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Abstract
Digital twins offer a new and exciting framework that has recently attracted significant interest in fields such as oncology, immunology, 
and cardiology. The basic idea of a digital twin is to combine simulation and learning to create a virtual model of a physical object. In this 
paper, we explore how the concept of digital twins can be generalized into a broader, overarching field. From a theoretical standpoint, this 
generalization is achieved by recognizing that the duality of a digital twin fundamentally connects complexity science with data science, 
leading to the emergence of complexity data science as a synthesis of the two. We examine the broader implications of this field, including 
its historical roots, challenges, and opportunities.
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Introduction
Complex systems have been studied for decades, but an essay by 
Warren Weaver (1) from 1948 is often credited with outlining a vi
sion for the field, which he summarized as the study of “organized 
complexity.” Complex systems denote particular systems or phe
nomena characterized by a multitude of interconnected elements 
or agents that interact, leading to the emergence of distinctive 
properties and behaviors. A prominent example is Boolean net
works, which were introduced as a simplified model for gene regu
lation (2). However, many complex systems have been studied 
across multiple domains, including ecosystems, human behavior, 
and economic markets (3–6).

In recent years, complex systems have once again come into 
the center of interest, particularly as part of digital twin research. 
While the concept of a digital twin originated in manufacturing 
(7), it has only recently been proposed for other areas including 
medicine, health, and epidemiology. Importantly, these domains 
have a long history of complex systems research preceding the ad
vent of digital twins (8–11).

In this paper, we extend the concept of a digital twin. First, we 
demonstrate that, from a theoretical perspective, a digital twin in
tegrates concepts from complexity science and data science. 
Second, we argue that a digital twin is merely one instance of 
the broader potential enabled by this integration. To highlight 
the broader possibilities, we introduce the term “complexity 
data science,” denoting a new field, and discuss its various impli
cations. Third, from the newly gained perspective of complexity 
data science, we look retrospectively back and discuss similarities 
to complex adaptive systems (CAS).

Digital twins
The underlying idea behind a digital twin is often stated in simpli
fied form as follows (12): a digital twin is an ideal concept a digital 
representation of a real-world object that closely mirrors its phys
ical counterpart. This digital representation takes the form of a 
computer-based simulation model, while the real-world object 
can encompass systems or processes with a physical presence, 
such as an engine, biological cell, or economic process. The first 
applications of this concept can be found in manufacturing and 
engineering (7, 13, 14).

While digital twins originated in manufacturing, the concept has 
recently gained significant interest in various scientific fields, includ
ing health-related concerns, climate change mitigation, urban devel
opment, economic regulation, and sustainability (15–17). Although 
the benefits of digital twins in these newer fields are yet to be fully ex
plored, the concept is generally met with high expectations.

From a theoretical perspective, a digital twin combines two key 
features that set it apart from other approaches: simulation and 
learning (18). In the following sections, we discuss both of these 
components in detail.

Simulation
For obtaining a digital representation of a real-word object, simu
lations are needed to establish mathematical models. These 
simulation models emulate crucial aspects of the physical twin, 
capturing relevant dynamic behavior under different conditions. 
This necessitates a functional description in a holistic rather 
than a reductionistic manner, often involving different forms of 
complex networks.
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A scientometric analysis of published articles on digital twin re
search in Emmert-Streib et al. (19) demonstrated that there are 2 dis
tinct groups of application fields, with the onset of the former 
preceding the latter by several years. The first group comprises ap
plications in manufacturing and engineering, while the second 
group includes fields such as medicine, immunology, and epidemi
ology. Regarding the establishment of simulation models, it is im
portant to note that digital twin simulation models for 
manufacturing and engineering are based on descriptions of the 
mechanical problem and are often related to physical theory. In 
contrast, our understanding of problems in biology, medicine, and 
related fields is limited compared with physical theory. Therefore, 
approximation models based on dynamical and complex systems 
are used in these fields, providing simplified descriptions that are 
still useful for applications. Despite the large number of different 
approaches, ranging from ordinary differential equations to agent- 
based models, their commonality is to provide mechanistic models.

Although simulations and modeling of biological or epidemiologic
al problems have been used before the advent of digital twins, the 
next feature discussed in the following section sets digital twins apart.

Learning
A fundamental issue with any simulation model is to ensure its 
correctness, which requires knowledge of the structure and pa
rameters of the model. Traditionally, the structure and parame
ters are derived from experimental observations, and once 
determined, a fixed model is used. This places a huge burden on 
this step as everything that follows depends on its accuracy.

Digital twins work differently. Instead of using a one-step pro
cess, as described previously, they employ a continuous learning 
schema within which their parameters or structure are iteratively 
updated over time. This requires new data from the physical ob
ject to be available continuously or frequently, allowing the digital 
twin model to be continuously calibrated. As a result, the quality 
of a digital twin may be poor initially, but it can improve signifi
cantly as more data become available over time.

