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Abstract

Timings of human activities are marked by circadian clocks which in turn are entrained to dif-

ferent environmental signals. In an urban environment the presence of artificial lighting and

various social cues tend to disrupt the natural entrainment with the sunlight. However, it is

not completely understood to what extent this is the case. Here we exploit the large-scale

data analysis techniques to study the mobile phone calling activity of people in large cities to

infer the dynamics of urban daily rhythms. From the calling patterns of about 1,000,000

users spread over different cities but lying inside the same time-zone, we show that the

onset and termination of the calling activity synchronizes with the east-west progression of

the sun. We also find that the onset and termination of the calling activity of users follows a

yearly dynamics, varying across seasons, and that its timings are entrained to solar mid-

night. Furthermore, we show that the average mid-sleep time of people living in urban areas

depends on the age and gender of each cohort as a result of biological and social factors.

Author summary

For humans living in urban areas, the modern daily life is very different from that of peo-

ple who lived in ancient times, from which todays’ societies evolved. Mainly due to the

availability of artificial lighting, modern humans have been able to modify their natural

daily cycles. In addition, social rules, like those related to work and schooling, tend to

require specific schedules for the daily activities. However, it is not fully understood to

what extent the seasonal changes in sunrise and sunset times and the length of daylight

could influence the timings of these activities. In this study, we use a new approach to

describe the dynamics of human resting periods in terms of mobile phone calling activity,

showing that the onset and termination of the resting pattern of urban humans follow the

east-west sun progression inside the same timezone. Also we find that the onset of the low

calling activity period as well as its mid-time, are subjected to seasonal changes, following

the same dynamics as solar midnight. Moreover, with resting time measured as the low

activity periods of people in cities, we discover significant behavioural differences between

different age and gender cohorts. These findings suggest that the length and timings of the
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human daily rhythms, still have a sensitive dependence on the seasonal changes of the

sunlight.

Introduction

The daily activity of people varies across space and time from place to place, date to date, and

hour to hour as a result of biological, societal, economic, and environmental factors, shaping

the society where they live. Roughly speaking, each day humans do certain activities at specific

times. There are many environmental factors (cues or ‘zeitgebers’) involved in the entrainment

of this clock, but as pointed out by Roenneberg et al. [1], the most dominant is light and is

associated with the light-darkness cycle determined by the daily rhythm of daylight. However,

mainly in places not close to the equator, the timing and duration of daylight is subject to

noticeable seasonal variation due to the yearly movement of the Earth around the Sun, and

these changes have a direct influence on the kind and timing of different human activities. On

the other hand, humans living in urban areas are also immersed in an environment full of cues

that could influence the entrainment of the circadian clock. Artificial lighting, social practices

and schedules (work and school hours, workdays vs weekends), particularly for those living in

big urban areas, could have a noticeable influence on the entrainment process. Social conven-

tions impose characteristic schedules on individuals, and, at the population level we can expect

people in urban areas to have periods of high activity between morning and evening, and peri-

ods of low activity (resting) during the night. The length and timings of human activity peri-

ods, specifically in urban areas, has important consequences for human health [2–5], economy

and power consumption [6], and public transportation efficiency [7].

The human sleep wake cycle (SWC), and its dynamics in particular, has been studied in

recent years to understand the processes and cues that govern it [8]. Generally speaking, most

research on human SWC has focused on experiments with small groups under controlled con-

ditions [9, 10], or questionnaire studies [1, 11–14] (mainly using the Morning-Eveningness

Questionnaire (MEQ) [15] and the Munich Chronotype Questionnaire (MCTQ) [16]). The

use of these tools for studying SWC has proved to be very fruitful and effective, though having

some limits on the domain of applicability [14]. In contrast, the ever-increasing availability of

information communication technologies (ICT) combined with researchers’ ability to access

large-scale ICT-generated datasets (‘Big data’) has made possible the study of human behav-

iour using a variety of reality (data) mining techniques. In particular, there are a number of

examples where mobile phone datasets have been analyzed to study social networks [17–20],

sociobiology [21, 22], mental health [23], mobility [24–27], as well as social behaviour of cities

[28, 29]. Over the past decade or so, the existence and accessibility of these large population-

level datasets, has allowed scientists to study intrinsic human behavioural and socio-

evolutionary patterns in unprecedented and complementary ways, compared to other research

approaches.

