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We Know Your Preferences in New Cities: Mining

and Modeling the Behavior of Travelers
Rong Xie, Yang Chen, Qinge Xie, Yu Xiao, Xin Wang

Abstract—The trend of globalization motivates people to
travel more often to different cities. In order to provide better
suggestions for travelers, it is important to understand their
preferences for venue types. In this article, we investigate
travelers’ preferences based on the check-in data collected from
a popular Location-Based Social Application called Swarm. We
conduct a thorough analysis of the check-in data to discover the
variation in travelers’ preferences between cities with different
characteristics, and to build a model for predicting the venue
types of travelers’ interests in each city. Our experimental results
demonstrate that the F1-score increases by 0.19 by taking into
account the characteristics of the destination city. Moreover,
our approach outperforms collaborative filtering, a widely used
approach to the design of recommendation systems.

Index Terms—Location-based social applications, Swarm,
Check-in, Venue type, Travelers’ preferences.

I. INTRODUCTION

W ITH the rapid development and the increasing popu-

larity of Location-Based Social Applications (LBSAs),

such as Foursquare’s Swarm [1], [2], Skout [3], and Momo [4],

more and more check-in data become available for analyzing

people’s mobility behavior in urban areas. A check-in contains

information about a visit, including the time and the visited

venue. A massive set of check-in data can reveal users’

preferences for venue types, which facilitates more accurate

recommendations.

In this work, we aim to find out the main impacting factors

of travelers’ 1 preferences for venue types based on a massive

set of check-in data collected from Foursquare’s Swarm app,

a leading LBSA. The information of home city is obtained

from Swarm users’ profiles if available, or inferred from their

check-in history. We call the city to visit as the destination

city. Our dataset contains more than 33 million check-ins of

nearly 20 thousand Swarm users across the world. We achieve

our goal in the following two steps:

First, we investigate the factors that affect travelers’ prefer-

ences for venue types in the destination city by investigating

the questions: Do travelers and local people have similar

preferences? Do a traveler’s preferences for venue types vary

between different cities? When a person is traveling, does she

still have the same preferences as in the home city?

R. Xie, Y. Chen, Q. Xie and X. Wang are with the School of Computer
Science, Fudan University, China, and the Engineering Research Center of
Cyber Security Auditing and Monitoring, Ministry of Education, China and
the State Key Laboratory of Integrated Services Networks, Xidian University,
China; Y. Xiao is with the Department of Communications and Networking,
Aalto University, Finland.

1We define a traveler as a person who has stayed consecutively for 1 to
15 days in a city which is not her home city.

Second, based on the findings of the first step, we build a

model that quantifies the impact from different factors, and

evaluate the model with a real-world dataset collected from

Swarm.

Overall, our key findings and contributions can be summa-

rized as below:

• By performing a thorough analysis of check-ins generated

in New York City (NYC), San Francisco (SF) and Hong

Kong (HK), we find out that a traveler’s preferences

for venue types are more similar with other travelers

rather than local people. Moreover, travelers adapt their

preferences for venue types to the characteristics of the

destination city. Regarding the city characteristics, San

Francisco, for example, is featured as a seaport city,

full of delicious seafood; it is also the home for many

information technology companies, such as Google and

Facebook. To the best of our knowledge, it is the first

work that considers the characteristics of the destination

city in the prediction of travelers’ preferences.

• Our model describes the impacting factors of the variation

in travelers’ preferences between different cities. The

model can be used for predicting travelers’ preferences

for venue types. Our experimental results demonstrate

that the F1-score increases by 0.19 by taking the char-

acteristics of the destination city into account. Moreover,

our approach outperforms collaborative filtering, a widely

used approach to the design of recommendation systems.

We believe our work would facilitate a deeper understanding

of travelers’ behavior in the destination city. Moreover, it can

be used by LBSA service providers to offer better recommen-

dation services.

The rest of this article is structured as follows. We first

review the related work, and introduce the Swarm dataset.

Next, we explain how people’s preferences for venue types

are related to their roles (i.e., local people or travelers) and

the city characteristics. Finally we build a model for predicting

travelers’ preferences before we conclude the whole work.

