tion Error Rate (ACER). The EER is often used in biometric
systems to represent the point where the false acceptance rate
(FAR) and the false rejection rate (FRR) are equal. BPCER
measures the rate at which genuine presentations are incor-
rectly classified as attacks, while APCER measures the rate
at which attack presentations (fake attempts) are incorrectly
classified as genuine. ACER is the average of APCER and
BPCER, providing a balanced view of the system’s per-

formance in detecting both attacks and genuine attempts.
Additionally, Half Total Error Rate (HTER) is reported,
which is the average of FAR and FRR after setting a specific
threshold based on the validation set. The Area Under the
Curve (AUC) is also reported, measuring the model’s overall
ability to distinguish between classes, with the area under the
ROC curve representing performance across all thresholds.

4.4 Comparison Against the State-of-the-Art
Methods

To assess the effectiveness of the proposed method, we con-
ducted comparisons with some of the most representative
state-of-the-art methods. Tables 5 and 6 present the perfor-
mance evaluation onWMCAandCASIA-SURFdatasets, for
intra-dataset testing scenarios. The bold values in the tables
indicate the best reported results.

Intra-Testing Results: Table 5 presents a comparison of
the performance of our proposed method on the WMCA
dataset with other CNN-based approaches (George & Mar-
cel, 2019; Liu et al., 2021; He et al., 2016; Tolstikhin et
al., 2021; Wang et al., 2022) and Transformer-based method
(Antil & Dhiman, 2024). Similar to the previous approach
described in Antil and Dhiman (2024), our proposed meta-
model achieves the best performance with the lowest ACER
(0.1%)in the intra-testing scenario. Furthermore, the meta-
model has a slightly better BPCER (0.0%) compared to the
T-Encoder, which indicates perfect recognition of bona fide
presentations. Table 6 provides the performance compari-
son on the CASIA-SURF dataset. The comparison methods
(Liu et al., 2021; Zhang et al., 2019, 2020; Yu et al., 2023)
employ multimodal approaches. Among these, the proposed
meta-model stands out for achieving the lowest ACER of
0.5%. The experimental findings validate that our perfor-
mance is consistent with other leading benchmarks. Thus, it
shows that stacking-based ensemble learning is well-suited
for intra-testin scenario.

Cross-Dataset Testing:Since ourwork focuses on improv-
ing the generalization of face PAD, we initially conducted
cross-dataset testing experiments between two datasets,
namely, the WMCA and CASIA-SURF datasets. In particu-
lar, we begin by training the model using the CASIA-SURF
dataset and then assess its performance on the WMCA
dataset, focusing on HTER. Similarly, we invert the process
by training the model on the WMCA dataset and evaluat-
ing it on the CASIA-SURF dataset. Table 7 showcases the
comparison of performances, highlighting the meta-model’s
attainment of state-of-the-art results on the WMCA dataset.
In particular, when trained on CASIA-SURF and tested on
WMCA, the meta-model shows an error rate of 17.76%,
indicating its robustness in cross-database evaluation. When
trained on WMCA and tested on CASIA-SURF, ViT+AMA
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Table 5 Performance
comparison on the WMCA
dataset during intra-dataset
testing (%)

Methods APCER BPCER ACER

DeepPixBis (George & Marcel, 2019) 8.2 3.7 6.0

MA-Net (Liu et al., 2021) 11.1 2.6 6.8

ResNet (He et al., 2016) 3.5 1.6 2.6

LBP-SVM (Chingovska et al., 2012) 8.5 0.6 4.6

MLP-Mixer (Tolstikhin et al., 2021) 1.7 2.3 2.0

Conv-MLP (Wang et al., 2022) 0.8 1.0 0.9

T-Encoder (Antil & Dhiman, 2024) 0.1 0.1 0.1

Meta-Model (ours) 0.2 0.0 0.1

Best results appear in bold, while the second-best are marked with an underline
The results are obtained directly from the cited paper(Antil & Dhiman, 2024)

Table 6 Performance
comparison on the
CASIA-SURF dataset during
intra-dataset testing (%)