Recently, datasets of mobile phone usage have also been used to study circadian rhythms,

by analyzing individual’s mobile phone usage from the data captured by sensors [26, 30–35],

or people’s communication patterns from their call detail records (CDRs) [31–33]. For exam-

ple, one study used the mobile phone screen on-off sensor data to examine the sleep wake

cycle of nine individuals, finding that most of the individuals varied their sleep time patterns

between weekdays and weekends, as well as showing seasonal changes in their mid-sleep time

[30]. In another study using mobile phones calls and text messages of a small number of indi-

viduals, it was shown that individuals can be classified as having morning type or evening type
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activity levels [31]. In our previous related work [33], we quantified the resting periods of peo-

ple from their mobile phone calling activity, showing that there is a counterbalancing effect

between the afternoon and night time resting periods, due to an interplay between ambient

temperature and sunlight. The use of CDRs as a tool for investigating the sleep/wake circadian

rhythm, is in our view a promising new line of research as of that complements the other

research approaches especially the large scale survey-based studies, pioneered by Roenneberg

et al [11–13].

In this study, we apply reality mining techniques to users’ call records in a mobile phone

communication network to study the dynamics of the users’ calling patterns by focusing on

the periods of low activity, i.e. when almost no calls are made. Users of the mobile phone net-

work typically have specific time periods during which their calling activity ceases, and we

may assume that the SWC is bounded inside this period of inactivity. We observe that the

daily calling activity time displays an interesting dynamics across the year through seasons and

along different geographical zones. By studying these patterns we can gain insights into

human activity patterns, and the SWC, in particular. Interestingly, the calling activity pattern

changes with the day of the year and it is found to depend also on the geographical location

(latitude and longitude of the mobile phone user). From the circadian clocks involved in the

daily rhythms of human societies, only those entrained to solar-based events depend also on

the geographical location and on the day of the year.

In this work, we use mobile phone calling activity at the population level to study how the

onset and termination of the urban human activity in different cities is synchronized with the

East-West progression of the Sun. Also, we analyzed the annual progression of the onset and

termination of the calling activity, finding that they show a strong seasonal variation. We note

that this behavior is similar to the annual dynamics of solar midnight, inferring that solar mid-

night is an important cue entraining the human circadian clock. Finally, we determine the

mid-time of the period of low calling activity, which is bounded between the termination of

calling activity each day and its onset on the next day. We interpret this mid-time to corre-

spond to the mid-sleep time, and show that it is strongly dependent on the age and gender of

the individuals in the population.

Results

Using an anonymized dataset containing details of mobile phone communication of subscrib-

ers of a particular operator in a European country described in detail in the Methods section,

we investigate the calling activity of the urban population living in cities as a function of time

of the day for all the dates during the year. This we do by calculating for each city the probabil-

ity distribution Pall(t, d) for finding an outgoing call at time t of a day d = (1,. . .,365) of the

year. For all the studied cities, a region of almost null activity can be found around 4:00 am.

Using this natural bound to split the calling activity from one day to another, we define a ‘day’

starting from 4:00am of a calendar day and running to 3:59am of the next calendar day.

In Fig 1 we show Pall(t, d) (green line) during days d = 214−215 (marking early August) for

a city with over a 500,000 inhabitants. The distribution Pall(t, d) has two high calling activity

periods with the first one corresponding to the morning calls, peaking around noon, and the

second related to the evening calls, peaking around 8:00 pm. This bimodal pattern is present

every day across the year and all the cities included in this study. The high calling activity peri-

ods are delimited by two periods of low activity, one centered around 4:00 pm related to the

time after lunch, and the second one in the middle of the night, around 4:00 am within the

sleeping period. The pattern present in Pall(t, d) is similar to that reported in other studies

using different CDRs [29, 36], mainly at the times when the calling activity starts and ceases.

Tracking human activity from calling patterns
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In ref. [29], where the calling activity of some Spanish cities was studied, the histogram of the

number of active users at each time has a similar bimodal shape, with similar times for their

onset and termination, as well as the depth in the middle located around the same time period

(i.e. between 3:00 pm and 4:00 pm).