II. RELATED WORK

Human mobility behavior using social media data has been

widely studied. Zhang et al. [5] investigated urban dynamics

by correlating the location, time and activity information

extracted from geo-tagged tweets and Foursquare check-ins.

Cranshaw et al. [6] studied the dynamics, structure and char-

acteristics of cities by mining Foursquare check-ins using a

clustering method. Additionally, Cho et al. [7] studied human

mobility patterns based on both cell phone location data
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and the check-ins collected from two LBSAs, Gowalla and

Brightkite. They found that humans made periodic movements

that were geographically limited as well as random jumps

correlated with their social networks. Hummel and Hess [8]

identified human movement activities, such as shopping and

traveling, by studying the GPS traces. Atzmueller et al. [9]

studied users’ visiting behavior to performances in an event by

using real-world data collected at a music event in Munich. By

using graph analysis, they found that users and performances

had a strong correlation and users had strong individuality

as well. In this work, we focus on travelers’ preferences for

venue types, taking into account both human mobility and the

characteristics of the destination cities.

Some previous works tried to make venue recommendations

for travelers. Bao et al. [10] designed and implemented a

recommendation system, taking into account the user’s pref-

erences for venue types, opinions of local expertise, and

the user’s current location. They first identified experts who

share similar interests of venue types with the user, and then

applied collaborative filtering to predict the user’s final ratings

for unvisited venues. When selecting experts, they did not

distinguish local people from travelers. While according to our

study, a traveler’s preferences are actually more similar with

other travelers than local people. Pham et al. [11] assumed that

people often visit a set of venues close to each other instead

of a single venue. Accordingly, they proposed to recommend

a region having multiple attractive point-of-interests (POIs) to

travelers. Ference et al. [12], on the other hand, considered

friends’ preferences in addition to the user’s preferences and

geographical proximity. They combined the above three factors

into a CF-based model for recommending venues near the

user’s current location. Moreover, Çelikten et al. [13] proposed

to match similar regions across different cities and to provide

out-of-town recommendations based on users’ preferences in

their home cities. Similarly with previous works, we utilize

the check-ins collected from a popular LBSA for analyzing

the impacting factors of travelers’ preferences. Differently,

we take the city characteristics into account when doing

recommendations. What is more, our focus is placed on the

preferences for venue types rather than the exact venues. To

the best of our knowledge, there is no literature that models

travelers’ preferences for venue types in different destination

cities.

III. DATA COLLECTION

As a representative location-based social application, Swarm

users generate more than 8 million check-ins each day 2,

whereas each user’s check-ins are only visible to the user’s

Swarm friends. From April 15th, 2017 to May 20th, 2017,

we used 10 Swarm accounts owned by our team members to

send friend requests to randomly selected Swarm users. Each

of the requests includes the following message “We are from

Fudan University in China. We add friends in order to do our

research on user behavior modeling. Your data will be used for

research purpose only, and will never be shared with a third

2https://venturebeat.com/2016/03/24/foursquares-swarm-now-lets-you-
make-sense-of-where-youve-been/ accessed on October 10th, 2017

party”. Eventually, 19,484 Swarm users agreed to join our

experiment, and we were able to crawl the complete check-in

history of these users.

We collected in total 33,178,113 check-ins made in 2616

cities in 184 countries. Among these cities, we selected the

check-ins generated in NYC, SF and HK for detailed analysis.

Due to the space limit, we have to choose a few cities to

present in the article. We select NYC, SF and HK based on the

following intuition. First, the number of check-ins generated

by travelers in any selected city ranks top 10 in the world.

Second, the selected cities are all popular metropolis but with

different characteristics: NYC is an international metropolis

with a large number of urban population; SF is the cultural,

commercial, and financial center of North California and a

popular tourist destination; HK is a well-known Asian city

with a different cultural background than NYC and SF. The

similarities and differences between these three cities facilitate

a more complete impact analysis of travelers’ preferences for

venue types. For future work, we plan to take more cities for

comparison. Besides check-ins, our dataset also contains the

users’ demographic information, including gender, home city

and the number of friends.

IV. ANALYSIS OF TRAVELERS’ PREFERENCES

Previous works [10], [12], [13] usually make recommenda-

tions for people based on their visiting history. For example,

they assume that people share similar preferences for venue

types in the past would prefer to visit the same types of venues

in the future, no matter they are local people or travelers in

the same city. To figure out whether the assumption holds,

we conduct a thorough analysis of Swarm check-ins, trying to

find answers to the following questions.