Together, the combination of simulation and learning distin
guishes digital twins from ordinary simulation models, explaining 
the tremendous interest in digital twins across scientific fields.

Exploration of “what-if” scenarios
A consequence of the mechanistic nature of digital twins is that 
their models allow the exploration of “what-if” scenarios. This 
means that digital twins enable to examine the ramifications of 
virtual interventions performed on the structure of a model. 
Consequently, this offers the ability to gain insights into the ef
fects of interventions. Examples of such interventions and their 
effects on problems could correspond to the following (see Fig. 1): 

• Climate research: transitioning to alternative energy sources 
and the effect on climate and CO2 emissions

• Epidemiology: effect of lockdown and social distancing on the 
epidemic spread of a virus

• Economics: change in taxation on the gross domestic product 
of a country.

• Medicine: change of medications and the effect on the well- 
being of patients

• Urban development: influence of city planning on traffic flow 
and traffic accidents

It is important to highlight that these interventions are “virtual” 
because they are only performed on the model, that is the digital 

twin, and not in the real world. This underscores one of the key 
benefits of digital twins compared with conventional prediction 
models, which do not allow such interventions. In addition, this 
approach is resource-efficient, enabling cost- and time-efficient 
investigation of the effects of interventions.

On a related note, we would like to highlight that “what-if” scen
arios are similar to counterfactual explanations, a topic of growing 
interest within the explainable artificial intelligence (AI) community 
(20, 21). Specifically, counterfactual explanations help us to under
stand “what could have happened if the input to a model had 
been altered in a specific way” (22). This approach is crucial for de
veloping reliable machine learning models, especially in applica
tions where decisions need to be explained, such as in healthcare, 
law, finance, or medicine. A notable example of counterfactual ex
planations in biomedicine can be found in Metsch et al. (23).

Complexity data science
So far, we have focused closely on digital twins and two of their 
key functionalities, namely simulation and learning. Now, we 
move beyond the boundaries set by this framework. By adopting 
a theoretical perspective, we can see that the complex systems 
underlying simulations are connected to complexity science 
(24), while learning is deeply rooted in data science (25).

Complexity science is a broad multidisciplinary field that ex
plores complex phenomena in various domains, including physics, 
biology, sociology, economics, and more (24, 26). Its primary focus is 
to unravel the fundamental principles, recurring patterns, and 
emergent behaviors inherent in complex systems. Complexity sci
ence strives to formulate overarching theories and frameworks 
that can be applied to a wide spectrum of complex systems, irre
spective of their specific characteristics or domains. Since their in
ception, complexity science and the concept of complexity have 
defied a straightforward definition. Instead, they are better under
stood by identifying common themes, underlying threads, and 
the tools used in their study (27, 28). It should be noted that this 
multidisciplinary field draws on a range of mathematical ap
proaches, including stochastic processes, information theory, net
work theory, and statistical physics, illustrating the diverse and 
multifaceted nature of the discipline.

In contrast, data science is a field focused on extracting knowl
edge and insights from data using various techniques from statis
tics, machine learning, and AI (29). It involves the collection, 
processing, and analysis of large sets of data to identify patterns, 
make predictions, and inform decision making. Data science lev
erages machine learning algorithms, statistical models, and com
putational tools to handle complex data and derive actionable 
insights, focusing on practical applications and solutions to real- 
world problems across diverse areas.

The combination of simulation and learning inherent of digital 
twins has significant potential that extends beyond traditional 
digital twins. This integration could include specialized variations 
or extensions of digital twins that, while not strictly adhering to 
their foundational principles, still effectively merge simulation 
and learning. Fundamentally, the fusion of complexity science 
and data science can be termed “complexity data science,” repre
senting the rise of a new field.

In the following, we discuss two possible applications of com
plexity data science that are not directly related to digital twins.

Explainable AI
Deep learning methods based on neural networks with many hid
den layers are currently among the best and most widely used 
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techniques for numerous prediction tasks, such as classification, 
regression, and image processing (30–33). However, deep neural 
networks have been criticized for their opaqueness, as these mod
els lack interpretability. For this reason, such approaches are 
called black-box models (34). This is a particular problem in appli
cation domains like medicine and healthcare, in which under
standing abstract predictions and decisions is desirable and 
necessary due to policy regulations (35, 36). Commonly, this issue 
is summarized under the term “explainable AI” (37, 38).