To study the specific times when the calling activity rises and falls, we analyze the ‘morning’

and ‘night’ periods separately, defining the former between 5:00 am and 3:59 pm, and latter

between 5:00 pm and 3:59 am on the following calendar day, in such a way that each period is

11 hours long. During each ‘morning’, we select only the first call made by each user inside

that period and construct the associated probability distribution for the time of the first call

PF(t, d), directly related to the rise of calling activity. Similarly, during the ‘night’ we define the

corresponding probability distribution for the time of the last call PL(t, d) by taking into

account only the last call made by each user within that period. In Fig 1, it can be seen that the

three defined probability distributions Pall(t, d) (green), PL(t, d) (red), and PF(t, d) (blue) for

consecutive days during winter, for a particular city with a population over a 500,000. The

shape of the distributions Pall(t, d), PL(t, d), and PF(t, d) depicted in Fig 1 for a specific day

appear to be preserved for all the days and cities we have studied.

Urban activity synchronization with East-West sun progression

The mean time of the first call tF and of the last call tL of people in a city can be influenced by

environmental, social, and economic factors, and their possible daily value could be distributed

completely at random. However, we find that during the year and at different latitudes, despite

the different factors influencing the shape of the distribution Pall, the onset and termination of

calling activity follows a consistent pattern, and this characteristic behaviour allows us to

Fig 1. Probability distribution for finding a call at time t, for a particular in 2007. (green) Distribution when

all the calls are included. (red) Distribution when only the last call at night is included (between 5:00 pm and 4:00

am next day). (blue) Distribution when only the first call of the day is included (between 5:00 am and 4:00 pm).

The distribution of the last and first calls are sharper and have well-defined maxima.

https://doi.org/10.1371/journal.pcbi.1005824.g001
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compare the calling activity pattern of cities lying at different latitudes. If the onset or termina-

tion of the urban calling activity is socially driven, with fixed times for specific activities (like

office working hours from 9:00am to 6:00pm), one could expect that cities lying in the same

time zone and at the same latitudes have similar calling activity timings (onset and termina-

tion). However, we find that the onset and termination of calling activity synchronizes with

the East-West sun progression, in such a way that cities lying in western locations start (and

terminate) their calling activity after cities at eastern locations, with a delay difference corre-

sponding to the time difference between their local meridians. In Fig 2A and 2B we show tL

and tF for 5 different cities lying inside a latitudinal band centered at 42˚N±400. The region

including the 5 cities spans a longitudinal angle of 10.8˚, and by taking one of the cities as a ref-

erence, other cities are located at −7.8˚, −4.7˚, −3.7˚, and +3.0˚ from the reference city marked

here with 0.0˚. Then we compare the actual distributions PL and PF of the time of the last call

and of the first call, respectively, for the 5 cities in the same latitudinal band, and find that PL

and PF for western cities seem shifted to later times. However, when the distributions are

shifted by an amount of time corresponding exactly with the time difference between the local

meridian of the corresponding city and the reference city, the distributions visibly collapse

onto each other, as can be seen in Fig 2C and 2D. In this case, the time shifts are +31.2,

+18.8, +14.8, and -12 minutes for the cities located at -7.7˚, -4.7˚, -3.7˚, and +3˚ from the refer-

ence city at 0˚, respectively.

Fig 2. Temporal shift of the onset and termination times of the calling activity along geographical

longitude. Probability distributions of the time of the last call PL(t, d) and that of the first call PF(t, d) for 5

different cities lying at the same latitude but at different relative longitudes from a reference point located at

the second city from east to west within the band for two consecutive days during the year. The relative

longitudes of the cities are -7.8˚, -4.7˚, -3.7˚, 0˚, and +3˚. (Upper panel) Probability distributions for (A) the time

of the last call, and (B) the time of first call. (Lower panel) Probability distributions for (C) the time of the last

call, and (D) the time of first call, shifted by a time corresponding to the difference between their local sun

transit times (31.2, 18.8, 14.8, and -12 minutes for the cities located at -7.8˚, -4.7˚, -3.7˚, and +3˚ from the

reference city, respectively). The collapse of the distributions onto the reference city’s distribution is evident

when the longitudinal time shift is added. This collapse implies that the 5 cities begin (or cease) their calling

activity in a way that is synchronized with a temporal phase corresponding to the difference between their sun

transit times.

https://doi.org/10.1371/journal.pcbi.1005824.g002
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The distribution collapse shown in Fig 2 is obtained by introducing a time shift correspond-

ing to the sun transit differences between cities. In order to quantify the exact delay between

the distributions, we calculate the required time shift that should be introduced between the

calling distributions to minimize the Kullback-Leibler divergence DKL between them (see the