1) Do travelers and local people in the same city share

similar preferences?

2) Do a traveler’s preferences for venue types vary between

different cities?

3) When a person is traveling in other cities, does she still

have the same preferences as in the home city?

A. Spatiotemporal Check-in Distributions

To answer the first question, we compare preferences

between travelers and local people in NYC, SF and HK,

respectively. In case of NYC, our dataset includes 593,557

check-ins of local people and 149,112 check-ins of travelers.

The numbers of check-ins are 167,666 for local people and

26,117 for travelers in SF, and 335,720 for local people and

38,631 for travelers in HK. The travelers in each city come

from all over the world. We investigate the spatiotemporal

mobility patterns of Swarm users based on these check-ins.

Figure 1 describes the distribution of check-ins at different

times of a day in NYC, SF, and HK, respectively. We divide a

day into four even periods, which are 12am-6am, 6am-12pm,

12pm-6pm, and 6pm-12am. We compare the percentages of

check-ins made in each time period between travelers and local

people, and between weekdays and weekends. We find that

both travelers and local people are in general inactive between

12am and 6am, and very active from 1pm to 9pm. Looking
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Fig. 1: Temporal distribution of check-ins in NYC, SF and HK during a week: a) NYC-weekdays; b) SF-weekdays; c) HK-

weekdays; d) NYC-weekends; e) SF-weekends; f) HK-weekends.

TABLE I: Top 20 venue types in HK, NYC and SF

Rank HK Percentages NYC Percentages SF Percentages

1 Asian Restaurants 24.91% Bars 11.91% Bars 18.73%
2 Shopping Malls 21.41% Roads 9.56% Asian Restaurants 13.79%
3 Housing Developments 6.68% Parks 8.17% Offices 9.95%
4 Bars 6.38% Asian Restaurants 7.55% Parks 7.49%
5 Piers 4.94% Offices 7.50% Food & Drink Shops 6.35%
6 Theme Parks 4.79% Food & Drink Shops 7.31% Mexican Restaurants 4.59%
7 Clothing Stores 4.02% Athletics & Sports 5.15% American Restaurants 4.45%
8 Bakeries 3.50% Plazas 4.56% Seafood Restaurants 3.38%
9 Food & Drink Shops 3.30% American Restaurants 4.11% Clothing Stores 3.20%
10 Dessert Shops 3.19% Other Great Outdoors 4.04% Athletics & Sports 3.14%
11 Fast Food Restaurants 2.20% Clothing Stores 3.47% Piers 2.91%
12 Italian Restaurants 2.04% Museums 3.31% Plazas 2.87%
13 Government Buildings 1.91% Delis / Bodegas 3.29% Dessert Shops 2.80%
14 Electronics Stores 1.70% Pharmacies 3.22% Bakeries 2.71%
15 Parks 1.65% Italian Restaurants 2.97% Pizza Places 2.52%
16 Spiritual Centers 1.58% Bakeries 2.85% Museums 2.43%
17 Roads 1.56% Banks 2.83% Burger Joints 2.33%
18 Department Stores 1.52% Bridges 2.77% Italian Restaurants 2.27%
19 Athletics & Sports 1.42% Burger Joints 2.76% Sandwich Places 2.04%
20 Offices 1.31% Pizza Places 2.66% Historic Sites 2.03%

into the details of the temporal distribution, the differences in

the check-in activities between travelers and local people are

summarized below.

Firstly, the number of check-ins made by travelers in NYC

reaches a peak at around 3am on weekdays, when local

people are the least active in generating check-ins. Obviously,

travelers are more involved in the night life activities than local

people during weekdays.

Secondly, on weekdays, in all the three cities, the check-

in percentages between 6am and 12pm of local people are

all higher than that of travelers. The check-in percentages

differences in this time period between local people and

travelers in NYC, SF and HK are 4.37 percent, 10.99 percent

and 0.86 percent, respectively. This is because local people

go to work in the morning and start publishing check-ins for

example on the way to work.