Methods APCER BPCER ACER

Halfway Fusion (Zhang et al., 2019) 5.6 3.8 4.7

SE Fusion (Zhang et al., 2019) 3.8 1.0 2.4

Zhang et al. (2020) 2.8 0.3 1.5

MA-Net (Liu et al., 2021) 2.4 1.7 2.0

Conv-MLP (Wang et al., 2022) 1.5 1.8 1.6

ViT+AMA (Yu et al., 2023) 0.8 0.4 0.6

T-Encoder (Antil & Dhiman, 2024) 1.6 1.2 1.4

Meta-Model (ours) 0.4 0.7 0.5

Best results appear in bold, while the second-best are marked with an underline
The results are obtained directly from the cited paper (Antil & Dhiman, 2024)

Table 7 Ablation study using
cross-database evaluation

Method Train: CASIA-SURF Train: WMCA
Test: WMCA Test: CASIA-SURF

Aux. (Depth) (Liu et al., 2018) 24.54 12.35

MM-CDCN (Yu et al., 2020) 21.83 21.25

MA-ViT (Liu et al., 2021) 20.63 10.41

ViT (Dosovitskiy et al., 2020) 23.21 19.19

ViT+AMA (Yu et al., 2023) 18.83 8.60

T-Encoder (Antil & Dhiman, 2024) 19.43 13.84

Meta-Model (ours) 17.76 14.20

Best results appear in bold, while the second-best are marked with an underline
The results are obtained directly from the cited paper (Antil & Dhiman, 2024)

(Yu et al., 2023) achieves the lowest error rate of 8.60%,
making it the best performer in this scenario.

We extend our experiments to the commonly employed
cross-dataset testing scenario, where the model is trained on
three source databases and evaluated on a completely unseen
database using the leave-one-out (LOO) strategy. Specifi-
cally, four datasets - the OULU-NPU database (denoted as
O), CASIA-MFSD database (denoted as C), Idiap Replay-
Attack database (denoted as I), and MSU-MFSD database
(denoted as M)—are employed in various combinations:
O&C&I to M, O&M&I to C, O&C&M to I, and I&C&M to
O. Table 8 presents a performance comparison with recently
proposed state-of-the-art methods in terms of HTER and

AUC. It can be observed that the meta-model provides the
best results for three protocols: O&C&I to M, O&M&I to C,
and I&C&M to O. For O&C&I toM, the meta-model has the
lowest HTER (1.20). Similarly, the meta-model has the low-
est HTER (1.37) for O&M&I to C. In the case of I&C&M
to O, the meta-model has the lowest HTER (2.08). How-
ever, DiVT-M performs best with the lowest HTER (3.71),
outperforming the meta-model in O&C&M to I. Overall,
our proposed method demonstrates itself as the most effec-
tive method across the majority of the evaluated scenarios,
showcasing its robustness and superior performance in cross-
database face presentation attack detection.
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Table 8 Performance evaluation using MSU-MFSD (M), Idiap (I), CASIA (C), and OULU-NPU (O) databases

O&C&I to M O&M&I to C O&C&M to I I&C&M to O

Methods HTER AUC HTER AUC HTER AUC HTER AUC

MADDG (Shao et al., 2019) 17.69 88.06 24.50 84.51 22.19 84.99 27.89 80.02

DAFL (Saha et al., 2020) 14.58 92.58 17.41 90.12 15.13 95.76 14.72 93.08

SSDG-R (Jia et al., 2020) 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54

DR-MD (Wang et al., 2020) 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47

RFMetaFAS (Shao et al., 2020) 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16

FAS-DR-BC(MT) (Qin et al., 2021) 11.67 93.09 18.44 89.67 11.93 94.95 16.23 91.18

ADL (Liu et al., 2022) 5.00 97.58 10.00 96.85 12.07 94.68 13.45 94.43

HFN + MP (Cai et al., 2022) 5.24 97.28 9.11 96.09 15.35 90.67 12.40 94.26

Cross-ADD (Huang et al., 2022) 11.64 95.27 17.51 89.98 15.08 91.92 14.27 93.04

GDA (Zhou et al., 2022) 9.20 98.00 12.20 93.00 10.00 96.00 14.40 92.60

Regression Network (Kwak et al., 2023) 5.41 98.85 10.05 94.27 8.62 97.60 11.42 95.52