Methods section). This measure is indicative of the similarity between the distributions, and is

minimized when they are identical. We extend this analysis to include data from 30 cities, each

one lying in one of the four latitudinal bands centered at 37˚N (10 cities), 39.5˚N (5 cities),

41.5˚N (7 cities), and 42.5˚N (8 cities). For each band, we choose one city lying near the mid

point of the band as the reference, and calculate for all the cities in the band the average time

shift between them and the reference city. This is done for each day of the week, averaging

over 52 weeks of the year 2007. The results are shown in Fig 3, and it can be seen that the time

shift that minimizes the divergence between the distributions corresponds to the delay

between their local sun transit times. This synchronization appears stronger for the termina-

tion of the calling activity (represented by the distributions PL). As this pattern is consistently

present in all of the four analyzed latitudinal bands, we conclude that it is a general behaviour

of the population living in the cities. This result is consistent with those reported by Roenne-

berg et al. [12], obtained from MCTQ studies of people in Germany, distributed over a region

that is 9˚ wide longitudinally. In their work, they take into account the population of the city

by defining three population size categories, i.e. less than 300,000 inhabitants, between 300,000

and 500,000 inhabitants, and more than 500,000 inhabitants, while we classify each city of

more than 100,000 inhabitants according to its latitudinal coordinate. Grouping the cities into

latitudinal bands, we found a consistent entrainment to the East-West progression of the Sun,

regardless of the population size of each city.

This result implies that the termination (last call of the day) and onset (first call of the next

day) of calling activities in cities at similar latitudes follow an external cue driven by solar

events, and the time difference in these solar events between two different cities is reflected in

the timings of their calling activity.

Entrainment of urban calling activity with sun-based cues

We have shown that the cities located at the same latitude but at different longitudes have peri-

ods of low calling activity with different onset and termination times (Figs 2 and 3). This shift

coincides with the difference between their local sun transit times, i.e. when the sun crosses the

meridian of the city. This observation raises the question as to what external daily event

induces such synchronization. As the delays correspond to the time period between the local

sun transit times of the cities, it seems plausible to think that the sun functions as a cue for this

entrainment.

At the latitudes where the studied cities are located, the time difference between the sunset

in the summer and in the winter is around 3 hours, if daylight saving is not taken into account,

and the same holds for the time difference between sunrises. In contrast, the time difference

between the mean time of the last calls between summer and winter is at most one hour [33].

However, there is a clear synchronization between the sun transit time and the timings of call-

ing activity. This means that there should be an external clock functioning as a cue. On the

other hand, from a biological perspective, the time when the secretion of melatonin reaches its

maximum [37] lies close to midpoint between sunset and sunrise (i.e. solar midnight), once

the night is as dark as possible. It has been proposed that the mid-sleep time coincides with the

time corresponding to maximum melatonin secretion [38, 39], and if the solar midnight shifts

through the year, the time for the maximum melatonin secretion should follow a similar pat-

tern, as well as the entrained mid-sleep time.
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Fig 3. Time progression of the onset and termination of the calling activity along the geographical

longitude. Temporal progression of the onset and termination of the calling activity for cities lying at different

geographical longitude. The time shift n*Δ that minimizes the divergence between the probability distribution of the

first call PF in a reference city and the corresponding distributions of the other different cities lying at the same

latitude. 4 different bands are analyzed, centred at 37.5˚N, 39.5˚N, 41.5˚N, and +43.1˚N. For each city inside each

band, the time shifts n*Δ for the 7 days of the week are shown, as the set of 7 points with the same color located at

the corresponding time difference between the local meridians of each city and that of the reference. The dashed

line represents the time shift between the sun transit time at the reference city and a hypothetical point located at

each corresponding longitude. The error bars represent the standard deviation from the average value for each day

of the week. From the plot it can be seen that, for cities lying further away from the reference city, a bigger time shift

is required to collapse the distributions.