Thirdly, on weekdays, in all the three cities, travelers’

check-ins distribute more evenly than local people’s between

9am and 7pm. Comparing the maximum percentage of check-

ins in each hour with the minimum one, the average value

of the differences of three cities in case of traveler is 3.95

percent, lower than that of local people, which is 5.22 percent.

It is because local people are relatively more active during the

break at noon and after work (around 6pm).

Finally, although the temporal pattern of check-in activity

varies between weekdays and weekends for both travelers and

local people, the difference between travelers and local people

during weekends is small since they are all experiencing the
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Fig. 2: Spatial distribution of check-ins in NYC, SF and HK: a) NYC-travelers; b) NYC-locals; c) SF-travelers; d) SF-locals;

e) HK-travelers; f) HK-locals.
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leisure time.

We visualize the spatial distribution of check-ins in the

form of heat maps in Fig. 2. Darker colors represent higher

percentages of check-ins made in the corresponding areas. We

can see the difference between travelers and local people. For

example, travelers’ check-ins in NYC are highly concentrated

in Midtown, lower Manhattan and Utica Avenue in Brooklyn,

while local people’s check-ins are more distributed across the

areas like Manhattan, Long Island City, and Forrest Hills.

In SF, travelers make most check-ins in tourist attractions

(the north-eastern part of SF), such as Alamo Square, Union

Square, and Fisherman’s Wharf. However, local people prefer

to make check-ins at supermarkets, apartments, coffee shops,

and nightclubs in their daily life. In HK, travelers prefer to

check in at large shopping malls, such as Elements, as well

as tourist attractions, such as Mongkok and Victoria Peak.

In contrast, local people there often perform check-ins at

bus stations. Overall, travelers prefer to perform check-ins in

tourist attractions such as Victoria Peak in HK and venues

having distinctive features such as Manhattan in NYC, whereas

local people have more check-ins in places they often visit in

their daily life, such as supermarkets.

To highlight the difference in the spatial distribution, we

calculate the Spearman’s rank correlation coefficient of two

20-dimensional vectors, Vlocal and Vtraveler, for each city.

Each dimension in a vector refers to the percentage of check-

ins made by local people or travelers in the corresponding type

of venues. The correlation coefficient measures the similarity

of the popularity rank of the venue types between local people

and travelers. Its value is between −1 and 1, and the closer to

0 the less similar. The correlation coefficients between local

people and travelers in NYC, SF and HK are 0.36, 0.24 and

0.17, respectively. The small values of correlation coefficients

clearly reflect the significant differences in preferences for

venue types between local people and travelers.

In summary, check-ins of travelers and local people follow

different temporal and spatial distributions. Regrading the

venue types, travelers prefer tourist attractions, shopping malls,

and other venues having distinctive features, whereas local

people would be more likely to make check-ins at the places

they visit regularly, such as supermarkets, coffee shops, and

bus stops.

B. Variation in Travelers’ Preferences

To figure out whether a traveler’s preferences vary between

different cities, we compare travelers’ preferences for venue

types in NYC, SF and HK. Table I lists the 20 most popular

venue types according to the percentage of check-ins made in

each venue type by travelers in each of the three cities. 3.

3Swarm defines five levels of venue types from the most coarse-grained
one to the most fine-grained one. For instance, “Food” is a level one category,
while “American Restaurants” is a level two category belonging to the “ Food”
category. The venue type recorded by each check-in could belong to any of
the five levels. To standardize the level of check-in venues, we first calculate
the distribution of all check-ins among the five levels and find out that 74
percent of them use level two venue types. Therefore, we merge all venues
from level three to level five into level two and discard the check-ins at level
one venues (covering 0.2 percent of the whole set).
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Fig. 3: Distribution of normalized users’ cross-city preference

resemblance

We find out that the characteristics of the city impact the

ranking of venue types there. For example, “Shopping Malls”

ranks the second most popular venue type in HK, whereas it

does not appear in the list of the other two cities. It seems that

people prefer to travel to HK for shopping, as HK is famous

of being “the paradise of shopping”. Similarly, “Banks” is

included in the list of NYC, due to NYC’s role of financial

center. Meanwhile, “Roads” and “Parks” rank high in the list

of NYC, because many important commercial streets there

belongs to “Roads”, such as Fifth Avenue, and Utica Avenue.