SSAN-R (Wang et al., 2022) 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63

FG + HV (Liu et al., 2022) 9.17 96.92 12.47 93.47 16.29 90.11 13.58 93.55

CRFAS (Zheng et al., 2023) 7.14 97.44 9.88 96.56 8.57 96.07 16.38 90.87

DiVT-M (Liao et al., 2023) 2.86 99.14 8.67 96.92 3.71 99.29 13.06 94.04

ViTAF (Huang et al., 2022) 2.92 99.62 1.40 99.92 1.64 99.64 5.39 98.67

FLIP-MCL (Srivatsan et al., 2023) 4.95 98.11 0.54 99.98 4.25 99.07 2.31 99.63

IADG (Zhou et al., 2023) 5.41 98.19 8.70 96.44 10.62 94.50 8.86 97.14

SA-FAS (Sun et al., 2023) 5.95 96.55 8.78 95.37 6.58 97.54 10.00 96.23

VL-FAS (Fang et al., 2024) 3.13 99.31 4.00 98.64 5.00 98.90 7.92 97.05

Meta-Model (ours) 1.20 99.98 1.37 99.99 5.40 99.97 2.08 99.77

Best results appear in bold, while the second-best are marked with an underline
The results are obtained directly from the cited papers

We also provide a more comprehensive evaluation of the
classifier’s performanceusing theAreaUnder theROCCurve
(AUC) shown in Table 8. Although the meta-model provides
low performance on one database (i.e., Replay-Attack), one
can see that the meta-model achieves more than 99% AUC
on all the datasets. Since EER is calculated based on the
testing set of source databases, HTER focuses on finding the
operating point (threshold) where the False Acceptance Rate
(FAR) and False Rejection Rate (FRR) are equal. If the AUC
is high and the HTER is low, it indicates that the classifier
achieves a good balance between FAR and FRR. Since AUC
is not threshold-dependent, it is more useful for comparing
different classifiers or evaluating the model’s generalization
capability.

To quantitatively assess various types of spoofing attacks,
we implement 13 leave-one-out testing protocols on the SiW-
Mdataset. According to Liu et al. (2019), themodel is trained
using 12 types of spoof attacks along with 80% of the live
videos, and evaluated on the remaining attack type and the
other 20% of live videos. The results are analyzed in Table 9
with two of the most recent face anti-spoofing methods (Liu
et al., 2019, 2020), using (Liu et al., 2018) as the baseline, as it
has demonstrated state-of-the-art performance across various

benchmarks. In comparison with other methods, the meta-
model performs best on several attacks, including Replay
Attack, Print Attack, Paper 3D Mask, Paper Glasses Partial
Attack, and Partial Fun Eye Glasses Attack. Specifically, it
achieves the lowestAPCER (0.1),BPCER (7.8),ACER (3.9),
and EER (1.1) for Replay Attack. For Print Attack, it con-
sistently has the lowest BPCER (2.5), ACER (1.2), and EER
(0.6). In the case of Paper 3DMask, it has the lowest APCER
(0.0) and ACER (3.2), along with the second-lowest BPCER
(6.4). Similarly, it records the lowest BPCER (0.0), ACER
(0.0), and EER (0.0) for Paper Glasses Partial Attack, and
the lowest BPCER (0.0), ACER (14.8), and EER (10.9) for
Fun Partial Attack. Thus, themeta-model demonstrates supe-
rior performance, particularly excelling in Print and Paper
Glasses attacks. It achieves the lowest average BPCER (6.6
± 5.9), ACER (13.7± 10.8), and EER (9.3± 7.4), indicating
its robustness across various attack types.