https://doi.org/10.1371/journal.pcbi.1005824.g003
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In their study, Allenbradt et al. [40], using the MCTQ approach, have reported that mid-

sleep time (on free-days) changes from one season to another. In some of the studied popula-

tions, they found that there is a small but significant difference in the average mid-sleep time

between the days when Daylight Saving Time is applied and other days. This lends support to

our assumption that if the mid-sleep time shifts in response to seasons, the timings of the call-

ing activity should be influenced by its variation. In such a case, when the human mid-sleep

time occurs at later hours, the timings of the calling activity for the following days should also

occur at later hours. In other seasons, when the mid-sleep time occurs earlier, the activity tim-

ings should also be shifted towards earlier hours. If this is the case, then solar midnight should

be functioning as the cue to which the calling activity timings are entrained. The activity pat-

tern is a consequence of the interplay between seasonal and geographical factors, as well as

social and societal activities like work and/or school, transportation, eating and leisure activi-

ties. However, the latter require specific timings during the day, not necessarily controlled by

the sleep/wake cycle. We have shown elsewhere [33] that the total period of low calling activity

(that is, the period between the termination and the onset of the calling activity) is strongly

correlated with the duration of daylight, showing seasonal changes similar to the mid-sleep

time.

In order to find any possible synchronization between the onset (and termination) of call-

ing activity and solar midnight, we calculate the average of the mean times of the last call �tL

and that of the first call �tF , for three sets of cities located at the latitudinal bands ϕ = 37˚300N

(seven cities), 40˚200N (six cities), and 43˚00N (eight cities). We compare �tL, and �tF with the

yearly evolution of the solar midnight in a reference city within a given latitudinal band (see

Fig 4). A detailed description of how �tL and �tF are calculated can be found in the Methods sec-

tion. It can be seen that only �tL resembles to some extent the dynamics of the solar midnight,

with their two minima and at least one of their maxima occurring around the same days of

those of solar midnight, although the relative amplitudes are not in correspondence. In addi-

tion, the discontinuities introduced by the daylight saving is visible in all the graphs, suggesting

that the timings of the calling activity are not solely influenced by the socially-driven time, but

instead are synchronized with an external (astronomical) clock.

Age and gender dependence of the mid-sleep times

The period of low calling activity is bounded by the mean times of the last call during the night

and of the first call in the morning. The duration of this period changes across seasons [33]

and is strongly influenced by the length of the day (or conversely by the length of the night).

The mid-time of this low calling activity period should correspond to the average time of

human low activity, i.e. when the majority of the urban population is sleeping. In chronobiol-

ogy studies, the mid-sleep time, corresponding to the time when human sleep is in the middle

of its cycle, has been found to vary with the age and gender of the individuals [11, 41]. Despite

the fact that each individual has a distinctive sleep-wake cycle, with a chronotype ranging from

advanced sleep period (morningness) to delayed sleep period (eveningness) [42], at the popu-

lation level a characteristic mid-sleep time can be consistently calculated, taken simply as the

average of individual mid-sleep times.

From the mean times of the last call of the day, tL and of the first call tF of the next day, we

define the period of low calling activity TLCA as the elapsed time between tL and tF, as a mea-

sure of the time when cities cease their activity. In Fig 5a, the width of the low activity period

TLCA of the most populated city in the dataset is shown, for 4 different days of the week (Tues-

days, Fridays, Saturdays and Sundays), as a function of the subscribers’ age and gender. There

is a noticeable change of about 3 hours, moving from the age cohort of 20 to that of 40 year
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olds. After that rather abrupt increase, especially for Fridays and Saturdays, TLCA slightly

decreases, reaching a local minimum value for the age cohort of 50 year olds, and then it

increases again to reach the highest value at the age of 78 years. For the analyzed weekday

(Tuesday) as well as for Sunday, TLCA increases almost monotonically with the cohort age,

showing a small plateau for age cohorts between 45 and 58.

We have also tracked the midpoint of the inactivity period, defined as the mid-time

between tL and tF. Due to its similarity with the average time in the middle of the sleeping

period [41], we interpret this minimum calling activity time as the mid-sleep time tmid, calcu-

lated simply as tmid = (tL + tF − 24)/2. Both quantities are found to depend on the age and gen-

der of each cohort, as can be seen in Fig 5b. We find that, for certain age groups (from 18 to 32

years old, and from 43 to 80 years old) tmid occurs at a later time for women as compared to

men, while in the age group of 33 to 42 years old, tmid for the men occur later. This finding dif-

fers somewhat from the reported mid-sleep times (on free days) in the chronotype question-

naire study based on the MCTQ [11, 13], where males show a later mid-sleep time for age

cohorts younger than 38 years old. Also, there is a strong dependence on age, with younger age

cohorts (20–30 year old) having later tmid, i.e. around 30 minutes after that of the oldest age

cohort (70-80 years old). This observation is in accordance with the observed chronotypes