It implies that travelers prefer to go to such commercial streets

for sightseeing or shopping. Also, central park is a popular

attraction in NYC. In case of SF, there are more check-ins in

“Historic Sites” than in HK and NYC. Transamerica Pyramid,

Fisherman’s Wharf, and Coit Tower are all famous historic

sites in SF. The high rank of “Piers” in HK and SF reflects the

characteristics of seaport cities. Besides, preferred restaurants

reflect the demographic profiling of the cities. Specifically,

“Asian Restaurants” ranks high in all the three cities. HK is

an Asian city so it is not a surprise that Asian food is popular

there. For NYC and SF, the large number of Asian population

drives the popularity of Asian food. In addition, “American

Restaurants” ranks high in both of the two American cities.

“Seafood Restaurant” is one of the most popular restaurant

types in SF showing the advantage of its location.

Based on our observation, we can conclude that the charac-

teristics of a city impact travelers’ preferences. In other words,

travelers adapt their preferences to the characteristics of the

destination city. Therefore, it is important to take the city

characteristics into account when trying to understand travel-

ers’ preferences for venue types. Also, the city characteristics

could be reflected by travelers’ preferences there.

C. The Individual User’s Cross-City Preferences

In this subsection, we answer the third question, that is

whether an individual changes her preferences when she
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travels to other cities 4.

To compare a user’s preferences in the home city h

with that in another chosen city o, we define a cross-city

preference resemblance metric Resemblance(uh, uo). It is

a variant of the user resemblance calculation approach pro-

posed in [10]. The parameters uh and uo represent the user

u’s preferences in the home city h and the chosen city

o, respectively. We extract the resemblance from the venue

type information in the user’s visit history, and calculate

Resemblance(uh, uo) based on the following two metrics:

(1) User preference similarity Similarity(uh, uo); (2) User

preference entropy Entropy(uc). Here uc represents the user

u’s preferences in city c. Resemblance(uh, uo) is defined as:

Resemblance(uh, uo) = Similarity(uh,uo)
1+|Entropy(uh)−Entropy(uo)|

. The

value of Resemblance(uh, uo) would be high, if the user

shows similar preferences in these two cities and the difference

in the preference diversity (entropy) is small between these

cities.

1) Calculation of Similarity(uh, uo): Firstly, we calculate

two groups of term frequency - inverse document frequency

(TF-IDF) values [14] for city h and o, respectively. Each

element in one group is the TF-IDF value of a venue type

that the user has visited in the city. We denote a user u’s

check-in percentage of a venue type t as TF (u, t) and denote

the percentage of people who have visited venue type t in

the same city as IDF (t). Then the user u’s TF-IDF value

for venue type t in this city would be
TF (u,t)
IDF (t) . This value

represents the degree of a user’s prominent preferences for

that venue type. Then we calculate Similarity(uh, uo). For

all the venue types in city h and o, we firstly select the smaller

TF-IDF value from the two TF-IDF values of the same venue

type in the two cities. Then we sum up all the selected smaller

TF-IDF values to get Similarity(uh, uo).

2) Calculation of Entropy(uc): We denote a user u’s

check-in percentage of venue type t in city c as p(uc, t) and

denote the venue type set in city c as T . Then the Entropy(uc)
is calculated as −

∑
t∈T p(uc, t) ˙log p(uc, t). Entropy is able to

capture the diversity of a user’s preferences in a city.

3) Calculation of Resemblance(uh, uo): We divide the

Similarity(uh, uo) by the absolute value of the difference

in the user preference entropy between city h and city o. To

prevent the denominator from being 0, we add an extra 1 to

it as in [10]. Furthermore, to make the value more expressive,

we normalize each Resemblance(uh, uo) by dividing it by

the maximal value of Resemblance(uh, uo).

Figure 3 is the cumulative distribution function (CDF)

of the normalized cross-city preference resemblance

Resemblance(uh, uo). The solid line shows the distribution

of users’ average cross-city preference resemblance. Each

value of it is calculated as the sum of the user’s cross-city

preference resemblance between home city and one chosen

city divided by the number of the total chosen cities. We

choose all the cities that the user has stayed consecutively

for 1 to 15 days. The dash line shows the distribution of

4Same to the previous subsection, we discard the check-ins that provide
only the level one venue types and merge venue types of all the other levels
into the level two.

users’ largest cross-city preference resemblance. More than

95 percent of users have an average preference resemblance

smaller than 0.2. More than 75 percent of users have the

largest preference resemblance less than 0.2. It shows the

significant differences between users’ preferences in the home

city and in the other cities. In other words, people prefer

different venue types when they travel to a different city.