4.5 Experiment on Limited Source Domains

Our study also investigates the scenario of a limited source
domain by training the model on only two source domains,
as opposed to the three domains used in Table 8. It can be
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Table 10 The results of cross-dataset testing on limited source domains

Methods O&I to M M&I to C O&I to C O&M to I C&M to O

HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC

Supervised (Wang et al., 2021) 12.1 94.2 30.4 77.0 18.0 90.1 16.8 93.8 17.9 89.5

Mean-Teacher (Tarvainen & Valpola, 2017) 19.6 86.5 31.1 76.6 23.7 84.9 18.4 86.0 23.5 84.9

USDAN (Jia et al., 2021) 15.8 88.1 35.6 69.0 33.3 72.7 19.8 87.9 20.2 88.3

EPCR-labeled (Wang et al., 2021) 12.5 95.3 18.9 89.7 18.9 89.7 14.0 92.4 17.9 90.9

EPCR-unlabeled (Wang et al., 2021) 10.4 94.5 25.4 83.8 16.7 91.4 12.4 94.3 17.8 91.3

CNN-LSTM 15.2 89.5 27.8 81.3 18.5 86.2 19.2 86.7 19.8 85.3

CNN-BiLSTM 14.8 88.8 22.5 79.4 22.1 77.1 16.6 88.2 17.8 89.5

CNN-GRU 11.7 94.8 19.3 90.3 13.9 89.9 13.7 91.4 13.5 91.2

Meta-Model (ours) 7.7 99.4 12.4 95.1 11.2 97.5 12.9 94.7 13.3 94.2

Best results appear in bold, while the second-best are marked with an underline
The results are obtained directly from the cited papers

seen from the results of Table 10 that the model continues
to exhibit superior performance across the target domains.
In particular, the model achieves the lowest Half Total Error
Rate (HTER) in four protocols and the highest Area Under
the Curve (AUC) score on all target domains. This outcome
emphasizes that even with limited source data, the stacking
ensemble approach maintains its robust generalization capa-
bility.Overall, this finding is significant as it demonstrates the
effectiveness of the stacking ensemble approach in adapting
to scenarios where a limited amount of source data is avail-
able.

4.6 Ablation Studies

In order to assess the effectiveness of our proposed synthetic
data generation and ensemble learning, we conducted sepa-
rate experiments on four datasets in cross-testing scenarios.
The results of these experiments are detailed in Table 11.
The results without augmentation represent the performance
of the deep DenseNet-201 model (Huang et al., 2017) on
stabilized encoded training samples with alpha values set to
0.1. Subsequently, we gradually introduce synthetic training
samples and assess the performance at different alpha val-
ues. Initially, with Synthetic set1 (alpha values = 0.5), the
model demonstrates a slight improvement in performance,
evident in a higher AUC and reduced HTER compared to
training without augmentation. For instance, in the O&C&I
toM scenario, the HTER decreased from 19.02 to 18.11, and
the AUC increased from 86.12 to 87.63. Similarly, we assess
the performance using Synthetic set2. It can be observed that
the model continues to show enhanced performance.

Next, we assess the performance using Synthetic set2
(alpha values = 1.0). One can see that the model contin-
ues to show enhanced performance. The HTER improved by
approximately 1.3% on the O&M&I to C scenario, reduc-
ing from 19.52 to 17.20. We then evaluate the third synthetic

subset, Synthetic set3 (alpha values = 1.5). This set shows
consistent improvements across most scenarios. For exam-
ple, in the O&C&I to M scenario, the HTER decreased to
17.21, and the AUC improved to 90.87. When combining all
synthetic sets, the model achieves significant performance
gains. The combined sets result in an overall reduction in
HTER and an increase in AUC across all scenarios. For
instance, the HTER in the O&M&I to C scenario drops to
15.20, and the AUC rises to 93.90. We also investigate the
alpha values to 2.0, but this leads to a decline in the model’s
performance. Hence, we choose to report the performance
for only three alpha values.

Finally, we assess the performance after introducing
LSTM, BiLSTM, and GRU layers without using the meta-
model. Each of these architectures further enhances the
model’s performance, for instance, CNN-LSTM achieves an
HTER of 8.80 and AUC of 99.38 in the O&C&I to M sce-
nario. CNN-BiLSTM represents an HTER of 2.33 and AUC
of 99.98 in the O&M&I to C scenario. Similarly, CNN-GRU
achieves an HTER of 8.04 and AUC of 94.02 in the O&M&I
to I scenario. For the I&C&M to O scenario, CNN-BiLSTM
shows an improved HTER of 12.28 and an AUC of 99.52,
outperforming other RNNs.