[41], which are attributed to biological factors or internal clock being regulated by neuronal

and hormonal mechanisms. We also found an unexpected rise of tmid for the age cohort of

Fig 4. The yearly evolution of the time of the first call and that of the last call compared against the

yearly shift of the solar midnight. (Top sets) �tF—average of the mean time of the first call of 3 sets of cities

located at latitudinal bands centred at ϕ = 37˚300N (blue), 40˚200N (green), and 43˚00N (red). (bottom sets) �tL—
average of the mean time of the last call for the same sets of cities. In the middle of the panels, the solar

midnight time in one of the cities within the band. The shape of �t�L resembles to some extent the graph of the

solar midnight, coinciding with the two minima (for days 130 and 302) and one of the maxima (for day 210).

For the case of �t�F , the graph shows some correspondence with the sunrise although to a lesser extent. The

discontinuities introduced by the daylight saving shows in the graphs, suggesting that the period of low calling

activity is not solely influenced by the socially-driven time, but is synchronized with an external (astronomical)

event. The number of cities inside the bands ϕ = 37˚300N (blue), 40˚200N (green), and 43˚00N (red), are 7, 6,

and 8, respectively.

https://doi.org/10.1371/journal.pcbi.1005824.g004
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45–65 year old individuals, which we suspect is entirely of social origin. Hence it seems that

both biological and social factors play a role in changing tmid, i.e. shifting the period of low

activity to later hours.

In addition, we find that tmid varies across days of the week. On Fridays and Saturdays tmid

occurs at a later hours compared with the other days. Similarly, the age cohort with the latest

mid-sleep time tmid is different for different days of the week. On Saturdays, individuals in the

age group 30 to 45 years old have the latest tmid, while for the other days of the week it is the

20–25 years old cohort which shows the latest mid-sleep time. The results of TLCA and tmid for

the most populated city are also and consistently found in the next 5 most populated cities, as

shown in the Supplementary Material (S1 and S2 Figs, respectively).

Discusion

In this study, we have found that the onset and termination of the period of low calling activity

for people in cities at about the same latitude but at different longitudes are shifted according

to their relative longitudinal separation. Cities westward from the easternmost analyzed city

stop their activity later in line with the time delay of the sun transit time. This result suggests

that a solar event acts as a cue for the circadian rhythm of the period of low calling activity

with the SWC bounded inside. This result is consistent with those reported by Roenneberg

Fig 5. Period of low calling activity and mid-sleep times for different age and gender cohorts. (a)

Period of low calling activity TLCA. The TLCA is calculated as the elapsed time between the mean time of the

last call and that of the first call, as a function of the age and gender of different cohorts, for the most populated

city in the dataset in 2007. (b) mid-sleep time tmid, calculated as the time in the middle of the interval between

the mean time of the last call and that of the first call, as a function of the age and gender of different cohorts of

the same city. For each age cohort, TLCA and tmid are calculated for females (circles) and males (triangles)

separately. Both quantities are different for different days of the week, and the corresponding plots are shown

for (green) Tuesdays, (red) Fridays, (blue) Saturdays, and (violet) Sundays. As Mondays to Thursdays have

similar values, therefore only the data for Tuesdays is shown.

https://doi.org/10.1371/journal.pcbi.1005824.g005
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et al. [12], although strictly speaking the two studies cannot be compared directly as the focus

of our study is on variation by latitude and theirs was on variation by population size of cities.

In addition, we found that the seasonal variation of the termination of calling activity

resembles the annual variation in solar midnight (or solar noon). However, when the annual

behaviour of activity termination is compared with other characteristic solar events like the

sunrise and sunset, it appears to have a different functional form with different number of

maxima and minima with different dates. Although, it seems likely that solar midnight (or

solar noon) acts as a cue in the synchronization of the termination of the calling activity, fur-

ther research is needed to confirm this. At the individual level, knowledge of the mid-sleep

time and sleep duration allows the determination an individual’s chronotype [16]. However, at

the population level, we could determine from the calling distributions the characteristic varia-

tion in the sleep duration and mid-sleep time as a function of the group age. The observed

overall trends are in line with the earlier findings [41] and reveal an increase in the sleep dura-

tion and decline in the mid-sleep time with age. Several other intricacies are also evidenced at

closer inspection. Firstly, the aspect of ‘social jetlag’ [43], defined as the difference between the

mid-sleep times on free days and that of work days, becomes apparent across all age groups.