While complexity data science cannot directly convert deep 
neural networks into explainable models, it can offer a systematic 
approach to circumvent this problem. By employing a dynamical 
system as a mechanistic or phenomenological model, one can 
calibrate it to align with a deep neural network for a specific 
task (see Fig. 2). This involves adjusting the parameters of the dy
namical system through an optimization mechanism to match 
the predictions of the deep neural network. Practically, this could 
be achieved with physics-informed neural networks (39, 40), 
which estimate such parameters using deep learning with modi
fied cost functions that allow for consideration of constraints set 
by the dynamical system itself. The quality of this calibration 
can be evaluated using task-specific error scores. For example, 
for a regression task, scores such as mean squared error or R2 (co
efficient of determination) can be used, and for a classification 
task, accuracy or the F1 score can be applied.

After determining the calibration score, it can be evaluated to 
see if the accuracy of the calibrated model is sufficient considering 
task-specific criteria. If it is, then the mechanistic model can serve 
as a surrogate for the prediction behavior of the deep neural net
work, with the added benefit of being interpretable. Depending on 

the characteristics of the data and the relationships among the 
features, the quality of the model’s interpretations can range 
from associations to causal relations. It is clear that causal rela
tions are most desirable; however, even association networks 
underlying such models may hold value by providing a broad 
view of intricate dynamical behavior, especially, in case of very 
complex problems. Examples for the utility of association net
works can be found in studies about gene regulations (41) and in
vestigations of the organizational structure of the brain (42).

Leveraging interpretable models derived from complexity sci
ence allows us to move away from the opaque black-box models 
commonly found in data science, such as deep neural networks, 
toward more explainable solutions. This example illustrates 
how a complexity data science approach can enhance conven
tional data science methods by addressing the challenges associ
ated with explainable AI.

Online complex systems
In data science, the form of learning where new data becomes 
available in a sequential order and is used to continuously im
prove a prediction model is commonly referred to as online learn
ing or incremental learning (43). Although this is not the most 
prevalent form of learning due to the requirement of needing add
itional data obtained over time, there are situations where such 
data are available. Examples are healthcare monitoring, annual 
gross domestic products of countries, or stock price predictions.

For complex systems, the inclusion of new data obtained sequen
tially can imply time-dependent parameters or a changing structure, 
as new data may lead to updating these parameters. Agent-based 

Fig. 1. Digital twins allow the study of “what-if” scenarios corresponding to virtual interventions of the underlying physical twin. Shown are 5 application 
domains in digital twin space: climate research, city planning, healthcare, economics, and epidemiology.
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models are generally useful for modeling complex systems with 
time-dependent parameters and evolving network structures, espe
cially when individual heterogeneity and adaptive behaviors are im
portant. It is crucial to emphasize that the time scale of the 
sequentially observed data is within the life cycle of the modeled en
tity, such as a patient or cell, rather than spanning evolutionary time 
scales over many generations. This means one can use general opti
mization mechanisms for parameter updates, as these do not need to 
be consistent with evolutionary mechanisms, such as simulating 
mutations. Hence, general learning algorithms from machine learn
ing or statistics can be utilized. This leads to online complex systems 
with more versatile capabilities than traditional complex systems for 
modeling non-stationary and nonlinear processes.

It is important to note that for stationary processes, online, 
complex systems should improve, as more data means larger 
sample sizes available for learning. This enables increased flexi
bility to allow for the eventual convergence of the model toward 
the desired solution. As a side note, this touches upon philosoph
ical considerations in science, particularly the challenge of induc
tion dating back to David Hume (44).

Complexity of deep learning
Another application of complexity data science could be in enhan
cing our understanding of learning in deep neural networks. In 
this context, learning refers to the optimization of parameters ac
cording to specific rules. Interestingly, despite being biologically 
inspired, learning in neural networks is usually not conducted 
via neurobiological Hebbian learning, but rather through 

variations of the mathematical stochastic gradient descent. Still, 
there is a great potential to expand our understanding of deep 
learning by method transfer from other areas.

For instance, complexity measures based on entropy and infor
mation can provide insights into the working mechanisms of deep 
learning. A particular approach is provided by the information bottle
neck principle (45, 46). The information bottleneck framework allows 
studying the trade-off between preserving relevant information and 
compressing or discarding irrelevant information during learning. 
This makes the information flow of the learning dynamics through
out the different layers of a deep neural network quantifiable. 
Consequently, this could be utilized to improve parameter optimiza
tion itself, thereby enhancing prediction capabilities.

Historic traces
At this point, we would like to revisit previous findings or instan
ces resembling complexity data science principles or applications. 
An example of this is Vemuri’s classic book, Modeling of Complex 
Systems: An Introduction, published in 1978 (47). Although the 
primary use of complex systems is the qualitative description of 
dynamical behavior, this book contains a chapter titled 
“Forecasting,” which provides an in-depth discussion and presen
tation of statistical analysis methods. This is remarkable because 
it underscores Vemuri’s early recognition of the significance of 
forecasting, or prediction, in conjunction with complex systems.