4.7 Discussion

The quantitative results in Table 11 highlight the critical
role of synthetic images in training CNN models effectively.
When the CNN is trained on all synthetic subsets, there is a
notable improvement in performance across various datasets:
up to 3% forM, 4% forC, 4% for I, and 6% forO. These gains
are particularly significant given the challenging nature of
cross-dataset scenarios. Motivated by these initial improve-
ments, the study explores ensemble learning to fully leverage
the variations present in synthetic data. Specifically, LSTM is
integrated with CNN to predict temporal blur, which further
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Table 11 Ablation study using
cross-database evaluation

O&C&I to M O&M&I to C O&C&M to I I&C&M to O

Methods HTER AUC HTER AUC HTER AUC HTER AUC

CNN w/o augmentation 19.02 86.12 19.52 87.63 26.66 81.22 32.44 81.54

CNN + Synthetic set1 18.11 87.63 18.66 86.22 24.00 79.39 31.55 80.25

CNN + Synthetic set2 18.82 91.09 17.20 84.49 25.63 75.24 30.01 78.91

CNN + Synthetic set3 17.21 90.87 21.28 84.49 24.33 79.05 29.45 77.14

CNN + All sets 16.12 90.12 15.20 93.90 22.60 87.68 26.01 82.30

CNN-LSTM 8.80 99.38 3.26 99.95 15.52 97.62 14.31 98.11

CNN-BiLSTM 14.96 99.71 2.33 99.98 8.04 94.02 9.28 99.52

CNN-GRU 9.25 97.67 1.96 99.98 18.41 96.66 11.44 97.79

Meta model 1.20 99.98 1.37 99.99 5.40 99.97 2.08 99.77

enhances the model’s performance across all datasets. This
approach capitalizes on temporal information, allowing the
model to better differentiate between genuine and spoofed
images. Similarly, employing BiLSTM and GRU models
results in substantial performance improvements, particu-
larly notable on the C and O datasets.

However, the generalization ability of individual RNN
models (LSTM,BiLSTM, andGRU) remains somewhat lim-
ited. To address this, the study introduces a meta-model
designed to combine the strengths and mitigate the weak-
nesses of these basemodels. Thismeta-model is trained using
the predictions of the base models, creating a new training
set from these predictions. The meta-model, another RNN,
learns to optimally weigh and combine the base model pre-
dictions, leading to enhanced overall performance. We argue
that the ensemble learning guided by a video distillation
scheme proves to be highly beneficial in improving cross-
domain face PAD performance. In particular, the proposed
data augmentation technique, which involves using synthetic
images, facilitates the basemodels in learning from the diver-
sity within the data. Temporal inconsistencies or blurriness,
which might otherwise be considered noise, are leveraged
as valuable features for distinguishing genuine images from
spoofed ones. Thus, this approach ensures that the final test
predictions made by the meta-model are robust and reliable.

4.8 Comparisons of Execution Times

We analyze the execution times of the proposed video distil-
lation technique with the previous global motion estimation
methods (Muhammad et al., 2022a, b) and optical flow(Horn
& Schunck, 1981). Table 12 reports the numerical results
in the total number of seconds used to generate the training
samples based on Eq. (4) using alpha values of 0.1 on two
datasets. All these comparison results were reported by using
a MATLAB environment based on a workstation with 3.5
GHz Intel Core i7-5930k and 64 GB RAM. One can see that
the proposed global motion estimation technique is compu-

tationally less expensive than the previous motion estimated
methods reported recently in the literature. This is due to
the fact that the FAST (Rosten & Drummond, 2005) feature
detector is designed with a focus on computational efficiency
and speed, while FREAK (Alahi et al., 2012) is intended to
work in combination with fast feature detectors like FAST,
providing a matching mechanism that is both fast and robust.