In conclusion, travelers and local people show different

preferences in the same city, and the characteristics of each city

impact travelers’ preferences there. Moreover, an individual’s

preferences for venue types in her home city are different

from that in the destination city. Therefore, we should take

the destination city’s characteristics into consideration when

making recommendations of venue types for travelers. Also,

we should differentiate local people from travelers when trying

to find similar users.

V. CITY CHARACTERISTICS AND TRAVELERS’

PREFERENCES

To provide more accurate predictions of travelers’ prefer-

ences for venue types in different cities, we build a model

that quantifies the impact of different factors on a traveler’s

preferences for venue types. The model can be used for

predicting whether the traveler would visit certain venue types

(e.g. the 10 most popular venue types chosen by travelers) in

the destination city. The variables of the model are defined

based on three categories of features.

First, demographic features of the traveler, including gender,

home city, and home country. The feature value is set to none

if the traveler does not provide the information. We encode

each feature value using one-hot encoding, where one-hot is

a group of bits with only one single high (1) bit and all the

others low (0).

Second, features of user-generated contents, including the

number of the traveler’s friends in the Swarm network, the to-

tal number of check-ins made by the traveler, and the traveler’s

TF-IDF values of each visited venue type in her home city. The

TF-IDF values represent the traveler’s prominent preferences

for venue types in her home city.

Third, the features that represent the characteristics of

the destination city from travelers’ perspectives. As travelers

may have different opinions about a city’s characteristics,

depending on their personal interests, we propose to apply K-

means clustering to classify travelers in the same destination

city by their preferences for venue types into K groups, and

to summarize the characteristics of the destination city from

each group’s perspective. The travelers within the same group

are expected to have common interests. The features we use

are the average visit frequencies (excluding the check-in data

of the traveler being predicted) of each group for each venue

type in the destination city.

The value of K for each city is selected by the following

intuition. First, the value of K should be smaller than 4 percent

of the number of travelers in the city. The numbers of travelers

in NYC, SF and HK are 1348, 510 and 630, respectively.

Second, the value of K affects the results of city characteristic

analysis, and further the training of the model for preference
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TABLE II: Comparison of prediction performance. The table compares the precision, recall and F1-score of the models with

and without the feature of city characteristics. The column ‘Gain’ shows the F1-score’s improvement after using this feature.

City K Algorithm Parameters Recall Precision F1-score Gain

NYC 19

XGBoost 150 trees, max depth=5 0.81 / 0.76 0.67 / 0.56 0.73 / 0.64 0.09
Random Forest 150 trees, 60 features/tree, max depth=12 0.72 / 0.58 0.70 / 0.61 0.70 / 0.59 0.11

Decision Tree(CART) criterion=gini, max depth=10 0.68 / 0.56 0.64 / 0.55 0.66 / 0.55 0.11
Naive Bayes - 0.69 / 0.58 0.59 / 0.54 0.63 / 0.55 0.08

SVM kernel=rbf, cost parameter C=8, γ = 0.0003 0.56 / 0.51 0.55 / 0.51 0.55 / 0.51 0.04

SF 15

XGBoost 150 trees, max depth=5 0.82 / 0.73 0.67 / 0.51 0.73 / 0.59 0.14
Random Forest 150 trees, 59 features/tree, max depth=10 0.64 / 0.43 0.69 / 0.57 0.66 / 0.47 0.19

Decision Tree(CART) criterion=gini, max depth=6 0.69 / 0.57 0.63 / 0.48 0.65 / 0.51 0.14
Naive Bayes - 0.71 / 0.58 0.52 / 0.44 0.58 / 0.48 0.10

SVM kernel=rbf, cost parameter C=2, γ = 0.0003 0.54 / 0.44 0.53 / 0.45 0.52 / 0.44 0.08