Another connection to an early study from 1986 can be found in 
Farmer et al. (48). This work modeled the immune system simula
tion as a dynamical system based on coupled differential 

Fig. 2. Explainable artificial intelligence (AI). By calibrating a mechanistic or phenomenological model to a black-box prediction model, one can utilize 
such a model as surrogate for gaining interpretable insights into the underlying processes, while retaining the predictive power of the original black-box 
model.
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equations. Importantly, the model utilizes a learning mechanism 
via genetic operations that functions on a time scale of days, not 
generations. Notably, the similarity between this model and clas
sifier systems—a general-purpose method for analyzing data—in
troduced by Holland (49) was highlighted and comparatively 
discussed. Recognition of such a connection is important as the 
communities investigating adaptation in natural and learning in 
artificial systems are largely separated.

The simulation model of the immune system and similar ap
proaches are widely referred to as CAS, which dynamically re
spond and adapt to environmental changes (50). Although there 
is no universally accepted formal definition of a CAS, they are 
commonly described as systems exhibiting emergent behavior, 
adaptability, and self-organization (51). In the last 30 years, CAS 
has been extensively studied in biology, ecology, and immun
ology, indicating their relevance to natural systems. To a lesser 
extent, human behavior has also been studied, with notable appli
cations in economics (52, 53).

It is important to emphasize that CAS provide primarily a quali
tative understanding, rather than detailed quantitative predic
tions. This distinguishes them from digital twins and complexity 
data science because accurate numerical predictions are essential 
to make a real-world impact. This includes also the quantitative 

evaluation and the testing of predictions to judge the accuracy 
and quality of such models.

Challenges and opportunities
The capabilities of complexity data science are domain independ
ent; however, different applications tend to favor specific model 
types. For example, models in systems biology are largely based 
on differential equations (54), while agent-based approaches 
keep gaining traction in economic models (55). The differing char
acteristics of these models may affect their calibration, such as 
finding explainable models or estimating parameters. Therefore, 
these differences need to be systematically studied through sub
sequent case studies to develop recommendations for applica
tions and optimal experimental design.

Another challenge is the education of future researchers. For 
this an integrated curriculum for complexity data science is 
needed (see Fig. 3). Currently, degree programs in data science, 
machine learning, AI, and statistics are mostly within computer 
science departments. Meanwhile, programs in complexity science 
and complex systems are typically found in physics or applied 
mathematics departments. This means that there is a well- 
established infrastructure providing the necessary education for 

Fig. 3. Education in complexity data science involves integrating the complementary fields of complexity science and data science. NLP = natural 
language processing.
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a professional career for the two branches of complexity data sci
ence. Unfortunately, the overlap among those branches is severe
ly underdeveloped, which can lead to a variety of deficits. 
Succinctly, the most significant ones are the following: 

• Deficits in data science education: lack of a dynamic view on 
processes

• Deficits in complexity science education: lack of statistical 
thinking

While data science highlights the importance of data, it typically 
overlooks the processes responsible for generating that data. For in
stance, data generation is often oversimplified, portrayed merely as 
drawing samples from a distribution. However, this simplistic view 
lacks the depth provided by understanding systems being governed 
by differential equations or agent-based modeling, which offer 
mechanistic or phenomenological insights. Such approaches pro
vide a dynamic perspective on natural, social, or technological proc
esses underlying the data. Additionally, the concepts like 
emergence, hierarchy, or self-organization necessitate this dynam
ic view for comprehensive understanding.

The complexity science often neglects the statistical complex
ities and uncertainties inherent in the systems it studies. While it 
provides valuable insights into emergent phenomena and system 
dynamics, it does not fully account for real-world data’s statistical 
variability and uncertainties. By “lack of statistical thinking,” we 
mean a deficiency in understanding quantitative approaches for 
quantifying uncertainties in numerical predictions. This includes 
measurement errors in data and uncertainties in estimated 
parameters.

Overcoming these academic silos is not straightforward be
cause education is, to this day, department based, and a transdis
ciplinary degree program faces administrative challenges. 
Hopefully, the prospects of the added value provided by complex
ity data science are recognized to establish such a much needed 
program.

Conclusion
In our increasingly complex world, we must constantly enhance 
our problem-solving tools to efficiently address emerging chal
lenges. The present moment calls for expanding our capabilities 
through integrating complexity science and data science into a 
field we call complexity data science. This interdisciplinary ap
proach holds the potential to provide novel insights and capabil
ities, pushing the boundaries of what can be achieved in 
domains that traditionally focus on either simulation or learning.
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