4.9 Interpretation of the Deep Neural Network

Interpretation is essential to observe the learning patterns in
data that are important, but there is no clear consensus on
how interpretability should be best defined in the context of
machine learning (Molnar et al., 2020).Although explanation
methods intend to make neural networks more trustworthy
and interpretable, the “black-box” nature of deep neural net-
works can make it challenging to determine precisely why
a particular decision was made. For instance, synthetic sam-
ples provide additional variations of the data and lead to better
interpretability compared to the same model trained without
synthetic samples. This improvement is attributed to the fact
that the motion cues, which are naturally available in the
frame sequences, are “easy to learn” for the model and play
an important role in model optimization. Consequently, the
importance of interpretation is becoming increasingly popu-
lar and has led to useful and promising findings.

In our work, we utilize Gradient-weighted Class Acti-
vation Mapping (denoted as Grad-CAM) (Selvaraju et al.,
2017), Occlusion Sensitivity Maps (denoted as OCC-SEN)
(Zeiler & Fergus, 2014), Gradient Attribution Map using
Guided Backpropagation (denoted as Grad-ATT) (Springen-
berg et al., 2014), and Locally Interpretable Model-Agnostic
Explanations (denoted as LIME) (Ribeiro et al., 2016) to
understand which patterns in the data are deemed important
and contribute to the final decision. These methods enable us
to trust the behavior of the developed deep learning model
and/or further tune the model by observing its interpreta-
tions. Specifically, we extract visualization maps from the
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Table 12 Average execution time in seconds

Dataset Optical flow (Horn & Schunck, 1981) ASGS method (Muhammad et al., 2022b) TSS method (Muhammad et al., 2022a) Ours

CASIA-MFSD 1560 1487 1140 1023

REPLAY-ATTACK1082 1003 780 641

Image Type

Encoded image

Grad-CAM OCC-SEN Grad-ATT

Synthetic sample 
1

Synthetic sample 
2

Synthetic sample 
3

Encoded image

Synthetic sample 
1

Synthetic sample 
2

Synthetic sample 
3

LIME MaskedImage Type

Encoded image

Grad-CAM OCC-SEN Grad-ATT

Synthetic sample 
1

Synthetic sample 
2

Synthetic sample 
3

Encoded image

Synthetic sample 
1

Synthetic sample 
2

Synthetic sample 
3

LIME Masked

Fig. 5 Displaying feature maps through visualization. The types of
images are labelled in the first column. The second column shows the
original encoded and synthetic images. The third column illustrates
the feature maps from Grad-CAM (Selvaraju et al., 2017) while the
fourth column shows the feature maps from occlusion sensitivity maps
(Zeiler & Fergus, 2014). Similarly, the fifth and sixth column visu-

alize the features maps from Gradient Attribution map using Guided
Backpropagation (Springenberg et al., 2014), and locally interpretable
model-agnostic explanations (LIME) (Ribeiro et al., 2016), respec-
tively. The last column shows the masked images obtained from LIME
predictions
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pretrained DenseNet-201 (Huang et al., 2017) convolutional
neural network for all of the above methods in our experi-
ments. In Fig. 5, we visualize diverse synthetic images from
the CASIA-FASD dataset. The first four rows show print
attack images, while the next four rows show replay attack
images. Each visualization method captures the class dis-
criminative region, thanks to the proposed synthetic data
generation scheme that allows the network to use more sub-
tle cues for its correct classification. In particular, the first
row shows that the neurons in the deep convolutional layers
focus on the paper’s texture and hand movement cues. How-
ever, Grad-ATT (Springenberg et al., 2014) interpretation
shows that the model also takes the background as context
to make the prediction. Surprisingly, this issue is eliminated
by the proposed synthetic data generation scheme, where the
second, third, and fourth rows show that the model only con-
siders motion cues, surface edges, and barely observes the
background context.

In the case of a replay attack, the remaining rows show
that the tablet screen and handmovement provide discrimina-
tive information for the model’s prediction. While we cannot
present this for every image of the dataset, we observed that
the mouth region, eye blinking, and head rotation contribute
positively to distinguishing live and spoofed images. Thus,
interpretations from the above methods demonstrate that the

proposed learning model is focusing on the correct features
of the input data, and the model’s decision can be viewed
in a human-understandable way. Moreover, the proposed
synthetic data generation method provides informative RGB
images and helps the model to make the features of spoofed
faces more dispersed, allowing a better class discrimination
to generalize well to the target domain.