Interestingly, although social jet-lag is expected to give rise to extended sleep duration on free

days as a compensatory effect, for young adults (20–25) we find that the sleeping periods are

comparatively less on free days (Friday and Saturday nights and the following mornings).

Therefore, sleep deprivation is likely to be at a maximum for this age range. Second, previous

observations suggest a monotonic decrease in the mid-sleep time from around 20 years of age,

which can be attributed to endocrine factors [41]. In contrast, we observe a reversal in trend of

the mid-sleep time such that at the age of 45 years it starts rising till 55 years of age, after which

it decrease again.

Materials and methods

In this study, we have analyzed a very large dataset of anonymized call detail records (CDRs)

from a mobile phone service provider offering services in a a country located in the Southern

Europe subregion of the United Nations geoscheme [44]. Due to a Non Disclosure Agreement

associated to the dataset we are bound to keep the identity of the country unknown, and thus

we have partially masked the latitude and Longitude coordinates of the cities to screen their

actual location, such that each city is associated with a latitudinal band, and the latitude at the

center of the band is assigned as the latitude of the city. In the analyses, depending on the mea-

sure we were focusing on, we chose the width and center of the latitudinal bands and in all

cases specifying the corresponding values. The latitude coordinate associated with each band is

described by ϕ ± dϕ, with ϕ the latitude in degrees at the center of the band, and dϕ the half-

width of the band in degrees. On the other hand, as the latitudinal region is given, the Longi-

tude coordinate is also screened by providing instead its angular separation from, an arbitrary

point located in the same latitudinal band. Thus, for a given city, its longitude coordinate

θ denotes the number of degrees from a reference point located in the same latitudinal band.

The anonymization of the subscribers’ identities was performed by the service provider prior

the data been given to us. The dataset contains CDRs of around 10,000,000 subscribers during

2007, with more than 3 billion calls between 50,000,000 unique identifiers. Each record con-

tains the date, time, duration, and anonymized caller and callee identifiers. The dataset also

includes demographic information of the majority of the subscribers, and, for those cases, the

age, gender, postal code, and location of the most accessed cell tower (MAC-tower) are

known. Thus, there are three possible locations associated to each user, namely the associated

city center, the location of the MAC-tower and the center of the postal code region, and we use
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them to determine whether the subscriber “lives in a city”—defined by cases where their three

associated locations are sufficiently close to each others. Taking as a reference point the geo-

graphical location of the associated city center, a subscriber lives there if the following three

conditions are satisfied:

1. the distance between the location of the MAC-tower and the associated city’s center is less

than 15 km

2. the distance between the center of the associated postal code region and the associated city’s

center is less than 15 km

3. the distance between the location of MAC-tower and the center of associated postal code

region is less than 30 km.

In this study, we chose 36 of the cities with more than 100,000 inhabitants in 2007 (see

S3 Fig in the Supplementary Material), in such a way that our final analysis takes into account

the calling patterns of around 1,000,000 subscribers in total. Locations of the subscribers are

associated with the locations of the cities they reside. Each city is associated with the following

two geographical coordinates: the latitudinal coordinate is fixed as the midpoint of a latitudinal

band including the city, and the longitudinal coordinate, defined as the angular distance

between the city and a reference point located in the studied region.

Quantifying delays between calling activity timings

Calling behavior varies seasonally, particularly the mean value and the width of the distribu-

tions of the first and last call vary across the year, being pushed towards the afternoon during

winter and towards midnight during the summer. In spite of this seasonal variation, for a

given day the calling distributions of different cities have similar shapes, and we exploit this

similarity to calculate the delays between them to identify the temporal shifts of the distribu-

tions. The Kullback-Leibler divergence [45] is a measure of similarity between two distribu-

tions, commonly used in statistical analysis, for example when comparing one distribution

obtained from data and another generated by a model. It reaches zero, its minimum possible

value, when the distributions are identical, and it increases in value as the distributions become

more and more dissimilar. In the case of the calling activity of different cities, the distributions

are not identical but have a very similar shape. Applying Kullback-Leibler divergence to a pair

of these distributions, it would reach a minimum value when these distributions overlap most,

falling on top of each other and collapse to one. Thus, if we measure the amount of time one

distribution should be shifted in order to minimize its divergence from the second distribu-

tion. The time shift would correspond the actual time delay between them.