HK 13

XGBoost 150 trees, max depth=4 0.79 / 0.71 0.74 / 0.60 0.76 / 0.64 0.12
Random Forest 150 trees, 59 features/tree, max depth=10 0.72 / 0.54 0.77 / 0.66 0.74 / 0.56 0.18

Decision Tree(CART) criterion=gini, max depth=7 0.75 / 0.59 0.66 / 0.57 0.70 / 0.57 0.13
Naive Bayes - 0.67 / 0.56 0.61 / 0.55 0.62 / 0.53 0.09

SVM kernel=rbf, cost parameter C=2, γ = 0.0003 0.56 / 0.50 0.60 / 0.54 0.58 / 0.51 0.07
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Fig. 4: Prediction results of top N venue types in NYC, SF and HK: a) NYC F1-score; b) SF F1-score; c) HK F1-score.

prediction. Thus, we select the value of K that corresponds to

the model with the best prediction performance.

For each city, we randomly select 80 percent of travelers

and their data for training, using the rest for testing, and train

a model for each city, respectively. In details, we choose the 10

most popular venue types among travelers in the destination

city, and describe the travelers’ previous visits to these venue

types in the city with a 10-element tuple. Each element indi-

cates whether the traveler has published any check-in for the

corresponding venue type. The modeling is then transformed

into a multi-label classification problem, with each predicted

venue type as a label and the prediction of each label as

a binary classification problem. We train the classifier using

five classic machine learning algorithms, including XGBoost,

Random Forest, Decision Tree, Naive Bayes, and SVM. In

particular, XGBoost is an emerging scalable tree boosting

system, which has been widely used in machine learning

contests. We measure the prediction performance of each label

using precision, recall and F1-score. Precision is the fraction

of users predicted to have been to the venue type that really

have been there. Recall is the fraction of users having been

to that venue type that are correctly predicted. F1-score is the

harmonic mean of precision and recall. The results shown in

Table II and Fig. 4 are the average over 10 labels.

We compare the prediction performance of the model with

and without using the characteristics of the destination city in

Table II. Among all the machine learning algorithms, XGBoost

achieves the best performance. The highest F1-score is 0.76,

achieved in case of HK. The F1-score increases in all the

three cases by taking into account the city characteristics. The

highest gain is obtained in case of SF which is 0.19. In general,

we observe higher gains in SF and HK than in NYC. These

findings are consistent with the results shown in Fig. 4, which

shows the average F1-score of the N most popular venue types

among travelers in the city.

We also compare our approach with Collaborative Filtering

(CF). CF is a method of predicting a user’s interests based

on the preferences of other users. It has been widely used

for location recommendations [10], [12]. We implemented CF

using a classic algorithm called Probabilistic Matrix Factor-

ization (PMF) [15]. The input is the “user - venue types”

matrix built from travelers’ complete visit history, excluding

the visit history in the destination city. Element rij in the

matrix represents the number of visits that user i has made to

any venue belonging to type j. The output is another matrix

in which element sij is 1 or 0, representing whether user i

would go to any venue of type j or not in the destination

city. Then we calculate the average of precisions, recalls and

F1-scores of the 10 most popular venue types (the 10 labels).

The average F1-scores for NYC, SF and HK are 0.65, 0.59

and 0.64, respectively, as shown in Fig. 4. These F1-scores are

much lower than those of our approach taking into account

the characteristics of the destination city, but are close to the

results without using the characteristics.



IEEE COMMUNICATIONS MAGAZINE 8

To sum up, city characteristics affect travelers’ preferences

for venue types in the destination city, and our approach

outperforms CF.

VI. CONCLUSION AND FUTURE WORK

In this work, we analyze travelers’ preferences for venue

types based on the check-ins of Swarm users. We find out

that people tend to have different preferences when they

are traveling outside their home cities, and travelers do not

necessarily share the same preferences with local people. Our

study also shows that travelers adapt their preferences to the

characteristics of their destinations. By taking into account

these characteristics in the prediction of travelers’ preferences,

the F1-score of our model increases by 0.19.

This work deepens the understanding of travelers’ prefer-

ences for venue types in different cities. Our results can help

LBSA service providers to develop more accurate recommen-

dations for travelers, and city governors to make their city

more traveler friendly. In the future, we will extend our work

to cover more cities, and will try to apply our solution through

collaboration with LBSA service providers and city governors.
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