4.10 Visualization and Analysis

In order to visually illustrate the individual contributions
of each model, we employ t-SNE (t-Distributed Stochastic
Neighbor Embedding) to analyze the distribution of different
features, as depicted in Fig. 6. Initially, the model is trained
on the 0+C+I source domainswithout incorporating synthetic
samples, resulting in a trivial distribution shown in Fig. 6a. In
this representation, the boundary between live and spoofed
samples is indistinct, and areas of overlap can lead to potential
misclassifications, thereby degrading overall performance.

However, when synthetic samples are included in the
model, as depicted in Fig. 6b, the feature distribution demon-
strates improvement, offering a comparatively clearer sepa-
ration compared to the model that does not include synthetic
samples. This enhancement is attributed to the synthetic sam-
ples aiding themodel in recognizing spatiotemporal artifacts.

Fig. 6 The t-SNE visualization of feature distributions on cross-testing scenarios. a shows the feature distribution of the original encoded video
clips, b reflects the feature distribution of encoded video clips with a subset of synthetic samples, (c) shows the feature distribution of ourmeta-model

Fig. 7 The Receiver Operating Characteristics (ROC) curves. a O&C&I to M, b O&M&I to C, c O&C&M to I, and d I&C&M to O are developed
by plotting the true positive rate (TPR) against the false positive rate (FPR)
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Nonetheless, with the introduction of the meta-model, we
observe a well-structured and compact distribution with a
clearly defined boundary in Fig. 6c. As a result, our proposed
ensemble learning approach exhibits strong generalizability
when applied to unseen target data.

In Fig. 7, we employ ROC curves to visually represent
the model’s ability to differentiate between real and attack
classes. As demonstrated in Fig. 7, the meta-model consis-
tently achieves an AUC (Area Under the Curve) of over 90%
across all datasets, showcasing an impressive level of per-
formance on previously unseen testing sets. The ROC curve
is constructed with True Positive Rate (TPR) plotted against
False Positive Rate (FPR), where FPR is on the x-axis and
TPR is on the y-axis. Specifically, when the meta-model
(ensemble) shifts the curves closer to the top-left corner, it
indicates superior performance in distinguishing between the
classes.

5 Conclusions

In this paper, we addressed the domain generalization issue
in face presentation attack detection (PAD) by proposing a
novel approach that combines data augmentation and deep
ensemble learning. By observingmultiple blurred sequences,
the base models were able to learn sequential patterns of
motion blur and infer how objects move over time. This
data augmentation technique was found to be helpful in
improving the robustness of the models and their ability to
handle variations in motion blur present in real-world sce-
narios. This technique not only enhanced the training data,
but also addressed the issue of black framing that might
arise during feature-based global motion estimation. Based
on the experimental results, the performance of LSTM, BiL-
STM, and GRU still face limitations in certain scenarios. To
improve the overall generalization, we introduced a meta-
model that leverages the strengths of different base models.
This ensemble approach allowed the model to benefit from
the diverse representations learned by individual base mod-
els. Based on the experimental results on seven benchmark
datasets, the meta-model achieves competitive performance
on all datasets.

Finally, the interpretation of the model shows that motion
cues (e.g., temporal information or motion patterns) are
helpful in improving the model’s generalization ability. We
conclude that the effectiveness of a meta-model depends on
the diversity and quality of the base models used. Especially,
if the base models suffer from similar limitations or biases,
the meta-model may not provide significant improvements.
Although the proposed method improves generalization,
we observe two disadvantages. First, since the meta-model
requires an additional training phase using the outputs from
the basemodels, it introduces an extra layer of computational

complexity and cost. Second, the proposed data augmen-
tation may not encode all fine details, especially when the
background is non-static. Therefore, future research should
explore new approaches and enhancements to address these
limitations and advance video summarization methods for
non-static background videos.
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