In order to quantify the actual time shift between the distributions PL of last calls for

cities lying along different Longitudes, we proceed as follows. First, for all the cities within the

band, we calculate all the distributions PL(t, d) between January 2nd and December 31st.

For each day d, we fix PL(t, d)0˚ of the city labeled ‘0˚’ as the reference distribution, and for

every other city c in the band, we compared the reference PL(t, d)0˚ with time-shifted versions

PL(t + nΔ, d)c of the distribution PL(t, d)c, with −5� n� 8 and Δ = 5 min, to find the time shift

n�Δ that minimizes the divergence DKL between them. Here, DKL is the Kullback-Leibler diver-

gence measure, defined as DKL(P, Q) = ∑i Pi log(Pi/Qi), with P, Q being the two discrete distri-

butions. Once we find for each city the set {n�Δ} with all the time-shifts across the year, we

calculate its average time-shift hn�Δi, and plot it for all the cities in the band in the right col-

umn of Fig 3. As the time for the mean time of the last call is different for different days of the

week [33], the average is calculated separately for each day of the week. We apply the same
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procedure for the time of the first call distributions PF, and the results are shown in the left col-

umn of Fig 3.

Averaging the mean times of the calling activity inside a latitudinal band

In order to find if there is any relation between tL and tF and the solar midnight, we have cho-

sen 7, 6 and 8 cities, lying in the latitudinal bands centered at ϕ = 37˚300 N, 40˚200 N, and 43˚00

N, respectively. For each city, we shift its corresponding distributions in accordance with its

longitudinal difference to collapse all into one. Then we calculate the average mean time of the

last call, �tLðdÞ ¼ h�t 0Lðd; cÞi, where, �t 0Lðd; cÞ denotes the mean time of the last call for the shifted

distribution for a city c belonging to the analyzed band during the day d, and h�i denotes the

average over all cities lying within the band. Similarly, we calculate the average mean time of

the first call �tFðdÞ for the given latitudinal band. The quantities �tLðdÞ and �tFðdÞ are compared

with the time at which the solar midnight occurs in the reference city of each band. It should

be noted that in the original graphs there are days of national holidays and local festivities that

introduce drastic pattern changes, which we filter out to construct the final graphs.

Supporting information

S1 Fig. Period of low calling activity TLCA for different age and gender cohorts. The TLCA is

calculated as the elapsed time between the mean time of the last call and of the first call, as a

function of the age and gender of different cohorts, for the six most populated city in the data-

set in 2007. For each age cohort, TLCA is calculated for females (circles) and males (triangles)

separately. TLCA is different for different days of the week, and the corresponding plots are

shown for (green) Tuesdays, (red) Fridays, (blue) Saturdays, and (violet) Sundays. Mondays to

Thursdays have similar values, therefore only the data for Tuesdays is shown.

(TIF)

S2 Fig. Mid-sleep time tmid for different age and gender cohorts. tmid is calculated as the

time at middle of the interval between the mean time of the last call and of the first call, as a

function of the age and gender of different cohorts, for six of the seven most populated cities in

the dataset in 2007. For each age cohort, tmid is calculated for females (circles) and males (trian-

gles) separately. tmid is different for different days of the week, and the corresponding plots are

shown for (green) Tuesdays, (red) Fridays, (blue) Saturdays, and (violet) Sundays. Mondays to

Thursdays have similar values, therefore only the data for Tuesdays is shown. During some

Fridays nights, the calling activity extended until very late in the night, and the distribution of

the morning calling activity on the next day presents a small peak around 4:00 a.m. If present,

we include this peak in the analysis when calculating the time of the first call, due to its small

amplitude and width compared with the main part of the distribution for the time of the first

call. This is also true for the results shown in Fig 5 in the main text.

(TIF)

S3 Fig. Distribution of cities by population size in 2007. The values are rounded to multiples

of 50,000 to keep the identity of each city unknown.

(TIF)
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